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Abstract. We consider the “minor” and “homeomorphic” analogues
of the maximum clique problem, i.e., the problems of determining the
largest h such that the input graph (on n vertices) has a minor isomorphic
to Kh or a subgraph homeomorphic to Kh, respectively, as well as the
problem of finding the corresponding subgraphs. We term them as the
maximum clique minor problem and the maximum homeomorphic clique
problem, respectively. We observe that a known result of Kostochka and
Thomason supplies an O(

√
n) bound on the approximation factor for

the maximum clique minor problem achievable in polynomial time. We
also provide an independent proof of nearly the same approximation
factor with explicit polynomial-time estimation, by exploiting the minor
separator theorem of Plotkin et al.
Next, we show that another known result of Bollobás and Thomason
and of Komlós and Szemerédi provides an O(

√
n) bound on the ap-

proximation factor for the maximum homeomorphic clique achievable in
polynomial time. On the other hand, we show an Ω(n1/2−O(1/(log n)γ))

lower bound (for some constant γ, unless NP ⊆ ZPTIME(2(log n)O(1)
))

on the best approximation factor achievable efficiently for the maximum
homeomorphic clique problem, nearly matching our upper bound.
Finally, we derive an interesting trade off between approximability and
subexponential time for the problem of subgraph homeomorphism where
the guest graph has maximum degree not exceeding three and low treewidth.
In particular, we show that for any graph G on n vertices and a positive
integer q not exceeding n, one can produce either an n/q approxima-
tion to the longest cycle problem in polynomial time, or find an optimal
longest cycle of G in time 2O(q log q+log n).

1 Introduction

Considered as an injective mapping, the subgraph isomorphism of P into G con-
sists of a mapping of vertices of P into vertices of G so that edges of P map
to corresponding edges of G. Generalizations of this mapping include subgraph
homeomorphism, or equivalently, topological embedding, where vertices of P map
to vertices of G and edges of P map to vertex-disjoint paths in G, and minor
containment, where vertices of P map to disjoint connected subgraphs of G and
edges of G map to edges of G.



All these problems are inherently NP-complete when the pattern and guest
graphs are not fixed [18]. For fixed P, all are solvable in polynomial time, which
in case of subgraph homeomorphism and minor containment is highly non-trivial
to show [32]. They remain to be NP-complete for several special graph classes,
e.g., for graphs of bounded treewidth [20, 29]. Restricting the pattern graph P to
complete graphs or simple cycles or paths does not help in the case of subgraph
isomorphism. The maximum clique, Hamiltonian cycle and Hamiltonian path
problems are well known as basic NP-complete problems [18]. Their optimization
versions are also known to be very difficult to approximate. For instance, it is
known that unless NP ⊆ ZPTIME(2(log n)O(1)

), no polynomial-time algorithm
for maximum clique (or, equivalently, for maximum independent set) can achieve
an approximation factor of n1−O(1/(log n)γ) for some constant γ [27] (see also
[12, 21]) 3. On the other hand, the best known polynomial-time approximation
algorithm for maximum clique achieves solely an n log2 log n/ log3 n factor [15].
The situation is not better in case of the optimization versions of the Hamiltonian
cycle and path problems, called the longest cycle and longest path problems
[14]. For example, the best known polynomial-time approximation algorithm for
the longest path problem achieves only n log log n/ log2 n factor [4, 17] 4 The
longest path problem cannot be approximated within any constant factor in
polynomial time unless P = NP or within any 2O(log1−ε n) factor, where ε > 0,

in polynomial time, unless NP ⊂ DTIME(2log1/ε n) [25]. Generally, the directed
versions of the longest cycle and longest path problems seem to be even harder
(see [4]). Nevertheless, on the positive side, in graphs of maximum degree not
exceeding three it is possible to approximate the longest cycle problem within
O(n1−(log3 2)/2) in polynomial time [14]. Furthermore, it is shown in [2] that a
path of length k (if it exists) can be found in time 2O(k)nO(1) which implies
that the longest path problem is fixed-parameter tractable. A similar result is
obtained in [2] for all (directed and undirected) graphs of size k and bounded
tree width. See also [17] for some related results.

In the first part of this paper, we consider the “minor” analogue of the maxi-
mum clique problem, i.e., the problem of determining the largest h such that the
input graph has a minor isomorphic to Kh. By a known result, obtained inde-
pendently by Kostochka [26] and Thomason [33] (c.f., also [10]), for every graph
with average degree not less than r

√
log r, h = Ω(r) holds. We observe that

Kostochka’s proof of this result provides an O(
√

n) bound on the approximation
factor for h, i.e., for the maximum clique minor problem, achievable in polyno-
mial time. Interestingly, we also provide an independent proof of nearly the same

3 An algorithm achieves an approximation factor f or is an f -approximation algorithm
for a maximization graph problem if for any graph it produces a feasible solution to
the problem of size at most f times smaller than the optimum.

4 In [16], Gabow derives an n/ exp(Ω(
p

log n/ log log n)) approximation factor for the
longest path problem by iterating the method of Björklund and Husfeldt from [4].
This has been further improved to n1−Ω(1/ log log n) by Feder and Motwani in a forth-
coming paper in SODA 2005.



approximation factor with explicit polynomial-time estimation, by exploiting the
minor separator theorem of Plotkin et al.

In the second part, we consider the maximum homeomorphic clique prob-
lem, i.e., the problem of determining the largest h such that the input graph
has a subgraph homeomorphic to Kh. By another known result, obtained inde-
pendently by Bollobás and Thomason [9], and by Komlós and Szemerédi [28]
(see also [10]), for every graph of average degree not less than r2, h = Ω(r)
holds. We argue that a subgraph homeomorphic to KΩ(r) can be constructed in
polynomial time by following the proof of this result given in [10]. This yields an
O(
√

n) approximation factor for the maximum h, i.e., maximum homeomorphic
clique. On the other hand, we show that the aforementioned results on the ap-
proximability of the standard maximum clique problem yield a relatively tight
Ω(n1/2−O(1/(log n)γ)) lower bound for some constant γ, unless

NP ⊆ ZPTIME(2(log n)O(1)
),

on the approximation factor achievable in polynomial time for the maximum
homeomorphic clique problem.

Our results give evidence that the maximum clique minor problem and the
subgraph homeomorphism problem might be somewhat easier than the sub-
graph isomorphism problem. The spectacular result of Robertson and Seymour
[32] showing that for any fixed guest graph the minor containment problem is
solvable in cubic time implies that it is so called fixed-parameter tractable [11].
The maximum clique problem is complete for the so called class W [1] (see [11]).
Hence, the maximum clique problem as well as its generalization, the subgraph
isomorphism problem, are likely to be fixed-parameter intractable. (On the other
hand, the subgraph isomorphism and homeomorphism problems restricted to k-
connected partial k-trees are solvable in polynomial time [29, 19] whereas the
minor containment problem is still NP-complete under such restriction [29].)

In the third part, we study the subgraph homeomorphism (sometimes called
topological embedding) problem for guest graphs of maximum degree not exceed-
ing three and low treewidth, applying, again, the minor separator theorem of
Plotkin et al. [30] in order to obtain an interesting trade off between approxima-
bility and subexponential time. Note that a path or a cycle belongs to this class
of graphs. In these two cases, we can obtain the following better results by a
more elementary approach (in case of longest path observed by Björklund [5]):
For a graph G on n vertices, and a positive integer q smaller than n, one can
either produce a simple cycle in G of length not less than q in polynomial time,
thus yielding an n/q polynomial-time approximation to the longest cycle prob-
lem (and a similar approximation to the longest path problem), or find an opti-
mal longest cycle and an optimal longest path of G in time 2O(q log q+log n). For
instance, if we set q to b

√
n/ log nc then we obtain either about

√
n log n ap-

proximation guarantee in polynomial time or optimal solutions in subexponential
time 2O(

√
n log n) for both problems.

Of course, the practical usefulness of this partial result is limited since the po-
tential user cannot choose between these two possibilities. However, this result



suggests that perhaps at least one of these possibilities may hold separately.
Presently no subexponential algorithms for the longest cycle or path problems
are known. In particular, the fastest known algorithm for finding a Hamiltonian
cycle in Hamiltonian cubic graphs on n vertices runs in time O(2n/3) [13]. Hence,
proving the existence of an n1−ε polynomial-time approximation to the longest
cycle and path problems, as well as proving the existence of subexponential al-
gorithms for these problems would be surprising and highly interesting results
(see [23]).

2 Preliminaries

We begin with a formal definition of a (balanced) separator of a graph.

Definition 1. A b-separator of a weighted graph on n vertices and m edges
is a subset X of the vertex set of G whose removal from the graph splits it
into connected components, none of which has more than b fraction of the sum
the weights of the vertices and edges. The size of the separator is |X|. Unless
otherwise stated we shall assume the vertices to have weight 1 and the edges to
have weight 0.

Let k be a positive integer. A graph G on n vertices is said to be k-separable
if either it has at most k + 1 vertices or it has a 2

3 -separator of size at most k
whose removal splits G into two k-separable subgraphs.

We shall denote the complete graph on q vertices by Kq and if a graph G has a
minor isomorphic to a graph P , say that G has a P -minor.

The minor separator theorem of Alon et al. [1] can be formulated as follows.

Fact 1 [1]. There is an algorithm that for a graph G on n vertices and m edges,
and an integer q, either produces a Kq-minor in G or finds a 2

3 -separator of size
O(q3/2

√
n) in time O(

√
qn(n + m)).

Fact 1 has been improved by Plotkin et al. for large values of q in [30] as follows.

Fact 2 [30]. There is an algorithm that for a graph G on n vertices and m edges,
and an integer q, either produces a Kq-minor in G or finds a 2

3 -separator of size
O(q

√
n log n) in time O(m

√
n log n).

The notion of treewidth of a graph was originally introduced and investigated by
Robertson and Seymour [31] as one of the main contributions in their seminal
graph minor project. It has turned out to be equivalent to several other inter-
esting graph theoretic notions like the property of being a partial k-tree (see, for
example, [3, 6]).

Definition 2. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), where {Xi | i ∈ I} is a collection of subsets of V , and T = (I, F )
is a tree, such that the following conditions hold:

1.
⋃

i∈I Xi = V ,
2. for all edges (v, w) ∈ E, there exists a node i ∈ I, with v, w ∈ Xi, and



3. for every vertex v ∈ V , the subgraph of T , induced by the nodes {i ∈ I | v ∈
Xi} is connected.

Each set Xi, i ∈ I, is called the bag associated with the ith node of the decom-
position tree T . The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F ))
is maxi∈I |Xi| − 1. The treewidth of a graph is the minimum width of a tree
decomposition of it. A path decomposition of a graph, the width of a path de-
composition and the pathwidth of a graph are defined analogously by constraining
T to be just a path.

The following fact follows from the proof of Theorem 20 in [6].

Fact 3 Let G be a graph on n vertices. If a sequence of sets on at most l
vertices in G satisfying the requirements for the 2

3 -separators in the definition of
l-separability of G (see Def. 1) is given, then a path decomposition of G of width
O(l log n) can be computed in time O(nl log n).

Proof. (Sketch.) Let S be the indicated splitting set, and let G1 and G2 be the
two subgraphs resulting from removing S. Recursively construct path decompo-
sitions (X1, ..., Xr) and (Y1, ..., Yq) for G1 and G2, respectively. Then, form the
path decomposition (X1 ∪ S, ..., Xr ∪ S, Y1 ∪ S, ..., Yq ∪ S) for G.

Lemma 16 in [6] yields the next fact.

Fact 4 If H is a minor of G then the treewidth of H does not exceed the treewidth
of G and the pathwidth of H does not exceed the pathwidth of G.

Theorem 5.2 in [19] yields the following fact.

Fact 5 Let P and G be graphs of treewidth l, on n vertices totally, given together
with their corresponding tree decompositions, and let the maximum degree in P
be O(1). One can determine whether or not P can be topologically embedded in
G, and if so, produce a topological embedding of P in G in time O(nl+2).

In case P is a simple path or a simple cycle, the following parametrized com-
plexity upper bound holds according to [7].

Fact 6 For a graph on n vertices given with its tree decomposition of width l, the
longest path and the longest cycle problem can be solved in time 2O(l log l+log n).

3 Approximation of maximum Kq-minor

By the theorem proved independently by Kostochka [26] and Thomason [33], if
a graph has an average degree not less than r then it has a KΩ(r/

√
log r)-minor.

In fact, Kostochka observes that a clique minor of that size can be constructed
in polynomial time (see the comment under Theorem 1’ in [26]). Hence, we have
the following fact.

Fact 7 If a graph has an average degree not less than r then a KΩ(r/
√

log r)-minor
in it can be constructed in polynomial time.

We thus obtain the following theorem.



Theorem 1. There is a polynomial-time O(
√

n)-approximation algorithm for
the problem of finding the largest Kq-minor in a graph on n vertices.

Proof. Let G be a graph on n vertices and let h be the largest q such that G
has a Kq-minor. We may assume without loss of generality that h ≥

√
n. Note

that G must have at least
(
h
2

)
edges, and hence its average degree is Ω(h2/n).

By Fact 7, we can construct a K
Ω(h2/(n

√
log(h2/n) ))

-minor which yields the

O(h/(h2/(n
√

log(h2/n))) approximation. By straightforward calculations and
h ≥

√
n, this implies the desired O(

√
n) approximation.

In the following, we give an alternative approximation algorithm for the max-
imum clique minor problem relying on the minor separator theorem of Plotkin
et al. (Fact 2). It also achieves up to a logarithmic factor the previous

√
n ap-

proximation ratio and its polynomial-time complexity is estimated explicitly.
It is well known that given a tree decomposition T of a graph G, for any

clique in G there is a bag of T including all of it (see Lemma 4 in [6] and [8]).
Hence, the treewidth of Kq is not smaller than q− 1. Combing this with Fact 4,
we obtain immediately the following useful lemma.

Lemma 1. If a graph G has a tree decomposition or a path decomposition of
width l then the largest integer h such that G has a Kh-minor does not exceed
l + 1.

By Lemma 1, we obtain the following key lemma.

Lemma 2. There is an algorithm that for a graph G with n vertices and m ≥
n − 1 edges either produces a path decomposition of width O(q

√
n log1.5 n) or a

minor isomorphic to Kq in time O(mn1/2
√

log n).

Proof. Repeatedly run the algorithm of Plotkin et al. from Fact 2 for Kq and G or
its subgraphs to produce either a Kq-minor or a 2

3 -separator of size O(q
√

n log n).
This gives either a Kq-minor, or a path decomposition of G of width O(q

√
n log1.5 n),

by Fact 3. (Being a bit more careful we can in fact shave a logarithjmic factor,
as the separators for the small subgraphs are smaller, but we ignore this fact
here). We may assume without loss of generality that the algorithm never fails
to produce the aforementioned separator since otherwise we obtain a minor of G
isomorphic to Kq. More exactly, given such a separator, we remove it from the
current subgraph of G in order to compute the resulting connected components
and group them in two subgraphs, none containing more than two thirds of the
vertices of the current subgraph, and then run the algorithm of Plotkin et al. on
these two subgraphs and so on. By Fact 3, such a sequence of separators yields
a path decomposition of width O(q

√
n log1.5 n). To obtain the time bound it

is sufficient to observe that in level number i of the recursion the algorithm of
Plotkin et al. is run on a set of graphs whose total number of edges is at most
m, while each of them has at most (2/3)in vertices.

We next describe our alternate result on maximum clique minor containment.



Theorem 2. There is an O(
√

n log1.5 n) approximation algorithm for the prob-
lem of finding the largest Kq-minor in a graph on n vertices and m edges running
in time O(mn1/2 log1.5 n).

Proof. Obviously G contains a K1 = K20 minor. Run the algorithm in Lemma 2
with q = 2i, i ≥ 1 until the smallest i such that the algorithm finds a K2i minor
and does not find a K2i+1 minor is determined. Then for q = 2i the algorithm
finds a Kq-minor, as well as a path decomposition of width O(2q

√
n log1.5 n).

But then the maximum minor in G is of size at most this width plus 1, by Lemma
1.

Remark

The last proof can be easily extended to include not necessarily complete guest
graphs which are hard to split.

4 Approximability of maximum homeomorphic clique

By the theorem proved independently in [9] and [28] (see also [10]), if a graph
has an average degree not less than r2 then it has a topological KΩ(r). In fact,
by following the proof of this theorem given in [10], we can observe that such
a KΩ(r)-minor can be constructed in polynomial time 5. Thus, we have the
following fact.

Fact 8 If a graph has an average degree not less than r2 then a topological KΩ(r)

in it can be constructed in polynomial time.

This implies the following theorem.

Theorem 3. There is a polynomial-time O(
√

n)-approximation algorithm for
the problem of finding the largest topological Kq-minor in a graph on n vertices.

Proof. Let G be a graph on n vertices and let h be the largest q such that G
has a topological Kq-minor. As in the proof of Theorem 1, we observe that
the average degree of G is Ω(h2/n). Hence, by Fact 8, we can construct a
topological KΩ(h/

√
n)-minor of G in polynomial time which yields the required

O(h/(h/
√

n)) = O(
√

n) approximation.

The following lemma will be useful in proving our lower bound on the ap-
proximability of maximum homeomorphic clique.

Lemma 3. There is an algorithm which for a homeomorphic clique of size h
in a graph on n vertices determines a clique of size Ω(h2/n), contained in the
homeomorphic clique, in time polynomial in n.

5 In particular, a minimum linkage P as in page 172 in the proof in [10] can be found
by applying minimum cost flow techniques.



Proof. Let h be the number of clique vertices, i.e., endpoints of paths modeling
clique edges, in a homeomorphic clique H̃. Note that H̃ can include at most n−h
paths having more than one edge directly connecting its clique vertices. Form
an auxiliary graph A on the clique vertices of H̃ such that two vertices u and v
are connected by an edge if and only if the shortest path in H̃ connecting them
has length at least two. Note that A has at most n− h edges and consequently
average degree (n − h)/2h. Hence, by Turán’s Theorem (whose proof is easily
seen to be algorithmic, see, for example [22]), one can find an independent set of
size Ω(h2/n) in A and consequently a clique of size Ω(h2/n) in H̃, in polynomial
time.

Our lower bound on polynomial-time approximability of maximum homeo-
morphic clique thus follows from that for maximum clique [27] (see also [12, 21])
by Lemma 3.

Theorem 4. Unless NP ⊆ ZPTIME(2(log n)O(1)
), maximum homeomorphic clique

cannot be approximated in polynomial time within a factor n1/2−O(1/(log n)γ), for
some constant γ.

Proof. By [27], no polynomial-time algorithm for maximum clique can achieve
an approximation factor of n1−O(1/(log n)γ) for some constant γ unless NP ⊆
ZPTIME(2(log n)O(1)

). Let x ∈ O(1/(log n)γ). It follows that there is no correct
polynomial-time approximation algorithm for maximum clique that in case the
input graph has a clique of size > n1−x would return a clique of size Ω(nx).
Suppose that there is a polynomial-time O(n1/2−3x/2)-approximation algorithm
for maximum homeomorphic clique. Let G be the input graph on n vertices.
Suppose that G contains a clique of size at least n1−x. Then, the aforementioned
algorithm would find a homeomorphic clique H̄ in G having Ω(n1/2+x/2) clique
vertices. It follows by Lemma 3 that one could determine a clique of size Ω(nx)
in H̄, in polynomial time. We obtain a contradiction.

5 Subgraph homeomorphism for special guest graphs

We begin by noting that we can use a minor embedding of Kq in a graph to
construct a topological embedding of any subgraph of Kq having vertex degrees
not exceeding three in the graph.

Theorem 5. Given a graph G, its minor isomorphic to Kq and a subgraph H of
Kq whose maximum degree is at most three, one can find a topological embedding
of H in G in time linear in the size of G.

Proof. Let φ be the mapping from the vertices of Kq to the subsets of the vertex
set of G and from the edges of Kq to edges of G that defines the Kq-minor of
G. For each vertex v of H, find a spanning tree Tv of the subgraph induced by
φ(v). For each edge (v, w) of H, where (v′, w′) = φ(v, w), mark v′ in Tv and w′

in Tw. Next, for each vertex v of H prune Tv to the union Uv of the paths in Tv



interconnecting at most three marked vertices. It is clear that Uv has the form of
either three simple paths meeting at a joint endpoint or just a simple path. By
taking the union of the pruned trees Uv over the vertices of H and the φ-images
of the edges of H, we obtain a subgraph of G homeomorphic with H.

By combining Lemma 2 with Theorem 5, we obtain the next theorem.

Theorem 6. Let 1 ≤ q ≤ n and let H be a subgraph of Kq of maximum degree
not exceeding three. There is a polynomial-time algorithm which for any graph
G on n vertices produces either a topological embedding of H in G or a path
decomposition of G having width O(q

√
n log1.5 n).

Fact 5 immediately yields the following lemma.

Lemma 4. Given a graph G on n vertices whose treewidth does not exceed l,
together with its tree decomposition, and a family F of k graphs of maximum
degree O(1) and treewidth not exceeding l, each having at most n vertices, one
can find a maximum vertex cardinality member of F that can be topologically
embedded in G as well as its topological embedding in G in time O(nl+2k).

By combining Theorem 6 with Lemma 4, we obtain our next main result.

Theorem 7. Let G be a graph on n vertices, let 1 ≤ q ≤ n, and let F be a
sequence of graphs Hi, i = 1, ..., n, where Hi has i vertices, maximum degree
at most three and treewidth O(q

√
n log1.5 n). One can produce either a topologi-

cal embedding of Hq in G in polynomial time or a maximum vertex cardinality
member of F that can be topologically embedded in G together with its topological
embedding in G in time 2O(q

√
n log2.5 n).

Note that in particular simple cycles and simple paths, having treewidth 2
and 1, respectively, satisfy the requirements on the members in the sequence F.
In these cases, however, one can do better by a similar, yet more elementary
approach. Björklund [5] observes that the following is implicit in [7].

Construct a DFS tree for the input graph G. Either the length of the deepest
path in the tree is at least q or the path decomposition formed by its root-leaf
paths has width q and consequently algorithms for longest path in graphs of
pathwidth q can be applied to G.

Hence, Björklund obtains the following result by Fact 5.

Fact 9 Let G be a graph on n vertices, and let 1 ≤ q ≤ n. One can produce
either a simple path in G of length at least q in polynomial time, thus yielding
an n/q polynomial-time approximation to the longest path problem, or an optimal
longest path of G in time nO(q).

By considering also backward edges in the DFS tree, tree decomposition instead
of path decomposition and Fact 6 instead of Fact 5, we obtain the following
generalization of Fact 9.



Theorem 8. Let G be a graph on n vertices, and let 1 ≤ q ≤ n. One can produce
either a simple cycle in G of length at least q in polynomial time, thus yielding an
n/q polynomial-time approximation to the longest cycle problem and a similar
polynomial-time approximation to the longest path problem, or an optimal longest
cycle and an optimal longest path of G in time 2O(q log q+logn).

To prove the theorem, we need the following simple lemma.

Lemma 5. There is a linear time algorithm that for a graph G and an inte-
ger q ≥ 4, either produces a cycle of length at least q in G or finds its tree
decomposition of width not exceeding q − 2.

Proof. Clearly we may and will assume that G = (V,E) is connected. Choose
arbitrarily a vertex v in G, and find, in linear time, a DFS tree T rooted at v.
Since G is undirected, all the edges of G are either tree-edges or backward edges.
If there is a backward edge connecting a vertex w to its ancestor x in T such
that the unique path in T from x to w is of length at least q− 1, then this edge
together with the path give a cycle of length at least q in G. Otherwise, form a
tree decomposition as follows. The tree of the decomposition is T itself, and the
bag Xu for each u ∈ V is the set of the last q−1 vertices on the unique path from
the root v to u, including u itself (if this path is shorter, the bag contains all its
vertices). It is easy to see that in this way we obtain a valid tree decomposition
of width q − 2.

Lemma 5 combined with Fact 6 yield Theorem 8.

6 Final Remark

It is an interesting open problem whether or not a non-trivial lower bound on
the approximability of the maximum clique minor problem, possibly even nearly
matching our upper bound, could be derived.

In [24], Lund and Yannakakis show that for any non-trivial graph property Π
which is hereditary on induced subgraphs the problem of finding the maximum
number of nodes inducing a subgraph in a directed or undirected graph that
satisfies Π cannot be approximated within nε, unless P = NP. While beeing a
clique is such a hereditary property, unfortunately neither beeing a clique minor
nor beeing homeomorphic to a clique satisfies this requirement.
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on topological complete subgraphs. European J. Combin. 19 (1998), 883–887.
10. R. Diestel. Graph Theory, Graduate Texts in Mathematics, Springer 1997.
11. R.G. Downey and M.R. Fellows. Parametrized Complexity, Monographs in Com-

puter Science, Springer 1997.
12. L. Engebretsen and J. Holmerin. Clique is hard to approximate within n1−o(1).

Proc. 27th ICALP, pp. 2-12, 2000.
13. D. Eppstein. The traveling salesman problem for cubic graphs. Proc. 8th WADS,

LNCS 2748, Springer, pp. 307-318, 2003.
14. T. Feder, R. Motwani, and C.S. Subi. Approximating the longest cycle problem in

sparse graphs. SIAM Journal on Computing, 31(5), pp. 1596-1607, 2002.
15. U. Feige. Approximating maximum clique by removing subgraphs. Manuscript,

March 10, 2002.
16. H. Gabow. . Proc. th STOC, 2004.
17. H. Gabow and S. Nie. Finding a long directed cycle. Proc. 15th SODA, 2004.
18. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the

Theory of NP-completeness. W.H. Freeman and Company, New York 2003.
19. A. Gupta and N. Nishimura. Sequential and Parallel Algorithms for Embedding

Problems on Classes of Partial k-Trees. Proc. SWAT 1994, LNCS, Springer, pp.
172-182.

20. A. Gupta and N. Nishimura. The complexity of subgraph isomorphism for classes
of partial k-trees. Theoretical Computer Science, 164, pp. 287-298, 1996.

21. J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1),
pp. 105-142, 1999.

22. D. Hochbaum (Eds.). Approximation Algorithms for NP-hard Problems. Interna-
tional Thompson Publishers, ISBN 0-534-94968-1, 1995.

23. R. Impagliazzo, R. Paturi and F. Zane. Which Problems Have Strongly Exponen-
tial Complexity? Proceedings 1998 Annual IEEE Symposium on Foundations of
Computer Science, pp 653-663, 1998.

24. C. Lund and M. Yannakakis. The Approximation of Maximum Subgraph Problems,
Extended Abstract. Proc. 20th Intl. Colloqium on Automata, Languages and
Programming, LNCS 700, pp. 40-51, 1993.



25. D. Karger, R. Motwani, and G.D.S. Ramkumar, On approximating the longest
path in a graph. Algorithmica, 18(1), pp. 82-98, 1997.

26. A.V. Kostochka. Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4 (4), pp. 307-316, 1984.

27. S. Khot. Improved inapproximability results for MaxClique, chromatic number,
and approximate graph coloring. Proc. 42nd FOCS, pp. 600-609, 2001.
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29. J. Matoušek and R. Thomas. On the complexity of finding iso- and other mor-
phisms for partial k-trees. Discrete Mathematics, 108, pp. 343-364, 1992.

30. S. Plotkin, S. Rao, and W.D. Smith. Shallow excluded minors and improved graph
decomposition. 5th Symposium on Discrete Algorithms, pp. 462-470, 1994.

31. N. Robertson and P.D Seymour. Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7(3), pp. 309-322, 1986.

32. N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Combinatorial Theory, Ser. B., Vol. 63 (1995) pp. 65-110.

33. A. Thomason. An extremal function for contraction of graphs. Math. Proc. Comb.
Phil. Soc. 95, pp. 261-265, 1984.


