Economical coverings of sets of lattice points

Noga Alon *
Department of Mathematics
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, Israel

Abstract

Let $t(n, d)$ be the minimum number t such that there are t of the n^{d} lattice points $$
\left\{\left(x_{1}, \ldots, x_{d}\right): 1 \leq x_{i} \leq n\right\}
$$

so that the $\binom{t}{2}$ lines that they determine cover all the above n^{d} lattice points. We prove that for every integer $d \geq 2$ there are two positive constants $c_{1}=c_{1}(d)$ and $c_{2}=c_{2}(d)$ such that for every n

$$
c_{1} n^{d(d-1) /(2 d-1)} \leq t(n, d) \leq c_{2} n^{d(d-1) /(2 d-1)} \log n .
$$

The special case $d=2$ settles a problem of Erdös and Purdy.

[^0]
1 Introduction

We say that a set of points S in an Euclidean space (of any dimension) determines a line l if l contains at least 2 points of S. Let $L=L(n, 2)=\left\{\left(x_{1}, x_{2}\right): 1 \leq x_{1}, x_{2} \leq n\right\}$ denote the set of all points in the n by n square lattice. A subset S of L is called an ($n, 2$-covering set if the union of all the lines determined by S contains all the points in L. Let $t(n, 2)$ denote the minimum cardinality of an $(n, 2)$-covering set.

Erdös and Purdy (see [1]) raised the problem of estimating $t(n, 2)$. They mentioned that it is not hard to see that $t(n, 2) \geq \Omega\left(n^{2 / 3}\right)$ and asked if $t(n, 2)=o(n)$. In this short paper we answer this question affirmatively and show that $t(n, 2) \leq O\left(n^{2 / 3} \log n\right)$. Therefore, $t(n, 2)$ is indeed $o(n)$ and the gap between the upper and the lower bounds for this quantity is a $\log n$ factor.

Our proof combines simple geometric and probabilistic arguments with some of the standard techniques used in the study of Diophantine Approximations. The method works in dimensions bigger than 2 as well. Let $L(n, d)$ denote the set of all n^{d} vectors $\left(x_{1}, \ldots, x_{d}\right)$, where $1 \leq x_{i} \leq n$ are integers for all i. A subset S of $L(n, d)$ is an (n, d)-covering set if the lines determined by S cover all points of $L(n, d)$. Let $t(n, d)$ denote the minimum possible cardinality of an (n, d)-covering set. Our main result is the following.

Theorem 1.1 For every integer $d \geq 2$ there are two positive constants $c_{1}=c_{1}(d)$ and $c_{2}=c_{2}(d)$ such that for every n :

$$
c_{1} n^{d(d-1) /(2 d-1)} \leq t(n, d) \leq c_{2} n^{d(d-1) /(2 d-1)} \log n
$$

2 The lower bound

In this section we prove the easy part of Theorem 1.1, by showing that for every d there exists a positive constant $c_{1}=c_{1}(d)$ such that $t(n, d)$ is at least $c_{1} n^{d(d-1) /(2 d-1)}$ for all n. Put $L=L(n, d)$. For a line l in R^{d}, let $|l|$ denote the number of points of L contained in l. Observe that if $|l| \geq 2$ then l can be presented by its parametric equations $X_{i}=a_{i}+p_{i} z,(1 \leq i \leq d)$, where a_{i}, p_{i} are integers and the greatest common divisor of p_{1}, \ldots, p_{d} is 1 . We say that a line l with the above presentation is of type q if $q=\max \left|p_{i}\right|$. The direction of l is the vector $\left(p_{1}, \ldots, p_{d}\right)$. Note that this
vector and its inverse $\left(-p_{1}, \ldots,-p_{d}\right)$ represent the same direction. We need the following simple fact.

Fact: For each $q \geq 1$, the number of distinct directions of lines of type q is at most $d(2 q+1)^{d-1} \leq$ $d(3 q)^{d-1}$.

Proof There are d possibilities for choosing an index i such that $\left|p_{i}\right|=q$, and since a vector and its inverse define the same direction we may assume that $p_{i}=q$. Any other p_{j} is an integer between $-q$ and q implying the desired estimate.

Let S be a subset of cardinality t of L. Let F denote the set of all lines determined by S. Clearly, $|F| \leq\binom{ t}{2}$. Let $P(S)$ denote the set of all the points in the lattice L which are covered by the union of all the lines in F. Obviously,

$$
\begin{equation*}
|P(S)| \leq \sum_{l \in F}|l| . \tag{1}
\end{equation*}
$$

Clearly, for each line l of type $q,|l| \leq n / q$. Also, the number of lines in F in each direction is at most $t / 2$, since a set of t points cannot determine more than $t / 2$ parallel lines. Let f_{q} denote the number of lines of type q in F. By the Fact and the remark above $f_{q} \leq \frac{t}{2} d(3 q)^{d-1}$. Therefore, the right hand side of (1) is at most the maximum possible value of $\sum_{q \geq 1} f_{q} \frac{n}{q}$, subject to the constraints $\sum_{q \geq 1} f_{q} \leq\binom{ t}{2}$ and $f_{q} \leq \frac{t}{2} d(3 q)^{d-1}$. This last maximum is obviously attained when $\sum_{q \geq 1} f_{q}=\binom{t}{2}$ and f_{q} is as large as it can be for all $q<s$ and is 0 for all $q>s$, where s is an appropriately chosen integer. Therefore, at the maximum, $f_{q}=\frac{t}{2} d(3 q)^{d-1}$ for all $q<s$ and $f_{q}=0$ for all $q>s$. Since $\sum_{q \geq 1} f_{q}=\binom{t}{2}$, a simple calculation shows that $s \leq 1+t^{1 / d} / 3^{(d-1) / d}$. This implies that the above maximum is at most $\sum_{q=1}^{s} \frac{t}{2} d(3 q)^{d-1} \frac{n}{q}<c_{3}(d) n t^{(2 d-1) / d}$. We have thus proved that if $|S|=t$ then $|P(S)| \leq c_{3}(d) n t^{(2 d-1) / d}$. Since if S is an (n, d)-covering set then $P(S)=L$ (and hence $|P(S)|=n^{d}$), this gives the following:

Lemma 2.1 If S is a subset of cardinality t of $L(n, d)$ then the number of points of $L(n, d)$ covered by the lines determined by S is at most $c_{3} n t^{(2 d-1) / d}$, where c_{3} is a positive constant dependeing only on d. Thus, for every d there is a positive constant $c_{1}=c_{1}(d)$ such that $t(n, d) \geq c_{1} n^{d(d-1) /(2 d-1)}$ for all n.

3 The upper bound

In this section we prove the upper bound in Theorem 1.1. For convenience we omit the floor and ceiling signs and assume that the fractional powers of n appearing here are all integers. Since we deal with fixed values of d and large values of n, it is easy to see that this can indeed be assumed without loss of generality. We start with the following somewhat technical lemma.

Lemma 3.1 For every two lattice points $\left(x_{1}, \ldots x_{d}\right)$ and $\left(a_{1}, \ldots, a_{d}\right)$ in $L(n, d)$ there are d integers p_{1}, \ldots, p_{d} and a real number z, such that for $q=\max \left\{\left|p_{i}\right|: 1 \leq i \leq d\right\}$:

$$
\begin{gather*}
1 \leq q \leq n^{(d-1) /(2 d-1)} \tag{2}\\
\left|\left(x_{i}-a_{i}\right)-p_{i} z\right| \leq \frac{n^{(2 d-2) /(2 d-1)}}{q} \text { for all } 1 \leq i \leq d \tag{3}
\end{gather*}
$$

and there exists an index $j, 1 \leq j \leq d$, such that

$$
\begin{equation*}
p_{j}=q \quad \text { and } \quad\left(x_{j}-a_{j}\right)-p_{j} z=0 \tag{4}
\end{equation*}
$$

Proof The proof is based on the standard argument of Dirichlet used in the study of approximation of reals by rationals, (see, e.g., [2]). Let us change the indices, if needed, so that

$$
\left|x_{d}-a_{d}\right|=\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq d\right\}
$$

If this maximum is zero the result is trivial (since in this case we can take $p_{i}=1$ for all i and $z=0$). Otherwise put $Q=n^{1 /(2 d-1)}$ and define $\alpha_{i}=\frac{x_{i}-a_{i}}{x_{d}-a_{d}}$ for $1 \leq i \leq d-1$. Consider the $(d-1)$-dimensional unit cube $0 \leq y_{i}<1,(1 \leq i \leq d-1)$ and split it into Q^{d-1} identical subcubes by drawing hyperplanes parallel to its facets, where the distance between each pair of consecutive parallel hyperplanes is $1 / Q=n^{-1 /(2 d-1)}$. For each integer $j, 0 \leq j \leq Q^{d-1}$, let P_{j} be the point $\left(j \alpha_{1}(\bmod 1), \ldots, j \alpha_{d-1}(\bmod 1)\right)$ in the above unit cube. Since there are $Q^{d-1}+1$ such points, there are two of them, say P_{l} and P_{m}, where $l<m$, that lie in the same subcube. Define $q=m-l$ and define p_{i} by the equality $q \alpha_{i}=p_{i}+\epsilon_{i}$, where p_{i} is an integer and $\left|\epsilon_{i}\right| \leq 1 / Q$.

Define $p_{d}=q$ and $z=\left(x_{d}-a_{d}\right) / q$. Since the absolute value of each α_{i} is at most 1 it follows that $\left|p_{i}\right| \leq q \leq Q^{d-1}=n^{(d-1) /(2 d-1)}$ for all $1 \leq i \leq d$. In addition, for each $1 \leq i \leq d$

$$
\left|q \frac{x_{i}-a_{i}}{x_{d}-a_{d}}-p_{i}\right| \leq \frac{1}{Q}
$$

implying

$$
\left|\left(x_{i}-a_{i}\right)-p_{i} z\right|=\left|\left(x_{i}-a_{i}\right)-p_{i} \frac{x_{d}-a_{d}}{q}\right| \leq \frac{\left|x_{d}-a_{d}\right|}{q Q} \leq \frac{n^{(2 d-2) /(2 d-1)}}{q}
$$

Moreover, for $i=d$ we have $\left(x_{d}-a_{d}\right)-p_{d} z=0$. This completes the proof of the lemma.
Using the last lemma we prove the following:

Lemma 3.2 For every fixed $d \geq 2$ there are two positive constants $c_{4}=c_{4}(d)$ and $c_{5}=c_{5}(d)$ such that the following holds. For every $n \geq c_{5}$ and for every lattice point $\left(x_{1}, \ldots, x_{d}\right) \in L(n, d)$, there are at least $\frac{1}{2} n^{d}$ lattice points $\left(a_{1}, \ldots, a_{d}\right)$ in $L(n, d)$ satisfying

$$
\begin{equation*}
\left(c_{4}+2\right) n^{(d-1) /(2 d-1)} \leq a_{i} \leq n-\left(c_{4}+2\right) n^{(d-1) /(2 d-1)} \quad \text { for } \quad \text { all } \quad 1 \leq i \leq d \tag{5}
\end{equation*}
$$

such that there exist d integers p_{1}, \ldots, p_{d} and a real number z so that

$$
\begin{equation*}
1 \leq\left|p_{i}\right| \leq n^{(d-1) /(2 d-1)}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(x_{i}-a_{i}\right)-p_{i} z\right| \leq c_{4} n^{(d-1) /(2 d-1)} \quad \text { for all } \quad 1 \leq i \leq d \tag{7}
\end{equation*}
$$

Proof We prove the lemma with $c_{4}=4 d 9^{d-1}$, where c_{5} is chosen so that for $n \geq c_{5}$ the number of lattice points $\left(a_{1}, \ldots, a_{d}\right) \in L(n, d)$ violating (5) is at most $\frac{1}{4} n^{d}$.

By Lemma 3.1, for every $\left(a_{1}, \ldots, a_{d}\right)$ in $L(n, d)$ there are integers $p_{1}, \ldots p_{d}$ and a real number z such that if q is the maximum absolute value of the integers p_{i}, then inequalities (2) and (3) hold. Therefore, inequality (6) holds, by (2). If $q \geq \frac{1}{c_{4}} n^{(d-1) /(2 d-1)}$ then inequality (7) follows from (3). Therefore, by the choice of c_{5}, in order to complete the proof of the lemma it suffices to show that the number of points $\left(a_{1}, \ldots, a_{d}\right)$ for which the above q is smaller than $\frac{1}{c_{4}} n^{(d-1) /(2 d-1)}$ is at most $\frac{1}{4} n^{d}$.

The number of these points can be estimated as follows: For each fixed value of $q, 1 \leq q \leq$ $\frac{1}{c_{4}} n^{(d-1) /(2 d-1)}$, there are d possibilities for choosing the index j for which (4) holds, and there are at most n possibilities for choosing a_{j}. Once these choices are made, z is determined. There are at most $(2 q+1)^{d-1} \leq(3 q)^{d-1}$ choices for the other integers p_{j}. Given these choices, each of the numbers $x_{i}-a_{i}$ must fall into an interval of length $2 n^{(2 d-2) /(2 d-1)} / q$. Obviously, this implies that there are at most $2 n^{(2 d-2) /(2 d-1)} / q+1 \leq 3 n^{(2 d-2) /(2 d-1)} / q$ ways to choose each a_{i}, for all $i \neq j$.

The total number of choices is thus at most

$$
\begin{gathered}
\sum_{q=1}^{n^{(d-1) /(2 d-1) / c_{4}}} d n(3 q)^{d-1}\left(3 \frac{n^{(2 d-2) /(2 d-1)}}{q}\right)^{d-1} \\
\sum_{q=1}^{n^{(d-1) /(2 d-1) / c_{4}}} 9^{d-1} d n^{1+\frac{(2 d-2)(d-1)}{2 d-1}} \\
=\frac{9^{d-1} d}{c_{4}} n^{d}=\frac{1}{4} n^{d} .
\end{gathered}
$$

This completes the proof.
For a lattice point $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ that satisfies (5), let $B(\mathbf{a})$ denote the set of all points $\left(y_{1}, \ldots, y_{d}\right) \in L(n, d)$ that satisfy

$$
\left|a_{i}-y_{i}\right| \leq\left(c_{4}+2\right) n^{(d-1) /(2 d-1)} \quad \text { for all } 1 \leq i \leq d
$$

where $c_{4}=c_{4}(d)$ is the constant appearing in Lemma 3.2. The last ingredient we need for the proof of the upper bound in Theorem 1.1 is the following simple lemma.

Lemma 3.3 Let $\left(x_{1}, \ldots, x_{d}\right)$ be a latice point in $L(n, d)$, and suppose that the lattice point $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{d}\right)$ satisfies (5). Suppose, further, that there are d integers p_{1}, \ldots, p_{d} and a real number z such that (6) and (7) hold. Then, there is a line containing $\left(x_{1}, \ldots x_{d}\right)$ that contains at least two points of $B(\mathbf{a})$.

Proof Let B denote the convex hull of the points in $B(\mathbf{a})$. Observe that B is a d-dimesnional cube with side length $\left(2 c_{4}+4\right) n^{(d-1) /(2 d-1)}$. Consider the line l given by

$$
X_{i}=x_{i}-p_{i} w, \quad(1 \leq i \leq d,-\infty<w<\infty) .
$$

This line contains the point $\left(x_{1}, \ldots, x_{d}\right)$ (corresponding to $\left.w=0\right)$. Let $\left(v_{1}, \ldots, v_{d}\right)$ be the point corresponding to $w=z$ in this line, (i.e., $v_{i}=x_{i}-p_{i} z$ for $1 \leq i \leq d$). By (7) this point lies inside the cube B. Moreover, its distance from each of the facets of B is at least $2 n^{(d-1) /(2 d-1)}$. Since every integral value of the parameter w gives a lattice point on l, this, together with the fact that the integers p_{i} satisfy (6) imply that the lattice points on l corresponding to, say, $w=\lceil z\rceil$ and to $w=\lceil z\rceil+1$ both belong to $B(\mathbf{a})$, completing the proof.
Proof of Theorem 1.1 The lower bound is proved in Lemma 2.1. To prove the upper bound, fix $d \geq 2$ and let $c_{4}=c_{4}(d)$ and $c_{5}=c_{5}(d)$ be as in Lemma 3.2. Suppose $n \geq c_{5}$ and choose randomly
and independently (with repetitions), $\lceil d \log n\rceil+1$ lattice points $\left(a_{1}, \ldots, a_{d}\right)$ satisfying (5), where each point is chosen independently according to a uniform distribution on the points satisfying (5). Let A be the random set of all chosen points and let $S=S(A)$ be the union of all the sets $B(\mathbf{a})$, where $a \in A$. Clearly

$$
|S|<(\lceil d \log n\rceil+1)\left(2 c_{4}+5\right)^{d} n^{d(d-1) /(2 d-1)} \leq c_{6} n^{d(d-1) /(2 d-1)} \log n,
$$

where $c_{6}=c_{6}(d)$ is a constant depending only on d.
By Lemma 3.2, for every fixed lattice point $\left(x_{1}, \ldots, x_{d}\right)$ in $L(n, d)$, the probability that there is no point $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ among the chosen ones so that the assertion of the lemma holds for this point is at most $\left(\frac{1}{2}\right)^{\lceil d \log n\rceil+1}<1 / n^{d}$. Hence, the expected number of points $\left(x_{1}, \ldots, x_{d}\right)$ for which there is no such $\mathbf{a} \in A$ is less than 1 and hence there is a choice for A such that there are no such points.

However, by Lemma 3.3, for such an $A, S(A)$ is an (n, d) covering set. We have thus proved that if $n \geq c_{5}(d)$ then $t(n, d) \leq c_{6}(d) n^{d(d-1) /(2 d-1)} \log n$, and this clearly implies the upper bound in Theorem 1.1 with, e.g., $c_{2}(d)=\max \left\{c_{6}(d), c_{5}(d)\right\}$.

It would be interesting to decide if the $\log n$ factor in the upper bound in Theorem 1.1 is necessary.

References

[1] Richard K. Guy, Unsolved Problems in Number Theory, Springer Verlag, New York and Heidelberg, 1981, p. 133.
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theoory of Numbers, (Forth Edition), Oxford University Press, London, 1959, Chapter XI.

[^0]: *Research supported in part by a United States Israel BSF Grant and by a Bergmann Memorial Grant

