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We introduce and study the algorithmic problem of maximizing revenue in a network using differential

pricing, where the prices offered to neighboring vertices cannot be substantially different. Our most surpris-

ing result is that the optimal pricing can be computed efficiently, even for arbitrary revenue functions. In
contrast, we show that if one is allowed to introduce discontinuities (by deleting vertices) the optimization

problem becomes computationally hard, and we exhibit algorithms for special classes of graphs. We also

study a stochastic model, and show that a similar contrast exists there: For pricing without discontinu-
ities the benefit of differential pricing over a single price is negligible, while for differential pricing with

discontinuities the difference is substantial.
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1. INTRODUCTION

Differential pricing [19; 3] is the practice in which identical goods or services are sold in
different prices to different customers. Some types of differential pricing are direct, and
include providing special offers to new buyers in promotional sales, and special deals to loyal
buyers or to another selected part of the population. Other types of differential pricing are
less direct, and include techniques of quality differentiation and versioning, e.g., selling a
book in hard-cover and soft-cover formats with corresponding prices.

Differential pricing may lead to externalities. While differential pricing is a general tech-
nique in economics and marketing, externality is a general term that refers to costs or
benefits for a customer that was not involved in an actual economic transaction. For exam-
ple, a customer might be convinced about the quality of a product due to the fact another
customer bought it. While this is an example of a positive externality, one may find also a
negative externality in some economic trades, e.g., a purchase of a fancy apartment by a
criminal might badly effect the value of his neighbors’ apartments.

In this paper we deal with externalities of differential pricing in a social network. A social
network is a general setting consisting of a set of individuals and (typically binary) relations
among them, e.g., a social network such as Twitter is modeled as a directed graph and a
social network such as Facebook is modeled as an undirected graph. Notions of externality
are central to social networks. For example, models of diffusion in social networks (see, e.g.,
[15]) are based on the assumption that there are positive externalities in product purchase
(or in opinion formation) between neighbors (or friends) in a social network.
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The above concepts of differential pricing, externalities, and social networks do not live
in isolation from one another. For example, one may consider the idea of finding influential
members in a social network, and by providing them appropriate incentive for product
purchase influence purchases of other members. This approach tries to exploit positive
externality in a social network using differential pricing. The idea would be to optimize a
marketer revenue (see, e.g., [13]).1 Another example is mechanism design for buyers with
positive externalities [12]. However, negative externalities may also appear when differential
pricing in social networks context is used. For example, differential pricing preferring new
customers upon their friends who are loyal customers have resulted in surprisingly severe
negative ramifications when employed by Amazon in the past (see [10] for this and related
observations).

In this paper we introduce the first algorithmic study of differential pricing in a social
networks setting, where the aim is to avoid a well known type of negative externality, titled
inequity aversion (see, e.g., [9; 4]). Inequity aversion captures the need to avoid situations
that a member in a social network will have significantly better deal than his peers in a social
network. Inequity aversion is a most basic form of negative externality, to be distinguished
from spiteful behavior, as in [16; 6].

Our motivation applies equally to “physical networks”. Consider a network of different
stores of a large retail chain. The graph may represent the possibility of consumer to move
from one store to the other. In this abstraction the nodes are stores and edge is proximity.
The differential pricing allows for different prices at different stores. The constraint that
the prices of neighboring stores should be similar is motivated by the desire of reducing
consumer migration between the stores.

Our abstract model is the following. We have an underlying graph, which represents the
relationships between the nodes (e.g., users). Each node has a revenue function that maps
a price to a revenue. The constraint on the pricing is that neighboring nodes should receive
similar offer prices. Our goal is to find a feasible set of prices that maximizes the total
revenues.

For this basic model we derive an efficient algorithm to compute the revenue maximiz-
ing prices. We also show that in an expander graph, the fact that the difference between
neighboring nodes is small implies that any feasible pricing is concentrated around a single
price, and therefore the difference between the best single price and the differential pricing
is small.

We extend our model by allowing discontinuities, by essentially ‘deleting’ nodes from the
graph (and not receiving any revenue from them). This captures the situation in which
offers are not made to some of the customers (and therefore no one can envy them). We
show that the problem of revenue maximization in this model is computationally hard. For
arbitrary revenue functions it is hard to approximate within n1−ε for an n vertex graph,
and even for simple revenue functions the exact optimization remains NP-complete. We
give polynomial time algorithms for trees and bounded tree-width graphs. For graphs with
small degrees or small separators we give approximation algorithms.

We further consider a simple stochastic model, where each node has a value drawn i.i.d.
from a distribution over [0, 1]. This captures the situation where we do not have accurate
information about the willingness to pay of the customers when we come up with offers.
The revenue from a node is the price, if the price is below its value, and zero otherwise.
We allow the prices to change by at most ε ≥ 0 between neighboring nodes. We show
that in the basic model, for any connected graph and any value distribution the difference
between the best single price and the differential pricing is small (vanishing as a function
of ε). In contrast, we show that for a line graph with a uniform value distribution, there is

1The economics literature focused on the other hand on the effects of differential pricing on social welfare,
although not in the context of social networks [18; 17].
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a linear gap between the best single price and the expected revenue of the optimal pricing
with discontinuities, and this holds even for ε = 0. Our method of computing the expected
revenue of the optimal pricing is interesting in its own right. We use a dynamic program
that computes the optimal pricing given a realization of the valuations. We model it as
a Markov chain with an unbounded number of states, and then reduce it to a constant
size Markov chain with rewards, for which we can compute the expected reward (which is
identical to the average expected optimal revenue of our original problem).

The paper is organized as follows. Section 2 introduces our models for differential pricing
in a network. The basic model and its related results in presented in Section 3. The exten-
sion to handle discontinuities is studied in Section 4. The stochastic model is addressed in
Section 5. The final short section contains some concluding remarks and open problems.

2. MODEL

We are given a graph G(V,E) and a finite set P = {0, 1, . . . , `} of prices. For every node
v ∈ V there is an associated revenue function Rv that maps an offered price pv ∈ P assigned
to node v to the revenue gained. (The representation of Rv is an array with ` entries.) The
total revenue of a price vector p is R(p) =

∑
v∈V Rv(pv).

Without any constraint on the vector of prices p, the problem of maximizing the total
revenue, is simply maximizing each Rv separately. The problem becomes more challenging
when there are constraints imposed on the price vector p.

Model I: Bounded differences pricing. There is a difference vector α which assigns a non-
negative number to each edge, i.e., α(v, w) ≥ 0 for (v, w) ∈ E. A price vector p is feasible
with respect to a graph G and a difference vector α if for every edge (v, w) ∈ E we have
that |pv − pw| ≤ α(v, w). The goal is to compute a feasible price vector p which maximizes
the total revenue, i.e., R(p) =

∑
v∈V Rv(pv). Since the prices are integers, we will assume

that also α(v, w) are integers.

Model II: Bounded differences pricing with discontinuities. This is an extension of the
bounded differences pricing model, where we add a special price pv = ⊥ to P . By def-
inition, Rv(⊥) = 0. In addition, in case pv = ⊥, there is no price restriction on edges
incident with node v, i.e., we require |pv − pw| ≤ α(v, w) only for pv, pw 6= ⊥.

Model III: Fixed prices with discontinuities. This is a special case of the bounded differences
pricing with discontinuities model, where α(v, w) = 0 for any (v, w) ∈ E.

While we allow arbitrary revenue functions, in general, we sometimes focus on the in-
teresting restricted class of single value revenue function. A revenue function R is a single
value revenue function if for each node v there exists a value val(v) such that for p > val(v)
we have Rv(p) = 0 and for p ≤ val(v) we have Rv(p) = p. We will also sometimes focus on
the natural special case of a uniform difference vector α, assigning to each edge the same
value.

3. BOUNDED DIFFERENCES PRICING

The main result of this section is an efficient algorithm that maximizes the total revenue in
the bounded differences pricing model.

To start, assume that the revenue functions Rv(·) are concave and continuous2. Then we
can write the following concave program (which can be solved efficiently [5]).

2For simplicity, for the convex program we will assume that the prices are also continuous, i.e., P = [0, `].
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ConvexProg
max

∑
v∈V Rv(pv)

such that
∀(u, v) ∈ E : pv − pw ≤ α(v, w) and pw − pv ≤ α(v, w).

Theorem 3.1. If the revenue functions Rv(·) are concave then there is a polynomial
time algorithm to compute the optimal prices.

Our main result is showing a polynomial time algorithm for computing the optimal rev-
enue for arbitrary revenue functions and an arbitrary graph. Our methodology would be
the following. First, we present a fractional solution for the problem. Second, we show that
the optimal solution is integral, and thus the problem can be solved efficiently.

We present a model for the fractional setting. Recall that we assume that the prices are
discrete. For each node v we have Rv(i) as the revenue when the price is i ∈ P and pv(i)
is the fraction given to price i at node v. This implies that pv is a vector of length `, such

that pv(i) ≥ 0 and
∑`
i=1 pv(i) = 1.

We would like to write a linear program for the bounded differences pricing that computes
an optimal fractional solution. The first step is to show that we can check if two price distri-
butions pv and pw are compatible. For deterministic prices pv and pw, they are compatible
if the difference is at most α(v, w), i.e., |pv − pw| ≤ α(v, w). In the fractional model we
would like to be able to “move” prices to distance at most α(v, w) and transform pv to pw.
Formally, two price vectors pv and pw are matrix compatible if there exists a stochastic `× `
matrix Mv,w such that: (1) if |i− j| > α(v, w) then Mv,w[i, j] = 0 and (2) Mv,wpv = pw.

An equivalent requirement is the following. Price vectors pv and pw are threshold compat-

ible if for each k we have
∑k+α(v,w)
i=1 pv(i) ≥

∑k
i=1 pw(i) and

∑k+α(v,w)
i=1 pw(i) ≥

∑k
i=1 pv(i).

Claim 3.2. Price vectors pv and pw are threshold compatible if and only if they are
matrix compatible.

Proof. Clearly if price vectors pv and pw are matrix compatible they are threshold
compatible. For the other direction, we use a max-flow problem on a bipartite graph. Define
a bipartite graph B(Lv, Rw), where Lv = P = Rw. There is an edge from i ∈ Lv to j ∈ Rw
if |i− j| ≤ α(v, w) and each such edge has infinite capacity (capacity 1 would be enough).
Add a source node s and a sink node t, and connect the source node s to all nodes in Lw,
where the capacity of (s, i) is pv(i). Similarly, connect all nodes in j ∈ Rv to the sink node
t where the capacity of (j, t) is pw(j).

Clearly, price vectors pv and pw are matrix compatible iff there is a flow of magnitude
1 in B from s to t. Consider a minimum cut in B. Assume that the cut has value strictly
less than 1. Clearly the cut cannot have any edges between Lv and Rw. Thus the cut define
subsets of nodes Sv ⊂ Lv and Sw = N(Sv), where N(S) = {j : (i, j) ∈ E for some i ∈ S}.
Since the cut has value less than 1 then

∑
i∈Sv

pv(i) >
∑
j∈Sw

pw(j). It is not difficult to
see that we may assume that both Sv and Sw are intervals, since if Sv is a union of intervals
the inequality must hold for one of them and its set of neighbors. Let Sv = [β1, β2] and
Sw = [β1−α(v, w), β2 +α(v, w)]. From the threshold constraints for k = β1−α(v, w)−1 we

have that
∑β1−1
i=1 pv(i) ≥

∑β1−α(v,w)−1
i=1 pw(i). Since

∑β2

i=β1
pv(i) >

∑β2+α(v,w)
i=β1−α(v,w) pw(i) then∑β2

i=1 pv(i) >
∑β2+α(v,w)
i=1 pw(i). Therefore pv and pw are also not threshold compatible.

Given the threshold compatibility, define the following linear program:
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LinearProg1
max

∑
v∈V Rv(i)pv(i)

such that
∀(v, w) ∈ E ∀k ∈ P :

∑k+α(v,w)
i=1 pv(i) ≥

∑k
i=1 pw(i) and

∑k+α(v,w)
i=1 pw(i) ≥

∑k
i=1 pv(i)

∀v ∈ V ∀k: pv(k) ≥ 0.
∀v ∈ V

∑
k pv(k) = 1.

The first immediate claim is that the linear program provides an upper bound of the
optimal value.

Claim 3.3. The linear program LinearProg1 finds a fractional solution which is an upper
bound on the optimal bounded differences pricing.

Our surprising result is that there is no integrality gap. We show a simple way to round
a fractional solution, and prove that the resulting integral solution is optimal.

Given an optimal fractional solution pv(i), let the price price(v) at node v be the smallest
non-zero price in pv(i). Formally, let price(v) = min{i : pv(i) > 0}. First we show that the
resulting set of prices is feasible.

Claim 3.4. For every edge (v, w) ∈ E we have that |price(v)− price(w)| ≤ α(v, w).

Proof. For contradiction, assume that it does not hold for edge (v, w) ∈ E and
price(v) < price(w) − α(v, w). Let i = price(v). It implies that we have pv(i) > 0 and
for any j ≤ i+α(v, w) we have pw(j) = 0. This implies that pv and pw do not obey the edge
condition with k = i, which contradicts that pv and pw are part of a feasible solution.

Theorem 3.5. The prices price(v) are an optimal solution of the bounded differences
pricing.

Proof. Claim 3.4 shows that price(v) is a feasible solution. For contradiction, assume
that price(v) has strictly lower value than the fractional price vectors pv(i). We will show
that we can “delete” the price(v) solution and remain with a feasible solution of a higher
value, contradicting the fact that we started with an optimal solution.

Let ε > 0 be smaller than any non-zero value in the fractional solution, i.e., ε <
mini,v:pv(i)>0 pv(i). Then we can write the factional solution as a convex combination of
an ε fraction of the price(v) solution and a 1 − ε fraction of the remaining solution (after
subtracting price(v)). Formally, define p′v such that p′v(i) = (pv(i)−εI{i = price(v)})/(1−ε).
The new solution p′v(i) is feasible, since we are subtracting ε from both sides of the edge
constraints (here it is important that price(v) and price(w) are the minimal non-zero en-
try). Therefore, p′v has a strictly higher value than pv, which is a contradiction to the
optimality.

We have established the following.

Corollary 3.6. There is a polynomial time algorithm that computes the optimal
bounded differences pricing.

3.1. Totally Unimodular

Here is an alternative proof that the bounded differences pricing has no integrality gap.
The main benefit of the alternate proof is that it captures a much wider family of feasibility
constraints, and allows to extend the basic model, while maintaining the fact that the
optimal solution is computable in polynomial time.

Recall that a matrix A is called totally unimodular if the determinant of any square
submatrix of it is either 0, or 1 or −1. It is an easy corollary of Cramer’s rule that any
vertex of a polytope given by Ax ≤ b for an integral vector b and such a matrix A has
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integral coordinates. In our case the LP we consider has variables we denoted by pv(k) for
v ∈ V where G = (V,E) and where k = 1, 2, . . . , `, for a total of n` variables. The defining
inequalities are

(1) ∀(v, w) ∈ E ∀k:
∑k+α(v,w)
i=1 pv(i)−

∑k
i=1 pw(i) ≥ 0.

(2) ∀(v, w) ∈ E ∀k:
∑k+α(v,w)
i=1 pw(i)−

∑k
i=1 pv(i) ≥ 0.

(3) ∀v ∈ V ∀k: pv(k) ≥ 0.
(4) ∀v ∈ V :

∑
k pv(k) = 1.

We need the following theorem of Ghouila Houri (1962) [11].

Theorem 3.7. A matrix A is totally unimodular if and only if for any nonempty subset
of its columns there is a linear combination of these columns with coefficients {−1, 1} so
that the resulting vector is a vector of {0, 1,−1}.

We will show that this is the case for our matrix, denoted by A. The rows of the matrix are
the inequalities and the columns are the variables. We can think of the variables (columns)
as partitioned to n blocks, one per node v ∈ V and in each block the ` variables pv(k) in
an increasing order of k. It is worthwhile to consider the structure of the complete matrix.
Any inequality of type (1) and (2) has a prefix of +1 in one block and a prefix of −1 in
another block. Any inequality of type (3) has a single +1 and an inequality of type (4) has
the entire block +1.

Given a nonempty subset S of the set of columns, assign the columns signs as follows: the
columns of S in each block get alternating signs starting with +1, that is: +1,−1,+1,−1, . . .
(In the next block we start again with +1). Let us consider the different inequalities. For
an inequality of type (3), we clearly have the result either +1 or −1, if the relevant column
is in S, since it had a single +1, and otherwise the result is 0. For an inequality of type
(4) we have a block of +1, so when we multiply by an alternating +1 and −1 sequence the
sum is either +1 or 0. For an inequality of type (1) or (2), the sum over the +1 prefix is
either +1 or 0 (same as for any inequality of type (4)). The sum over the −1 prefix is either
−1 or 0. This implies that the sum of the values is either +1, −1 or 0. Therefore, we have
established the following theorem.

Theorem 3.8. The matrix A is totally unimodular.

Remark: Using the proof based on the totally unimodular matrix we can show many
interesting extensions to our bounded differences pricing model.

(1) We can add equalities of the form
∑γv
i=βv

pv(i) = 0 (or = 1) that is, take some consecu-

tive values in one block only and forbid prices there (or insist the prices are there) and
the same proof shows that’s totally unimodular too.

(2) We can add constraints of the form pv(i) = 0, for any v and any price i we wish, as
this clearly keeps the matrix totally unimodular. This means we can actually force the
available subset of allowed set prices for each vertex v to be any subset of P we wish.

(3) So far we assumed that α is symmetric, i.e., α(v, w) = α(w, v). We can extend the
model to non-symmetric α and achieve the same result. We can have a directed graph

G(V,E) and have: ∀(v, w) ∈ E ∀k:
∑k+α(v,w)
i=1 pv(i) −

∑k
i=1 pw(i) ≥ 0, and the same

proof that the matrix is totally unimodular still holds.

3.2. Expanders

Expander graphs are a natural class of graphs, and a random graph (with some mild as-
sumptions on the parameters used) is an expander graph with high probability. We will be
interested in understanding the resulting bounded difference pricing on this natural class of
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graphs, where in this section we consider a uniform α with α(u, v) = 1 for every edge, and
single revenue value functions.

The main observation here is that since the function assigning prices to vertices is a
Lipschitz function, then almost all the vertices have almost the same price, i.e., the function
is nearly a constant. This implies that for expander graphs, the feasibility constraint forces
almost all nodes to have a very similar price.

Definition 3.9. A graph G(V,E) has expansion λ if for any set S ⊂ V such that |S| ≤
|V |/2 we have |N(S)| ≥ (1 + λ)|S|, where N(S) = {v|∃w ∈ S, (w, v) ∈ E}.

Theorem 3.10. Given a graph G(V,E) with n vertices and expansion λ, any assignment
of integers to nodes, i.e., p : V → Z, such that |p(v) − p(w)| ≤ 1 if (v, w) ∈ E, satisfies
the following: There is a value i so that for any ε > 0 all nodes v but at most εn have
p(v) ∈ [i− k, i+ k] where k = O( 1

λ ln 1
ε ).

Proof. Let i be the median value of the function p, that is, at least n/2 vertices satisfy
p(v) ≥ i and at least n/2 vertices satisfy p(v) ≤ i.

Fix ε > 0, let Sl be the set of nodes with prices less than i − k and let Sh be the set
of nodes with prices more than i+ k, where k will be determined later. Let N j(Sl) denote
the set of all vertices of distance at most j from Sl. Thus N0(Sl) = Sl. By the expansion
assumption, if |N j(Sl)| ≤ n/2, then N j+1(Sl)| ≥ (1 + λ)|N j(Sl)|. It thus follows that for

k = d ln 1/ε
ln(1+λ)e, if |Sl| ≥ εn/2, then |Nk(Sl)| ≥ n/2. But this is impossible, as all vertices

in Nk(Sl) must have prices below i, which is the median. It follows that |Sl| ≤ εn/2. The
same reasoning implies that |Sh| ≤ εn/2, providing the required result.

From a pricing perspective, the simple result above implies that a constant price provides
a good approximation for single value revenue functions on expanders.

Corollary 3.11. Assume G(V,E) is an expander with expansion λ, and for any v ∈ V
the revenue Rv is a single value revenue function over the prices {1, . . . , `}, with α(u, v) = 1
for every edge (u, v). Let OPT be the optimal value of the bounded differences prices. Then,
there exists a single price p such that

OPT −
∑
v∈V

Rv(p) = O(
n

λ
ln `)

Proof. From Theorem 3.10 we have,

OPT −
∑
v∈V

Rv(p) ≤ εn`+O(
n

λ
ln

1

ε
).

Setting ε = 1/` gives the desired result.

4. BOUNDED DIFFERENCES PRICING WITH DISCONTINUITIES

In contrast to the case of bounded differences pricing, where we showed a polynomial time
algorithm, when we add discontinuities the problem becomes hard (NP-complete). We show
the hardness in Section 4.1. We give exact algorithms for special classes of graph (trees and
graphs of bounded tree width) in Section 4.2 and approximation algorithms (for bounded
degree and graphs with small separators) in Section 4.3.

4.1. Hardness

Lemma 4.1. For any graph G(V,E), there is a set of revenue functions, such that for
α(u, v) = 1 for every edge, the total revenue of the optimal bounded differences pricing with
discontinuities is equal to the maximum size of an independent set in G(V,E).
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Proof. We need to define the revenue functions to define the reduction. For node vi let
revenue Rvi(i · (2n)) = 1 and for any other price Rvi(p) = 0.

This implies that in any connected component (of the graph obtained after the deletion
of all edges (v, w) where either pv = ⊥ or pw = ⊥) we can get at most a revenue of 1. (If
nodes vi and vj are connected by a path, and node vi has revenue 1, then pvi = i · (2n).
The price in node vj has to be in the range [i · (2n)− n, i · (2n) + n] which does not include
the price j · (2n) and implies that Rvj = 0.)

This implies that the maximum total revenue is exactly the size of the maximum inde-
pendence set.

Using the well known results on approximability of independent set [14], we get the
following.

Theorem 4.2. Computing the optimal bounded differences pricing with discontinuities
in an n vertex graph is NP-complete, and is hard to approximate within a factor of n1−ε

assuming that NP does not have polynomial time randomized algorithms.

The above reduction uses fairly unnatural revenue functions. We would like to establish
the hardness for single value revenue function. We are able to show the hardness for a
slightly larger class which includes in addition the constant revenue function, i.e., Rv(p) = c
for any p 6= ⊥.

Theorem 4.3. The problem of computing the optimal bounded differences pricing with
discontinuities is NP-complete even for revenue functions which are either single value or
constant.

Proof. The reduction is from the Multiway (or Multiterminal) cut problem, which is the
following: Given a graph G(V,E) and a specified set S of k vertices in it, find the minimum
number of edges needed to separate all vertices of S, that is, the minimum number of edges
that can be deleted so that no two of the vertices of S stay in the same connected component
of the resulting graph. This is known to be NP-hard even for k = 3, see [8].

We proceed with a reduction to our problem. Let G(V,E) and S = {v1, . . . , vk} be an
instance of the multiway cut problem. Put |V | = n.

Construct a new input graph H for our problem: this is the graph obtained from G by
replacing each edge e of G by a path of length 2 in which the middle vertex is denoted by
e (this is sometimes called the 1-subdivision of G). Thus H has |V |+ |E| vertices and 2|E|
edges. We demand prices assigned to neighboring vertices to differ by at most 1, that is,
our difference vector α is 1 for every edge.

We next define the revenue functions for each vertex of H. For each vertex e that came
from an edge of G the revenue is 1 for any prescribed price (besides ⊥ which gives revenue
0, as usual). For every vertex of H that came from a vertex v ∈ V \ S the revenue is n2 for
every prescribed price (and 0 for ⊥). Note that n2 is larger than |E|, hence it never pays to
assign ⊥ to such a vertex, as one can always delete all vertices of the form e, lose only |E|
from the total potential revenue, and make every vertex of H in what’s left isolated, getting
the maximum possible revenue for it. For each vertex vi ∈ S define ri = 10i · n2. For price
pi ≤ ri the revenue is pi and otherwise it is zero.

Note that one possible choice of prices is to remove (that is, assign ⊥ to the members of)
a set of vertices of H that corresponds to a minimum set of edges of G that separates the
members of S. We can then assign the component of vi in what’s left price ri = 10i · n2.
It is not difficult to check that this is in fact the optimum revenue one can get. Indeed, if
two vertices of S stay in the same component than we lose a lot for those, as the distance
between them in H is less than 2n (since it is less than n in G). Similarly, if we assign
⊥ to a vertex of H corresponding to a vertex (and not an edge) of G then we lose too
much and hence this cannot be done in an optimum solution. It follows that the maximum
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possible revenue in our problem is exactly |E| + n2(|V | − k) +
∑k
i=1 10in2 − f , where f is

the minimum number of edges needed to be removed to separate all vertices of S.
This completes the proof.

4.2. Exact Algorithms

We show exact algorithms for special graphs.

Theorem 4.4. There is an O(n`) time algorithm to compute the optimal bounded dif-
ferences pricing with discontinuities when G(V,E) is a tree.

Proof. We use a dynamic programming algorithm to find the optimal prices. Given the
tree, we assign one node to be the root, and direct all the edges accordingly.

The dynamic programming algorithm, for each sub-tree Tv, rooted at v, for each possible
price for v (including ⊥), computes the optimal revenue of the subtree. Let opt(Tv, k) be
the revenue of the optimal assignment for Tv conditioned on pv = k.

Given a node w, assume we computed the optimal assignment for each child subtree of Tw.
Given a price pw = k, a child v of w can have prices in the range [k − α(v, w), k + α(v, w)]
or ⊥ (i.e., at most 2α(v, w) + 2 prices). For each edge (w, v) and subtree Tv, the opti-
mal revenue at v is optv,w(k) = maxi∈[k−α(v,w),k+α(v,w)]∪{⊥} opt(Tv, i). Then opt(Tw, k) =
Rw(k) +

∑
v:child(v,w) optv,w(k), where child(v, w) is derived from the tree structure. This

computation is done from the leaves to the root. In the root r we simply maximize
maxk Rr(k) +

∑
v:(r,v)∈E optv,r(k). The running time of the algorithm is O(n`) provided

α(u, v) ≤ O(1) for every edge (u, v).

We can extend the dynamic programming algorithm for trees to apply to bounded tree
width graphs, and derive the following result.

Theorem 4.5. There is an O(nk`k) time algorithm to compute the optimal bounded
differences pricing with discontinuities when G(V,E) is a graph of tree width k.

4.3. Approximation

We show approximation algorithms for certain classes of graph. The first is using the max-
imum degree of the graph.

Theorem 4.6. For a graph G(V,E) with maximum node degree D, the bounded differ-
ences pricing with discontinuities can be approximated with a multiplicative factor of D+ 1.

Proof. For each node v, let Rmaxv = maxp{Rv(p)} be the maximum revenue we can get
from v (at some price) and pmaxv = arg maxRv(p). Now we use the greedy algorithm. Take
the node with the maximum Rmaxv . Assign v the price pmaxv . Set all the neighbors w of v
to pw = ⊥.

We claim that the benefit of the greedy algorithms is at least
∑
v∈V R

max
v /(D + 1). The

proof follows from the observation that when we assign a value pmaxv , then Rmaxv ≥ Rmaxw
for any neighbor w of v which is not yet assigned a price. This implies that D · Rmaxv ≥∑
w∈N(v)R

max
w . Therefore, the revenue we get is at least

∑
v R

max
v /(D + 1).

Theorem 4.7. For any n-vertex graph G(V,E) with a fixed excluded minor (and in
particular for any planar graph), the bounded differences pricing with discontinuities can be
approximated with an additive factor of εMn, where M is the maximum revenue that can
be obtained from a single vertex and ε > 0 is an arbitrary absolute positive constant.

Proof. Fix ε > 0. As shown in [1], in any n-vertex graph with a fixed excluded minor
one can eliminate (efficiently) εn nodes, and remain with connected components, each of
size at most O(1/ε2).
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We can eliminate the εn nodes by assigning them prices of ⊥. In each constant size
connected component we can now find the precise optimum by exhaustively enumerating
all possible price vectors (allowing the use of ⊥ here too). Clearly we outperform the optimal
pricing in each component, and lose only in the pricing of the nodes eliminated.

5. STOCHASTIC MODEL

In this section we assume that each node v has a single value revenue function. Recall that
this implies that node v has a value val(v). The revenue from node v is Rv(p) and is equal
to p if p ≤ val(v) and 0 if p > val(v). In the stochastic model we assume that val(v) is
distributed uniformly in [0, 1]. (This would be more convenient than having discrete prices
and values.)

Given the distribution of val(v), the expected revenue at price p is p(1−p). Therefore, the
single fixed price that maximizes, a priori, the revenue is p = 1/2 and its expected revenue
is 1/4. This will be the basic benchmark against which we will compare all our results.3 Our
main goal is to study how much can be gained by changing the prices in either the bounded
differences pricing model or the bounded differences pricing with discontinuities model. The
end result is that in the bounded differences pricing model, very little is gained compared
to a single fixed price. This holds for any connected graph and any distribution over val(v),
assuming that it is sampled independently and with the same distribution for all nodes.
In contrast, allowing discontinuities creates a gap between the revenue of the optimal fixed
price and the optimal fixed price with discontinuities.

5.1. Bounded differences pricing: line graph

The line graph has nodes {1, . . . , n}, where the edges are (i, i + 1) for 1 ≤ i ≤ n − 1. We
assume that α(i, i+ 1) = ε, hence the price at nodes i and i+ 1 can differ by at most ε, i.e.,
|pi+1−pi| ≤ ε. We derive both a possibility result (lower bounding the average revenue) and
an impossibility result (upper bounding the average revenue). Both bounds deviate from
the revenue of the single best price by some function of ε that tends to 0 as ε tends to 0.
Later we extend our results from a line graph to an arbitrary connected graph and from a
uniform distribution to an arbitrary distribution. We will start with the possibility result.

Claim 5.1. For the line graph there is a pricing strategy for the bounded differences
pricing that has expected total revenue of 0.25 + Θ(

√
ε).

Proof. Our bounded differences pricing would be based on the realized values of the
nodes. We will partition the line to segments, and show that in each segment we can set
bounded differences pricing, given the prices, such that the expected revenue is above 0.25.

We partition the line into segments of length ` = 3/
√
ε. Consider a single such segment.

The probability that none of the ` nodes have values in the range [0.5−
√
ε, 0.5 +

√
ε] is at

least e−6−o(1), which is a constant bounded away from 0. If the event does not hold then
the fixed price 1/2 has still an expected average payoff of 0.25. If the event holds, consider
the following bounded differences pricing. We start at price 0.5 and increase by jumps of ε
until 0.5 +

√
ε, using `/3 nodes, keep the price at 0.5 +

√
ε for the next `/3, and return to

price 0.5 using the remaining `/3 nodes. In this case the pricing has an expected average
payoff of more than 0.25 +

√
ε/6 per node in the segment. Indeed, conditioned on having no

value in [0.5−
√
ε, 0.5 +

√
ε], the probability of each vertex in the segment to have a value

exceeding 0.5 +
√
ε is exactly 1/2, and when this happens for a vertex in the middle third

of the segment, the revenue obtained is 0.5 +
√
ε.

For the impossibility result we will show that no pricing strategy has an expected revenue
significantly above 1/4 per node.

3Technically, we consider the average expected revenue by normalizing it per node.
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Theorem 5.2. For the line graph, the expected optimal bounded differences pricing total
revenue is at most 0.25 +O(ε1/3) per node.

Proof. For the proof, partition the line into n/` segments, each of size ` (to be deter-
mined later to be Θ(ε−2/3)).

Consider a realization of the values val(i) in a segment, and let the optimal pricing for the
realization be opt(i). Note that by definition of bounded differences pricing max{opt(i)} −
min{opt(i)} ≤ ε`. Therefore, if we select a single fixed price p = min{opt(i)} the revenue on
the realization would decrease by at most ε` per node. We can further round this price to
an integral multiple of εl, losing again at most ε` per node. This way, the total number of
possible prices is only 1

ε` . Moreover, the difference between the rounded prices obtained for
two consecutive segments is less than 2ε`, implying that knowing the price of a segment,
there are at most 5 possible prices for the next segment. It follows that altogether there are
only 1

ε`5
n/` ways to choose the rounded prices for all the segments.

For each fixed choice of the prices, the expected value of the revenue over the whole line
is at most n/4. Moreover, by the Chernoff-Hoeffding Inequality (c.f., e.g., [2], Appendix A),

the probability of getting revenue at least (1/4 + λ)n is at most e−λ
2n/3. Therefore, the

probability that there is a pricing among the 1
ε`5

n/` rounded ones considered above that
gives total revenue exceeding (1/4 + λ)n is at most

1

ε`
5n/`e−λ

2n/3.

Taking, say, λ2 = 6/` we conclude that with very high probability none of these gives
revenue exceeding (1/4 + λ)n. This provides a bound of (1/4 + λ+ 2ε`)n for the optimum.
The desired result is obtained by taking ` = ε−2/3 (and hence λ = Θ(ε1/3)).

5.2. Bounded differences pricing: Arbitrary graphs

It is not hard to see that the impossibility result above extends to any connected graph.
This can be done by extending the last proof for an arbitrary tree. It is shorter, however,
to use the known result that the cube of any connected graph is Hamiltonian (see [7]). This
means that for any connected graph G, the graph obtained by connecting two vertices of G
iff the distance between them in G is at most 3, contains a Hamilton cycle (and hence also
a Hamilton path). It follows that one can number the vertices of the original graph so that
the distance between any two consecutive vertices is at most 3, and hence their prices can
differ by at most 3ε. The following result thus follows from the result for the line.

Corollary 5.3. For any connected graph G(V,E) with uniform α = ε, the expected
optimal bounded differences pricing total revenue per node is at most 0.25 +O(ε1/3).

5.3. Bounded differences pricing: Arbitrary distribution

In this section we consider an arbitrary distribution for the values val(v). When comparing
the expected revenue of the optimal fixed price and the expected revenue of the optimal
bounded differences pricing, there is a sharp contrast between the ratio, which can be
high, and the absolute difference, which will be low. For the ratio, we show that it is
essentially unbounded (Theorem 5.4). For the absolute difference it will be a function of ε
(Theorem 5.5).

Theorem 5.4. For any k ≥ 1 and ε > 0, there exists a distribution Dk over [0, 1], such
that for any single fixed price the expected revenue is at most εk/(1 − ε) and the expected
revenue of the optimal bounded differences pricing is kεk, for any graph G(V,E). Hence the
ratio is at least k(1− ε).
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Proof. Let Dk be the following distribution. The support includes εi,for 1 ≤ i ≤ k and
0. The probability of εi is εk−i, and the remaining probability is on the value 0.

For any fixed price the expected revenue is at most εk/(1 − ε). More specifically, the

probability of valuations above εi is
∑k
j=i ε

k−j = εk−i
∑k−1
j=0 ε

j ,and hence the expected

revenue is at most εk/(1− ε).
Since the support of the distribution Dk is [0, ε], using bounded differences pricing we

can get the sum of nodes valuation. This implies that the expected revenue is kεk.

The following theorem shows the difference between the best fixed price and the optimal
bounded differences pricing is small.

Theorem 5.5. For any distribution D over [0, 1], for the line graph, the difference
between the expected best fixed price and the expected optimal bounded differences pricing
per node is at most O(ε1/3).

The proof is very similar to the proof of Theorem 5.2 and is omitted.

5.4. Fixed prices with discontinuities: line graph

In this section we present an exact computation of the expected revenue for a line graph,
for the fixed prices with discontinuities model. We consider a model with two equally likely
values {1, 2}. Essentially we are back to the discrete model with ` = 2 and Pr[val(v) = 1] =
Pr[val(v) = 2] = 1/2. When considering a single fixed price, then the revenue of p = 1 is 1
(always sells at price 1) and the expected revenue of p = 2 is also 1 (sells with probability
1/2 and gets revenue 2). The main challenge in this section is to compute the exact expected
revenue of the optimal fixed price with discontinuities. The main result of the section would
be to establish that the expected revenue with discontinuities is exactly 7/6 per node, which
means that it is significantly higher than the optimal fixed price with no discontinuities.
This shows, once again, the significant difference between pricing with discontinuities and
without them.

Before we compute the exact expectation let us observe that it has to be strictly larger
than 1. Consider pricing all nodes at price 2, this has an expected revenue of 1 and with
high probability the realized revenue is close to the expected one. Given a realization of
values, consider any consecutive sequence of three or more values of 1. When we price all
nodes at price p = 2 we are not receiving any revenue from any of those nodes. We can
strictly increase our revenue by doing a discontinuity at both ends of the interval (offering
a price of ⊥) and selling to the other nodes in the interval at price 1. Since the probability
of having an interval of size exactly k is 2−k−2, and we increase the gain on it by k − 2,
we have an expected revenue strictly more than 1. (Specifically, this strategy would give an
expected revenue of 1 +

∑∞
k=3(k − 2)2−k−2 = 9/8.) As we will see, however, this is not the

optimal strategy of offering prices.
One can compute the optimal prices given a value realization using dynamic programming.

For each node t and each possible price, we maintain the optimal revenue of the first t
nodes, assuming node t is offered price pt. More specifically, our set of prices is {1, 2,⊥}.
It is easy to see that the optimal pricing will use only prices from this set. For each node
t consider the triplet (rt1, r

t
2, r

t
⊥) where value of rtp is the optimal revenue after t nodes

and assuming that the price of node t is pt = p. Given val(vt+1) and (rt1, r
t
2, r

t
⊥) we can

compute (rt+1
1 , rt+1

2 , rt+1
⊥ ) as follows. Let rt+1

⊥ = maxp{rtp}, since we can offer node t + 1

price ⊥ and take any best pricing up to node t. Let rt+1
1 = max{rt1, rt⊥} + 1 since when

we offer price rt+1 = 1 we always get a revenue 1 from node t + 1, and we can select
the best sequence leading to it, ending either in pt = 1 or pt = ⊥. In case val(vt+1) =
2 let rt+1

2 = max{rt2, rt⊥} + 2, and otherwise (i.e., val(vt+1) = 1) rt+1
2 = max{rt2, rt⊥}.

Clearly, given the realizations of val(vt) we can run this dynamic program in time O(n) and
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compute the optimal pricing for the realization. The optimal revenue of a given realization
is max{rn1 , rn2 , rn⊥}. Our main challenge would be to compute analytically the expected value
of this dynamic program, i.e., E[max{rn1 , rn2 , rn⊥}].

When considering the dynamic program, one can consider the triplet (rt1, r
t
2, r

t
⊥) as the

state of the system. Given the realization val(vt+1) we move to (rt+1
1 , rt+1

2 , rt+1
⊥ ) . This

implies that from each state we have two possible next states, one for val(vt+1) = 1 and one
for val(vt+1) = 2. This defines a Markov chain, where in each state, the two next states are
equally likely. The problem is that we never get back to the same state, since the revenue
is always increasing. For a line of length n the Markov chain has Θ(n) states, and we need
to compute its expected revenue. We would like to reduce this large Markov chain to an
equivalent finite one.

It is not hard to see that any two different revenues among the three quantities in
(rt1, r

t
2, r

t
⊥) cannot differ by more than 2. This observation follows, since we can modify

any price sequence and end the sequence with a price ⊥, reducing the revenue by at most
2. Given this observation, we can normalize the states by doing the following. Given a state
(rt1, r

t
2, r

t
⊥), we renormalize the state by having Rt = min{rt1, rt2, rt⊥}, and the new state is

(rt1−Rt, rt2−Rt, rt⊥−Rt). (With an abuse of notation, we will denote the new states also by
(rt1, r

t
2, r

t
⊥).) Now we have a finite Markov chain, where the states are a subset of {0, 1, 2}3

and in a transition we receive a reward R (which is also in {0, 1, 2}). This is now a much
more manageable Markov chain. The specific resulting Markov chain is the following.

current next reward next reward average steady
state state v = 1 state v = 2 reward distribution

v = 1 v = 2
0 0 0 1 0 0 0 1 2 0 0 0.0 0
1 0 0 2 0 1 0 1 1 0 1 0.5 1/12
1 1 0 2 0 1 0 1 2 0 1 0.5 2/12
1 2 0 2 0 2 0 0 2 0 2 1.0 2/12
2 0 1 2 0 1 1 1 1 0 2 1.5 3/12
2 0 2 1 0 0 2 1 2 0 2 2.0 1/12
0 2 0 1 0 2 0 0 3 1 1 0.5 1/12
0 3 1 1 0 2 1 0 3 1 2 1.5 1/12
1 0 2 1 0 0 2 1 2 0 2 2.0 1/12

The initial state of the Markov chain is (0, 0, 0), and not all possible 27 states are reachable
from it. In the table, for each state, we show the two next states, for each possible node
value, and the reward.

Given a finite Markov chain, we can solve for the steady state distribution, which appears
in the last column. One can easily verify that the claimed steady state is correct (checking
the incoming probability to each state).

Now we are ready to compute the expected optimal revenue. This is simply the expected
reward of the Markov chain, which we can compute, given the steady state distribution, as
follows,

E[R] = 0.5
1

12
+ 0.5

2

12
+ 1.0

2

12
+ 1.5

3

12
+ 2.0

1

12
+ 0.5

1

12
+ 1.5

1

12
+ 2.0

1

12
=

14

12
=

7

6

We have established the following theorem.

Theorem 5.6. The expected revenue of the optimal fixed prices with discontinuities for
a line graph is 7/6 per node.
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An intriguing open problem is to study the case where the value is uniform in [0, 1]. While
simulations show that the expected revenue is close to 1/e, we were not able to analytically
analyze this case, and leave it as an open problem.

6. CONCLUDING REMARKS AND OPEN PROBLEMS

We have introduced and studied the algorithmic problem of maximizing revenue in a net-
work using differential pricing, where the prices offered to neighboring vertices cannot be
substantially different. It turns out that in the basic model the optimal pricing can be com-
puted efficiently, even for arbitrary revenue functions. In contrast, when discontinuities are
allowed the optimization problem becomes computationally hard, though it is still tractable
for some special classes of graphs. A similar contrast exists in our stochastic model. We show
that the revenue of the best fixed price is similar to the revenue of the optimal pricing, in
the basic model, while this is not the case when discontinuities are allowed.

The techniques used in the paper combine combinatorial and graph theoretic tools with
properties of totally unimodular matrices and Markov chains. Such techniques may have
additional related applications.

Several problems remain open. One of these is the question of deciding whether or not
the problem of maximizing the revenue with discontinuities is computationally hard or hard
to approximate for single value revenue functions. Another question is that of determining
more accurately the correct behavior of the error term in the question discussed in Section
5.1.

Another challenging problem is computing the expected revenue per node for the line
graph when the values are random i.i.d. uniform in [0, 1] and discontinuities are allowed.

Besides these technical problems, we believe that the general problem of revenue max-
imization using differential pricing with local constraints is natural and deserves further
study.
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M. Armstrong. Recent developments in the economics of price discrimination. In R. Blundell, W. Newey,
and T. Persson, editors, Advances in Economics and Econometrics: Theory and Applications: Ninth
World Congress of the Econometric Society. Cambridge University Press, Cambridge, UK, 2006.

G.E. Bolton and A. Ockenfels. A theory of equity, reciprocity and competition. American Economic Review,
100:166–193, 2000.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, Cambridge,
2004.

F. Brandt, T. Sandholm, and Y. Shoham. Spiteful bidding in sealed-bid auctions. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2007.

Gary Chartrand and S. F. Kapoor. The cube of every connected graph is 1-hamiltonian. J. Res. Nat. Bur.
Standards Sect. B, 73B:47–48, 1969.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The complexity of
multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

E. Fehr and K.M. Schmidt. A theory of fairness, competition and co-operation. Quarterly Journal of Eco-
nomics, 114:817–868, 1999.

William W. Fisher. When should we permit differential pricing of information? UCLA Law Review, 55(1),
2007.
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