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It is well known that the chromatic index of any bipartite multigraph G with n vertices and m

edges is equal to its maximum degree k. The best algorithm currently known for finding a proper
k-edge-coloring of such a multigraph runs in time O(m log k), see [2], or the forthcoming book [6], and
applies rather elaborate data structures together with the basic approach of [5]. Another algorithm,
of Cole and Hopcroft [1], finds such a coloring in time O(m logm). See [2] for the rather extensive
history and references, and [4] for a more recent, related algorithm. Here we describe a new, simpler
algorithm, that runs in time O(m logm) as well. Our description here is self-contained.

Start with the known fact that one may assume that the graph G is regular. Indeed, if not,
identify repeatedly pairs of vertices that lie in the same side whose sum of degrees is at most k (as
long as there is such a pair). When this process terminates add, if needed, vertices to the smaller
side until both sides have the same number of vertices, and add edges to make sure the obtained
multigraph is k-regular. It is easy to see that the number of edges in the new graph is at most 2m
and a proper k-coloring of it supplies a proper coloring of the original graph. We thus assume from
now on that G is k-regular, and that it has n/2 vertices in each color class, and m = nk/2 edges.
Fact: If F = (V,E) is a bipartite graph, and H is a 2r-regular multigraph obtained from F by
replacing each edge e ∈ E by m(e) parallel edges, then one can split H into two r-regular spanning
subgraphs HR and HB in time O(|E|). (Note that the multigraph is given by its multiplicity function,
and that the running time is linear in the number of edges of F , and not in that of H.)
Proof: For each edge e ∈ E with m(e) ≥ 2, take bm(e)/2c copies of e to HR and bm(e)/2c copies
to HB, and omit these 2bm(e)/2c copies of e from H. Next, find an Euler cycle in each connected
component of the remaining subgraph of H and assign the edges along it alternately to HR and HB.
2

Corollary: One can find a perfect matching in G in time O(m logm).
Proof: Let 2t denote the smallest power of 2 satisfying 2t ≥ m (= kn/2). Define α = b2t/kc. Let
M be an arbitrary perfect matching between the two sides of G (which does not necessarily consist
of edges of G), and define β = 2t − kα ( < k). Let H be the graph obtained from G by replacing
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each edge of G by α parallel edges and by adding β copies of each edge of M , and let us call the
copies of the edges of M the bad edges. Note that H is 2t-regular. Now apply the fact above to
H = H1 to split it into two edge disjoint 2t−1 regular spanning subgraphs, and let H2 be the one
containing at most half of the bad edges of H = H1. Thus, H2 contains at most nβ/4 < nk/4 bad
edges. Applying the fact again to H2 we get a 2t−2-regular spanning subgraph H3 of H with fewer
than nk/8 bad edges. After t such steps we find a perfect matching of H containing no bad edges,
which is a perfect matching in G. The total running time is O(mt) = O(m logm). 2

Theorem: One can find a proper k-edge-coloring of G in time O(m logm).
Proof: We apply the method of Gabow [3]. Let T (n, k) be the running time of the algorithm for a
k regular bipartite graph on n vertices. If k is even, split G, in time O(nk), to two edge-disjoint k/2-
regular spanning bipartite subgraphs H1 and H2. Find, in time T (n, k/2), a k/2 proper edge-coloring
of H1, add some of the color classes obtained by this coloring to H2, to create a 2r-regular graph H3,
with k/2 ≤ 2r < k. Now find a 2r-coloring of H3 in time O(nk log k) by repeatedly applying the fact
mentioned above, and obtain, together with the remaining color classes of H1, a proper coloring of
H. Therefore, for even k, T (n, k) ≤ O(nk log k) + T (n, k/2).
For odd k find, in time O(nk log(nk)), a perfect matching in G, using the corollary above, omit it,
and continue as before. This gives that for odd k, T (n, k) ≤ O(nk log(nk)) + T (n, (k − 1)/2)).
As T (n, 1) = O(1) we conclude that the total running time is O(m logm), as needed. 2

Remarks:
(i) A close look at the proof of the corollary shows that it actually implies that if G is a regular
bipartite multigraph with m edges and only m′ distinct ones, then one can find a perfect matching
in G in time O(m′ logm). In [1], (see also [6]), it is shown how to generate, in time O(m), from any
given k-regular bipartite multigraph G with n vertices and m = nk/2 edges, a k-regular multigraph
G′ with only O(n log k) distinct edges, each of which is an edge of G (but the multiplicities in G′

may be bigger). Therefore, by the corollary, we can find a perfect matching in G in time O(nk +
n log k log(nk)). This is linear in the number of edges m provided m ≥ Ω(n log n log log n). It also
provides an O(m log k) algorithm for finding a proper edge-coloring if m ≥ Ω(n log n log log n).
(ii) The Proof of the corollary provides a proof of the marriage theorem for regular bipartite graphs
(that is, the fact that a regular bipartite multigraph contains a perfect matching), using Euler’s
Theorem.
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