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Abstract

Let t(n, d) be the minimum number t such that there are t of the nd lattice points

{(x1, . . . , xd) : 1 ≤ xi ≤ n}

so that the
(
t
2

)
lines that they determine cover all the above nd lattice points. We prove that

for every integer d ≥ 2 there are two positive constants c1 = c1(d) and c2 = c2(d) such that for

every n

c1n
d(d−1)/(2d−1) ≤ t(n, d) ≤ c2nd(d−1)/(2d−1) log n.

The special case d = 2 settles a problem of Erdös and Purdy.
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1 Introduction

We say that a set of points S in an Euclidean space (of any dimension) determines a line l if l

contains at least 2 points of S. Let L = L(n, 2) = {(x1, x2) : 1 ≤ x1, x2 ≤ n} denote the set of all

points in the n by n square lattice. A subset S of L is called an (n, 2)-covering set if the union of all

the lines determined by S contains all the points in L. Let t(n, 2) denote the minimum cardinality

of an (n, 2)-covering set.

Erdös and Purdy (see [1]) raised the problem of estimating t(n, 2). They mentioned that it is

not hard to see that t(n, 2) ≥ Ω(n2/3) and asked if t(n, 2) = o(n). In this short paper we answer

this question affirmatively and show that t(n, 2) ≤ O(n2/3 log n). Therefore, t(n, 2) is indeed o(n)

and the gap between the upper and the lower bounds for this quantity is a log n factor.

Our proof combines simple geometric and probabilistic arguments with some of the standard

techniques used in the study of Diophantine Approximations. The method works in dimensions

bigger than 2 as well. Let L(n, d) denote the set of all nd vectors (x1, . . . , xd), where 1 ≤ xi ≤ n are

integers for all i. A subset S of L(n, d) is an (n, d)-covering set if the lines determined by S cover

all points of L(n, d). Let t(n, d) denote the minimum possible cardinality of an (n, d)-covering set.

Our main result is the following.

Theorem 1.1 For every integer d ≥ 2 there are two positive constants c1 = c1(d) and c2 = c2(d)

such that for every n:

c1n
d(d−1)/(2d−1) ≤ t(n, d) ≤ c2n

d(d−1)/(2d−1) log n.

2 The lower bound

In this section we prove the easy part of Theorem 1.1, by showing that for every d there exists a

positive constant c1 = c1(d) such that t(n, d) is at least c1n
d(d−1)/(2d−1) for all n. Put L = L(n, d).

For a line l in Rd, let |l| denote the number of points of L contained in l. Observe that if |l| ≥ 2

then l can be presented by its parametric equations Xi = ai + piz, (1 ≤ i ≤ d), where ai, pi are

integers and the greatest common divisor of p1, . . . , pd is 1. We say that a line l with the above

presentation is of type q if q = max|pi|. The direction of l is the vector (p1, . . . , pd). Note that this
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vector and its inverse (−p1, . . . ,−pd) represent the same direction. We need the following simple

fact.

Fact: For each q ≥ 1, the number of distinct directions of lines of type q is at most d(2q+ 1)d−1 ≤

d(3q)d−1.

Proof There are d possibilities for choosing an index i such that |pi| = q, and since a vector and

its inverse define the same direction we may assume that pi = q. Any other pj is an integer between

−q and q implying the desired estimate. 2

Let S be a subset of cardinality t of L. Let F denote the set of all lines determined by S.

Clearly, |F | ≤
(t
2

)
. Let P (S) denote the set of all the points in the lattice L which are covered by

the union of all the lines in F . Obviously,

|P (S)| ≤
∑
l∈F
|l|. (1)

Clearly, for each line l of type q, |l| ≤ n/q. Also, the number of lines in F in each direction is at

most t/2, since a set of t points cannot determine more than t/2 parallel lines. Let fq denote the

number of lines of type q in F . By the Fact and the remark above fq ≤ t
2d(3q)d−1. Therefore, the

right hand side of (1) is at most the maximum possible value of
∑
q≥1 fq

n
q , subject to the constraints∑

q≥1 fq ≤
(t
2

)
and fq ≤ t

2d(3q)d−1. This last maximum is obviously attained when
∑
q≥1 fq =

(t
2

)
and fq is as large as it can be for all q < s and is 0 for all q > s, where s is an appropriately

chosen integer. Therefore, at the maximum, fq = t
2d(3q)d−1 for all q < s and fq = 0 for all q > s.

Since
∑
q≥1 fq =

(t
2

)
, a simple calculation shows that s ≤ 1 + t1/d/3(d−1)/d. This implies that

the above maximum is at most
∑s
q=1

t
2d(3q)d−1 n

q < c3(d)nt(2d−1)/d. We have thus proved that if

|S| = t then |P (S)| ≤ c3(d)nt(2d−1)/d. Since if S is an (n, d)-covering set then P (S) = L (and hence

|P (S)| = nd), this gives the following:

Lemma 2.1 If S is a subset of cardinality t of L(n, d) then the number of points of L(n, d) covered

by the lines determined by S is at most c3nt
(2d−1)/d, where c3 is a positive constant dependeing only

on d. Thus, for every d there is a positive constant c1 = c1(d) such that t(n, d) ≥ c1n
d(d−1)/(2d−1)

for all n. 2
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3 The upper bound

In this section we prove the upper bound in Theorem 1.1. For convenience we omit the floor and

ceiling signs and assume that the fractional powers of n appearing here are all integers. Since we

deal with fixed values of d and large values of n, it is easy to see that this can indeed be assumed

without loss of generality. We start with the following somewhat technical lemma.

Lemma 3.1 For every two lattice points (x1, . . . xd) and (a1, . . . , ad) in L(n, d) there are d integers

p1, . . . , pd and a real number z, such that for q = max{|pi| : 1 ≤ i ≤ d}:

1 ≤ q ≤ n(d−1)/(2d−1), (2)

|(xi − ai)− piz| ≤
n(2d−2)/(2d−1)

q
for all 1 ≤ i ≤ d, (3)

and there exists an index j, 1 ≤ j ≤ d, such that

pj = q and (xj − aj)− pjz = 0. (4)

Proof The proof is based on the standard argument of Dirichlet used in the study of approximation

of reals by rationals, (see, e.g., [2]). Let us change the indices, if needed, so that

|xd − ad| = max{|xi − ai| : 1 ≤ i ≤ d}.

If this maximum is zero the result is trivial (since in this case we can take pi = 1 for all i and

z = 0). Otherwise put Q = n1/(2d−1) and define αi = xi−ai
xd−ad for 1 ≤ i ≤ d − 1. Consider the

(d− 1)-dimensional unit cube 0 ≤ yi < 1, (1 ≤ i ≤ d− 1) and split it into Qd−1 identical subcubes

by drawing hyperplanes parallel to its facets, where the distance between each pair of consecutive

parallel hyperplanes is 1/Q = n−1/(2d−1). For each integer j, 0 ≤ j ≤ Qd−1, let Pj be the point

(jα1(mod 1), . . . , jαd−1(mod 1)) in the above unit cube. Since there are Qd−1 +1 such points, there

are two of them, say Pl and Pm, where l < m, that lie in the same subcube. Define q = m− l and

define pi by the equality qαi = pi + εi, where pi is an integer and |εi| ≤ 1/Q.

Define pd = q and z = (xd − ad)/q. Since the absolute value of each αi is at most 1 it follows

that |pi| ≤ q ≤ Qd−1 = n(d−1)/(2d−1) for all 1 ≤ i ≤ d. In addition, for each 1 ≤ i ≤ d

|q xi − ai
xd − ad

− pi| ≤
1
Q
,
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implying

|(xi − ai)− piz| = |(xi − ai)− pi
xd − ad

q
| ≤ |xd − ad|

qQ
≤ n(2d−2)/(2d−1)

q
.

Moreover, for i = d we have (xd − ad)− pdz = 0. This completes the proof of the lemma. 2

Using the last lemma we prove the following:

Lemma 3.2 For every fixed d ≥ 2 there are two positive constants c4 = c4(d) and c5 = c5(d) such

that the following holds. For every n ≥ c5 and for every lattice point (x1, . . . , xd) ∈ L(n, d), there

are at least 1
2n

d lattice points (a1, . . . , ad) in L(n, d) satisfying

(c4 + 2)n(d−1)/(2d−1) ≤ ai ≤ n− (c4 + 2)n(d−1)/(2d−1) for all 1 ≤ i ≤ d (5)

such that there exist d integers p1, . . . , pd and a real number z so that

1 ≤ |pi| ≤ n(d−1)/(2d−1), (6)

and

|(xi − ai)− piz| ≤ c4n
(d−1)/(2d−1) for all 1 ≤ i ≤ d. (7)

Proof We prove the lemma with c4 = 4d9d−1, where c5 is chosen so that for n ≥ c5 the number of

lattice points (a1, . . . , ad) ∈ L(n, d) violating (5) is at most 1
4n

d.

By Lemma 3.1, for every (a1, . . . , ad) in L(n, d) there are integers p1, . . . pd and a real number z

such that if q is the maximum absolute value of the integers pi, then inequalities (2) and (3) hold.

Therefore, inequality (6) holds, by (2). If q ≥ 1
c4
n(d−1)/(2d−1) then inequality (7) follows from (3).

Therefore, by the choice of c5, in order to complete the proof of the lemma it suffices to show that

the number of points (a1, . . . , ad) for which the above q is smaller than 1
c4
n(d−1)/(2d−1) is at most

1
4n

d.

The number of these points can be estimated as follows: For each fixed value of q, 1 ≤ q ≤
1
c4
n(d−1)/(2d−1) , there are d possibilities for choosing the index j for which (4) holds, and there are

at most n possibilities for choosing aj . Once these choices are made, z is determined. There are

at most (2q + 1)d−1 ≤ (3q)d−1 choices for the other integers pj . Given these choices, each of the

numbers xi − ai must fall into an interval of length 2n(2d−2)/(2d−1)/q. Obviously, this implies that

there are at most 2n(2d−2)/(2d−1)/q + 1 ≤ 3n(2d−2)/(2d−1)/q ways to choose each ai, for all i 6= j.
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The total number of choices is thus at most

n(d−1)/(2d−1)/c4∑
q=1

dn(3q)d−1(3
n(2d−2)/(2d−1)

q
)d−1

n(d−1)/(2d−1)/c4∑
q=1

9d−1dn1+
(2d−2)(d−1)

2d−1

=
9d−1d

c4
nd =

1
4
nd.

This completes the proof. 2

For a lattice point a = (a1, . . . , ad) that satisfies (5), let B(a) denote the set of all points

(y1, . . . , yd) ∈ L(n, d) that satisfy

|ai − yi| ≤ (c4 + 2)n(d−1)/(2d−1) for all 1 ≤ i ≤ d,

where c4 = c4(d) is the constant appearing in Lemma 3.2. The last ingredient we need for the proof

of the upper bound in Theorem 1.1 is the following simple lemma.

Lemma 3.3 Let (x1, . . . , xd) be a latice point in L(n, d), and suppose that the lattice point a =

(a1, . . . , ad) satisfies (5). Suppose, further, that there are d integers p1, . . . , pd and a real number z

such that (6) and (7) hold. Then, there is a line containing (x1, . . . xd) that contains at least two

points of B(a).

Proof Let B denote the convex hull of the points in B(a). Observe that B is a d-dimesnional cube

with side length (2c4 + 4)n(d−1)/(2d−1). Consider the line l given by

Xi = xi − piw, (1 ≤ i ≤ d,−∞ < w <∞).

This line contains the point (x1, . . . , xd) (corresponding to w = 0). Let (v1, . . . , vd) be the point

corresponding to w = z in this line, (i.e., vi = xi − piz for 1 ≤ i ≤ d). By (7) this point lies inside

the cube B. Moreover, its distance from each of the facets of B is at least 2n(d−1)/(2d−1). Since

every integral value of the parameter w gives a lattice point on l, this, together with the fact that

the integers pi satisfy (6) imply that the lattice points on l corresponding to, say, w = dze and to

w = dze+ 1 both belong to B(a), completing the proof. 2

Proof of Theorem 1.1 The lower bound is proved in Lemma 2.1. To prove the upper bound, fix

d ≥ 2 and let c4 = c4(d) and c5 = c5(d) be as in Lemma 3.2. Suppose n ≥ c5 and choose randomly
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and independently (with repetitions), dd log ne + 1 lattice points (a1, . . . , ad) satisfying (5), where

each point is chosen independently according to a uniform distribution on the points satisfying (5).

Let A be the random set of all chosen points and let S = S(A) be the union of all the sets B(a),

where a ∈ A. Clearly

|S| < (dd log ne+ 1)(2c4 + 5)dnd(d−1)/(2d−1) ≤ c6n
d(d−1)/(2d−1) log n,

where c6 = c6(d) is a constant depending only on d.

By Lemma 3.2, for every fixed lattice point (x1, . . . , xd) in L(n, d), the probability that there is

no point a = (a1, . . . , ad) among the chosen ones so that the assertion of the lemma holds for this

point is at most (1
2)dd logne+1 < 1/nd. Hence, the expected number of points (x1, . . . , xd) for which

there is no such a ∈ A is less than 1 and hence there is a choice for A such that there are no such

points.

However, by Lemma 3.3, for such an A, S(A) is an (n, d) covering set. We have thus proved

that if n ≥ c5(d) then t(n, d) ≤ c6(d)nd(d−1)/(2d−1) log n, and this clearly implies the upper bound

in Theorem 1.1 with, e.g., c2(d) = max{c6(d), c5(d)}. 2

It would be interesting to decide if the log n factor in the upper bound in Theorem 1.1 is

necessary.
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