
Testing Low-Degree Polynomials over GF (2)

Noga Alon ∗ Tali Kaufman † Michael Krivelevich ‡ Simon Litsyn §

Dana Ron¶

July 9, 2003

Abstract

We describe an efficient randomized algorithm to test if a given binary function f : {0, 1}n →
{0, 1} is a low-degree polynomial (that is, a sum of low-degree monomials). For a given integer
k ≥ 1 and a given real ε > 0, the algorithm queries f at O(1

ε + k4k) points. If f is a polynomial
of degree at most k, the algorithm always accepts, and if the value of f has to be modified on at
least an ε fraction of all inputs in order to transform it to such a polynomial, then the algorithm
rejects with probability at least 2/3. Our result is essentially tight: Any algorithm for testing
degree-k polynomials over GF (2) must perform Ω(1

ε + 2k) queries.

∗Institute for Advanced Study, Princeton, NJ 08540, USA and Department of Mathematics, Tel Aviv University,
Tel Aviv 69978, Israel. E-mail: nogaa@post.tau.ac.il. Research supported in part by a USA Israeli BSF grant and
by a grant from the Israel Science Foundation

†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: kaufmant@post.tau.ac.il, This
work is part of the author’s Ph.D. thesis prepared at Tel Aviv University under the supervision of Prof. Noga Alon,
and Prof. Michael Krivelevich.

‡Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Re-
search supported in part by a USA Israeli BSF grant and by a grant from the Israel Science Foundation.

§Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: lit-
syn@eng.tau.ac.il. Research supported in part by a USA Israeli BSF grant and by a grant from the Israel Science
Foundation.

¶Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: da-
nar@eng.tau.ac.il. Research supported by the Israel Science Foundation (grant number 32/00-1).

1

1 Introduction

In this work we consider the problem of testing whether a binary function f : {0, 1}n → {0, 1}
is a polynomial of degree at most k satisfying f(0, . . . , 0) = 0, for a given integer parameter k.
Such a polynomial is simply a sum (modulo 2) of monomials each being a product of at most k
variables, with the free term equal to zero. (The restriction f(0, . . . , 0) = 0 is imposed mainly for
historical reasons, to make our definition and result consistent with the previously treated case
of linear functions k = 1. With minor changes our algorithm can be adapted to test the class of
all polynomials of degree at most k in n variables, without the restriction on the free term.) The
algorithm is required to accept functions that are polynomials of degree at most k (vanishing at
zero), and to reject, with probability at least 2/3, functions that are far from any such polynomial.
More precisely, the algorithm is given a distance parameter ε, and is required to reject (with
probability at least 2/3) any function whose value should be modified on more that an ε-fraction of
the domain to become a degree-k polynomial f satisfying f(0, . . . , 0) = 0. To this end the algorithm
can query the function f on inputs of its choice, where our goal is to minimize the query complexity
of the algorithm (as a function of k, 1/ε, and n).

The problem of testing multivariate low-degree polynomials has been studied quite exten-
sively [BFL91, BFLS91, GLR+91, FGL+96, RS96, FS95, AS97], and has important applications in
the context of Probabilistically Checkable Proofs (PCP). However, with the exception of the case
k = 1, that is, linear functions (which we discuss below), all results apply only to testing polynomi-
als over fields that are larger than k (the degree bound). When the field F is sufficiently large, it is
possible to reduce the problem of testing whether a function f : Fn → F is a multivariate degree-k
polynomial to testing whether a function is a degree-k univariate polynomial, where the latter task
is simply based on interpolation. Namely, the test for f selects random lines in Fn (more precisely,
in the finite projective geometry PG(n − 1, |F |)), and verifies that the restriction of f to each of
these lines is a (univariate) polynomial of degree at most k. This reduction does not hold for small
fields, and in particular for GF (2), which is our focus.

As noted above, in the case of k = 1 (linear functions), the linearity test of Blum, Luby and
Rubinfeld [BLR93] works also when the underlying field is GF (2). In fact, our test can be viewed
as an extension of the [BLR93] algorithm, as we explain in more detail below. Linearity testing has
also been studied in the following papers [BFL91, FGL+96, BGLR93, BS94, BCH+95].

Our Results

We describe and analyze an algorithm that tests whether a function f : {0, 1}n → {0, 1} is a degree-
k polynomial satisfying f(0, . . . , 0) = 0, or is ε-far from any such polynomial, using O(1/ε+ k · 22k)
queries. As we show, the exponential dependency on k is unavoidable. This is in contrast to the
case of testing degree-k polynomials over larger fields, where the sample complexity is polynomial
in k. Our testing algorithm is simple. It repeats the following check Θ(1

2kε
+ k2k) times: It selects,

uniformly and at random, k + 1 vectors y1, . . . , yk+1 ∈ {0, 1}n. It then evaluates f on the sum of
every non-empty subset of the selected vectors, and checks that the sum of these evaluations is 0.
If all checks succeed then it accepts, otherwise it rejects. Note that for the special case of k = 1,
we obtain the linearity test of [BLR93] which uniformly selects O(1/ε) pairs y1, y2 ∈ {0, 1}n, and
verifies for each pair that f(y1) + f(y2) = f(y1 + y2).

Our choice of the sets corresponds to a random selection of a (k + 1)-dimensional subspace in the
affine geometry AG(n, 2) (see for example [Hal67, Chap. 12]). In case k = 1 we deal with lines of

1

the affine geometry PG(n, 2).

As a by-product of our analysis we obtain a self-corrector (as defined in [BLR93]) for f , in case f is
sufficiently close to a degree-k polynomial g. Specifically, for any given x ∈ {0, 1}n, it is possible to
obtain the value g(x) with high probability by querying f on additional, randomly selected, points.

Relation to Coding

Our setting and results have a very natural interpretation in terms of coding theory. The set of
(evaluations of) all polynomials in n variables of degree at most k over GF (2) is called the Reed-
Muller code R(k, n) with parameters k and n. (See, e.g., [MS77] for relevant background). So
our algorithm can be considered as (locally) testing Reed-Muller codes. To be more accurate, as
we consider only polynomials f vanishing at zero, we in fact test the so-called shortened Reed-
Muller code R(k, n)∗, obtained from R(k, n) by choosing all codewords with the first bit (i.e. that
corresponding to the zero vector) equal to zero, and deleting this bit. The Reed-Muller code R(k, n)
is a linear code in {0, 1}2n

of minimum distance 2n−k. The dual code of R(k, n) is the Reed-Muller
code R(n − k − 1, n). The dual code of the shortened Reed-Muller code R(k, n)∗ is the so called
punctured Reed-Muller code with parameters n − k − 1 and n, obtained from R(n − k − 1, n) by
deleting the first bit of every codeword. The minimum distance of the punctured Reed-Muller code
with parameters n− k− 1 and n is 2k+1− 1, and its minimum weight codewords are obtained from
the minimum weight codewords of R(n− k − 1, n), having the first bit equal to 1, by deleting this
bit; the number of minimum weight vectors is proportional to 2(k+1)n.
For an arbitrary vector from {0, 1}2n

we want to distinguish between two cases: the vector belongs
to the code, or, alternatively, it is at (Hamming) distance at least ε · 2n from the closest codeword
of R(k, n)∗. Our strategy is then to pick a random minimum weight vector from the punctured
R(n−k−1, n), and to check if it is orthogonal to the tested vector. Clearly, this will always confirm
orthogonality if the considered vector is from the code. However, we prove that if the tested vector
is far enough from the code, with positive probability the test will detect it, and give an estimate
for this probability.

2 Preliminaries

For any integer `, we denote by [`] the set {1, . . . , `}. For any k ∈ [n], let Pk denote the family of
all Boolean functions over {0, 1}n which are polynomials of degree at most k without a free term.
That is, f ∈ Pk if and only if there exist coefficients aS ∈ {0, 1}, for every S ⊆ [n], 1 ≤ |S| ≤ k,
such that

f =
∑

S⊆[n],|S|∈[k]

aS ·
∏
i∈S

xi , (1)

where the addition is in GF (2). In particular, P1 is the family of all linear functions over {0, 1}n,
that is, all functions of the form

∑
i∈S xi, where S ⊆ [n].

For any two functions f, g : {0, 1}n → {0, 1}, the symmetric difference between f and g is ∆(f, g) def=
{y ∈ {0, 1}n : f(y) 6= g(y)}. The relative distance dist(f, g) ∈ [0, 1] between f and g is: dist(f, g) def=
|∆(f, g)|/2n. For a function g and a family of functions F , we say that g is ε-far from F , for some
0 < ε < 1, if, for every f ∈ F , dist(g, f) > ε. Otherwise it is ε-close to F .

2

A testing algorithm (tester) for Pk is a probabilistic algorithm, that is given query access to a
function f , and a distance parameter ε, 0 < ε < 1. If f belongs to Pk then with probability at least
2
3 , the tester should accept f , and if f is ε-far from Pk, then with probability at least 2

3 the tester
should reject it. If the tester accepts every f in Pk with probability 1, then it is a one-sided tester.

The following notation will be used extensively in this paper. Given a function f : {0, 1}n → {0, 1},
for y1, ..., y` ∈ {0, 1}n let

Tf (y1, . . . , y`)
def=

∑
∅6=S⊆[`]

f

(∑
i∈S

yi

)
, (2)

where the first sum is over GF (2) and the second one is over (GF (2))n, and let

T y1

f (y2, . . . , y`)
def= Tf (y1, . . . , y`) + f(y1) . (3)

3 Characterization of Low Degree Polynomials over {0, 1}n

Claim 1 A function f belongs to Pk (i.e., it is a polynomial of total degree at most k satisfying
f(0, 0, . . . , 0) = 0), if and only if for every y1, . . . , yk+1 ∈ {0, 1}n we have

Tf (y1, . . . , yk+1) = 0 . (4)

Proof: A polynomial from Pk can be viewed as a code word in the appropriate Reed-Muller code,
see, e.g., [MS77]. Thus, the above characterization can be proved using known facts about its dual.
For completeness we provide a direct, simple proof.

We first prove that if a function f belongs to Pk then Tf (y1, . . . , yk+1) = 0 for every y1, . . . , yk+1 ∈
{0, 1}n.
As f is a sum of monomials of total degree at most k it suffices to show that for every monomial
m =

∏
i∈I xi, where 1 ≤ |I| ≤ k, Tm(y1, . . . , yk+1) = 0 for every y1, . . . , yk+1 ∈ {0, 1}n. The number

of linear combinations
∑k+1

j=1 bjyj , where bj ∈ {0, 1}, for which m(
∑k+1

j=1 bjyj) = 1 is clearly the
number of solutions of a linear system of |I| equations in the k + 1 variables bj , and the trivial
combination bj = 0 for all j is not one of the solutions. Therefore, this number of solutions (which
is possibly zero) is divisible by 2k+1−|I|, showing that there is an even number of sets S satisfying
∅ 6= S ⊂ [k + 1] such that m(

∑
i∈S yi) = 1. This implies that Tm(y1, . . . , yk+1) = 0, as needed.

We next show that if f = f(x1, x2, . . . , xn) : {0, 1}n 7→ {0, 1} satisfies Equation (4) for every
y1, y2, . . . , yk+1 ∈ {0, 1}n, then f ∈ Pk. Every function from {0, 1}n to {0, 1} can be written
uniquely as a polynomial over GF (2):

f =
∑

I⊂[n]

aI

∏
i∈I

xi.

Our objective is to show that a∅ = 0 and that aI = 0 for all |I| > k. Taking yj = (0, 0, . . . , 0) for
every j we conclude, by (4), that a∅ = 0. Suppose, now, that there is a nonzero aI with |I| > k.
Take such an I of minimum cardinality, and assume, without loss of generality, that I = [s] with
s ≥ k + 1.
Let ei denote the i-th unit vector in {0, 1}n, and define y1 = e1, y2 = e2, . . . , yk = ek and
yk+1 = ek+1 + . . . + es. Then the monomial m = aI

∏
i∈I xi does not vanish on

∑k+1
i=1 yi and

3

does vanish on
∑

i∈S yi for every ∅ 6= S 6= [k + 1]. Thus Tm(y1, . . . , yk+1) 6= 0. On the other
hand, for any other monomial, say, m′ =

∏
i∈I′ xi with a nonzero coefficient in the representation

of f , Tm′(y1, . . . , yk+1) = 0. Indeed, if |I ′| ≤ k this holds by the first part of the proof. Other-
wise, by the minimality of I, m′(

∑
i∈S yi) = 0 for all S ⊂ [k + 1]. Altogether this implies that

Tf (y1, y2, . . . , yk+1) = 1, contradicting the assumption.
This completes the proof of Claim 1.

4 A One-Sided Tester for Low Degree Polynomials over {0, 1}n

In this section we present and analyze a one-sided tester for Pk. This tester generalizes the linearity
tester of Blum, Luby and Rubinfeld [BLR93].

Algorithm Test-Pk

1. Uniformly and independently select Θ(1
2kε

+k2k) groups of vectors. Each group contains k+1
uniformly selected random vectors y1, . . . , yk+1 ∈ {0, 1}n.

2. If for some group of vectors y1, . . . , yk+1 it holds that Tf (y1, . . . , yk+1) 6= 0, then reject,
otherwise, accept.

Theorem 1 The algorithm Test-Pk is a one-sided tester for Pk with query complexity Θ(1
ε +k22k).

From the test definition and from Claim 1 it is obvious that if f ∈ Pk, then the tester accepts. Thus,
the crux of the proof is to show that if f is ε-far from Pk, then the tester rejects with probability
at least 2/3. Our proof has a similar general structure to Sudan’s analysis [Sud95] of the linearity
test in [BLR93], but requires some additional ideas. In particular, if f is the function tested, we
can define a function g as follows. For any y ∈ {0, 1}n:

g(y) = 1 if Pry2,...,yk+1∈{0,1}n [T y
f (y2, . . . , yk+1) = 1] ≥ 1/2 and g(y) = 0 otherwise . (5)

Thus g is a kind of majority function. That is, for every vector y ∈ {0, 1}n, g(y) is chosen to satisfy
most of the equations T y

f (y2, . . . , yk+1) = g(y). We also define

η
def= Pry1,...,yk+1∈{0,1}n [Tf (y1, . . . , yk+1) 6= 0]
= Pry1,...,yk+1∈{0,1}n [T y1

f (y2, . . . , yk+1) 6= f(y1)] . (6)

Note that η is simply the probability that a single group of vectors y1, . . . , yk+1 selected by the
algorithm provides evidence that f /∈ Pk. We shall prove two claims. The first, and simpler claim
(in Lemma 2), is that if η is small, then g is close to f . The second and more involved claim
(in Lemma 5) is that if η is small, then g must belong to Pk. This would suffice for proving the
correctness of a slight variation on our algorithm that uses a larger sample size. In order to attain
the sample complexity claimed in Theorem 1, we shall need to prove one more claim that deals
with the case in which η is very small (see Lemma 6).

Lemma 2 For a fixed function f , let g and η be as defined in Equations (5) and (6), respectively.
Then, dist(f, g) ≤ 2η.

4

Proof: Recall that for every y ∈ {0, 1}n, Pry2,...,yk+1∈{0,1}n [T y
f (y2, . . . , yk+1) = g(y)] ≥ 1/2. Hence

η = Pry, y2,...,yk+1∈{0,1}n [T y
f (y2, . . . , yk+1) 6= f(y)]

=
1
2n

∑
y∈{0,1}n

Pry2,...,yk+1∈{0,1}n [T y
f (y2, . . . , yk+1) 6= f(y)]

≥ 1
2n

∑
y∈∆(f,g)

Pry2,...,yk+1∈{0,1}n [T y
f (y2, . . . , yk+1) = g(y)]

≥ 1
2n

· |∆(f, g)| · 1
2

Thus, dist(f, g) = |∆(f,g)|
2n ≤ 2η.

Recall that by the definition of g as a majority function, for every y, we have that for at least
one half of the k-tuples of vectors y2, . . . , yk+1, T y

f (y2, . . . , yk+1) = g(y). In the next lemma we
show that this equality actually holds for a vast majority of the k-tuples y2, . . . , yk+1 (assuming η
is sufficiently small).

Lemma 3 For every y ∈ {0, 1}n : Pry2,...,yk+1∈{0,1}n [g(y) = T y
f (y2, . . . , yk+1)] ≥ 1− 2kη.

In order to prove Lemma 3 we shall first establish the following claim.

Claim 4 For every y, z, w, y2, . . . , yk ∈ {0, 1}n,

Tf (y, y2, . . . , yk, w)+Tf (y, y2, . . . , yk, z) = Tf (y+w, y2, . . . , yk, y+w+z)+Tf (y+z, y2, . . . , yk, y+w+z)
(7)

Proof: Let Y = {y2, . . . , yk}, and consider any set I ⊆ {2, . . . , k}, which may be the empty set.
For a vector x ∈ {0, 1}n denote fY,I(x) def= f(

∑
i∈I yi + x).

For every set I ⊆ {2, . . . , k}, each element of type f(
∑

i∈I yi) appears twice in both sides of
Equation (7) and thus cancels out. Now for every set I ⊂ {2, . . . , k} (including the empty set), we
get in the left hand side of Equation (7):

fY,I(y) + fY,I(w) + fY,I(y + w) + fY,I(y) + fYI
(z) + fY,I(y + z) .

In the right hand side of Equation (7) we get:

fY,I(y + w) + fY,I(y + z + w) + fY,I(z) + fY,I(y + z) + fY,I(y + w + z) + fY,I(w) .

This implies equality over GF (2).
We now turn to prove Lemma 3.

Proof of Lemma 3: We fix y ∈ {0, 1}n and let γ
def= Pry2,...,yk+1∈{0,1}n [g(y) = T y

f (y2, . . . , yk+1)].
Recall that we are interested in proving that γ ≥ 1 − 2kη. To this end, we shall bound a slightly
different, but related probability. Let

δ
def= Pry2,...,yk+1,z2,...,zk+1∈{0,1}n [T y

f (y2, . . . , yk+1) = T y
f (z2, . . . , zk+1)] . (8)

5

Then, by the definitions of γ and δ,

δ = Pry2,...,yk+1,z2,...,zk+1∈{0,1}n [T y
f (y2, . . . , yk+1) = g(y) and T y

f (z2, . . . , zk+1) = g(y)]

+ Pry2,...,yk+1,z2,...,zk+1∈{0,1}n [T y
f (y2, . . . , yk+1) 6= g(y) and T y

f (z2, . . . , zk+1) 6= g(y)]

= γ2 + (1− γ)2. (9)

Since we are working over GF (2),

δ = Pry2,...,yk+1,z2,...,zk+1∈{0,1}n [Tf (y, y2, . . . , yk+1) + Tf (y, z2, . . . , zk+1) = 0] .

Now, for any choice of y2, . . . , yk+1 and z2, . . . , zk+1:

Tf (y, y2, . . . , yk+1) + Tf (y, z2, . . . , zk+1) =
Tf (y, y2, . . . , yk+1) + Tf (y, y2, . . . , yk, zk+1) +
Tf (y, y2, . . . , yk, zk+1) + Tf (y, y2, . . . , yk−1, zk, zk+1) +
Tf (y, y2, . . . , yk−1, zk, zk+1) + Tf (y, y2, . . . , yk−2, zk−1, zk, zk+1) +
.
.
. +
Tf (y, y2, z3, . . . , zk+1) + Tf (y, z2, . . . , zk+1).

Consider any pair Tf (y, y2, . . . , y`, z`+1, . . . , zk+1) + Tf (y, y2, . . . , y`−1, z`, . . . , zk+1) that appears in
the above sum. Note that Tf (y, y2, . . . , y`, z`+1, . . . , zk+1) and Tf (y, y2, . . . , y`−1, z`, . . . , zk+1) differ
only in a single parameter. Since Tf (·) is a symmetric function we can apply Claim 4 and obtain
that

Tf (y, y2, . . . , y`, z`+1, . . . , zk+1) + Tf (y, y2, . . . , y`−1, z`, . . . , zk+1)
= Tf (y + y`, y2, . . . , y`−1, y`+1, . . . , yk+1, y + y` + z`)

+ Tf (y + z`, y2, . . . , y`−1, y`+1, . . . , yk+1, y + y` + z`) (10)

Recall that y is fixed and y2, . . . , yk+1, z2, . . . , zk+1 ∈ {0, 1}n are uniformly selected, and so all
parameters on the right hand side in the above equation are uniformly distributed. Also re-
call that by the definition of η, for Tf (r1, . . . , rk+1), where ri are uniformly selected at random,
Prr1,...,rk+1∈{0,1}n [Tf (r1, . . . , rk+1) 6= 0] = η. Hence, by the union bound:

δ = Pry2,...,yk+1,z2,...,zk+1∈{0,1}n [Tf (y, y2, . . . , yk+1) + Tf (y, z2, . . . , zk+1) = 0] ≥ 1− 2kη. (11)

By combining Equations (9) and (11) we get that γ2 + (1− γ)2 ≥ 1− 2kη. Since γ ≥ 1/2 it follows
that γ = γ2 + γ(1− γ) ≥ γ2 + (1− γ)2 ≥ 1− 2kη.

Lemma 5 If η < 1
(4k+2)2k , then the function g belongs to Pk.

Proof: By Claim 1 it suffices to prove that if η < 1
(4k+2)2k , then Tg(y1, . . . , yk+1) = 0, for every

y1, . . . , yk+1 ∈ {0, 1}n. Let us fix the choice of y1, . . . , yk+1, and recall that as defined in Equa-
tion (2), Tg(y1, . . . , yk+1) =

∑
∅6=I⊆[k+1] g(

∑
i∈I yi). Suppose we uniformly select k · (k + 1) random

vectors zi,j ∈ {0, 1}n, 1 ≤ i ≤ k + 1, 1 ≤ j ≤ k. Then by Lemma 3, for every I, ∅ 6= I ⊆ [k + 1],
with probability at least 1− 2kη over the choice of the zi,j ’s,

g

(∑
i∈I

yi

)
= Tf

(∑
i∈I

yi,
∑
i∈I

zi,1,
∑
i∈I

zi,2, . . . ,
∑
i∈I

zi,k

)
+ f

(∑
i∈I

yi

)
. (12)

6

Let E1 be the event that Equation (12) holds for all ∅ 6= I ⊆ [k + 1]. By the union bound:

Pr[E1] ≥ 1− (2k+1 − 1) · 2kη (13)

Assume that E1 holds. Then

Tg(y1, . . . , yk+1) =
∑

∅6=I⊆[k+1]

[
Tf

(∑
i∈I

yi,
∑
i∈I

zi,1,
∑
i∈I

zi,2, . . . ,
∑
i∈I

zi,k

)
+ f

(∑
i∈I

yi

)]

=
∑

∅6=I⊆[k+1]

∑
∅6=J⊆[k]

f

∑
i∈I

∑
j∈J

zi,j

+ f

∑
i∈I

yi +
∑
i∈I

∑
j∈J

zi,j

=

∑
∅6=J⊆[k]

∑
∅6=I⊆[k+1]

f

∑
i∈I

∑
j∈J

zi,j

+

∑
∅6=J⊆[k]

∑
∅6=I⊆[k+1]

f

∑
i∈I

yi +
∑
i∈I

∑
j∈J

zi,j

=

∑
∅6=J⊆[k]

Tf

∑
j∈J

z1,j , . . . ,
∑
j∈J

zk+1,j

+

∑
∅6=J⊆[k]

Tf

y1 +
∑
j∈J

z1,j , . . . , yk+1 +
∑
j∈J

zk+1,j

 . (14)

Let E2 be the event that for every ∅ 6= J ⊆ [k], Tf

(∑
j∈J z1,j , . . . ,

∑
j∈J zk+1,j

)
= 0 and

Tf

(
y1 +

∑
j∈J z1,j , . . . , yk+1 +

∑
j∈J zk+1,j

)
= 0. By the definition of η:

Pr[E2] ≥ 1− 2(2k − 1)η (15)

Suppose that η < 1
(4k+2)2k . Then, by Equations (13) and (15), the probability that both E1 and E2

hold, is strictly positive. In other words, there exists a choice of the zi,j ’s for which all summands in
Equation (14) are 0. But this implies that Tg(y1, . . . , yk+1) = 0. We conclude that if η < 1

(4k+2)2k ,
then g belongs to Pk, and this completes the lemma’s proof.

By combining Lemmas 2 and 5 we obtain that if f is Ω(1/(k2k))-far from Pk, then η = Ω(1/(k2k)),
and so the algorithm rejects f with sufficiently high constant probability (since it selects Ω(k2k)
groups of vectors y1, . . . , yk+1). We next deal with the case in which η is small. By Lemma 2, in
this case the distance d = dist(f, g) between f and g is small, and we show that the test rejects
f with probability that is close to (2k+1 − 1)d. This follows from the fact that in this case, the
probability over the selection of y1, . . . , yk+1, that among the (2k+1 − 1) points

∑
∅6=I⊆[k+1] yi, the

functions f and g differ in precisely one point, is close to (2k+1 − 1)d. This is formally proved in
the following lemma.

Lemma 6 Suppose 0 < η < 1
(4k+2)2k . Let d = dist(f, g) denote the distance between f and g, and

let

p
def=

1− (2k+1 − 1)d
1 + (2k+1 − 1)d

· (2k+1 − 1)d.

7

Then, when y1, y2, . . . , yk+1 are chosen randomly, the probability that for exactly one point v among
the (2k+1 − 1) points

∑
i∈S yi, (∅ 6= S ⊆ [k + 1]), f(v) 6= g(v), is at least p.

By definition of η and the above lemma, η ≥ p (under the premise of the lemma). In particular,
since (by Lemma 2) d ≤ 2η ≤ 1

(2k+1)2k and k ≥ 1, η ≥ 1
3(2k+1 − 1)d, and, for fixed k, as d tends to

zero, η ≥ (2k+1 − 1)d−O(d2).
Proof: For each subset S, ∅ 6= S ⊆ [k + 1], let XS be the indicator random variable whose value
is 1 if and only if f(

∑
i∈S yi) 6= g(

∑
i∈S yi). Obviously, Pr[XS = 1] = d for every S. It is not

difficult to check that the random variables XS are pairwise independent, since for any two distinct
nonempty S1, S2, the sums

∑
i∈S1

yi and
∑

i∈S2
yi attain each pair of distinct values in {0, 1}n with

equal probability when the vectors yi are chosen randomly and independently. It follows that the
random variable X =

∑
S XS which counts the number of points v of the required form in which

f(v) 6= g(v) has expectation E[X] = (2k+1− 1)d and variance Var[X] = (2k+1− 1)d(1− d) ≤ E[X].
Our objective is to lower bound the probability that X = 1. We need the well known, simple fact
that for a random variable X that attains nonnegative, integer values,

Pr[X > 0] ≥ (E[X])2

E[X2]
.

Indeed, if X attains the value i with probability pi for i > 0, then, by Cauchy-Schwartz,

(E[X])2 = (
∑
i>0

ipi)2 = (
∑
i>0

i
√

pi
√

pi)2 ≤ (
∑
i>0

i2pi)(
∑
i>0

pi) = E[X2]Pr[X > 0].

In our case, this implies

Pr[X > 0] ≥ (E[X])2

E[X2]
≥ (E[X])2

E[X] + (E[X])2
=

E[X]
1 + E[X]

.

Therefore

E[X] ≥ Pr[X = 1] +
(

E[X]
1 + E[X]

− Pr[X = 1]
)
· 2 =

2E[X]
1 + E[X]

− Pr[X = 1],

implying that

Pr[X = 1] ≥ E[X]− (E[X])2

1 + E[X]
.

Substituting the value of E[X], the desired result follows.

We are now ready to wrap-up the proof of Theorem 1.
Proof of Theorem 1: As we have noted previously, if f is in Pk, then by Claim 1 the tester
accepts (with probability 1). We next show that if f is ε-far from Pk, then the tester rejects with
probability at least 2

3 .
Suppose that dist(f,Pk) > ε. Denote d = dist(f, g). If η < 1

(4k+2)2k then by Lemma 5 g ∈ Pk and,

by Lemma 6, η ≥ Ω(2kd) ≥ Ω(2kε). Hence, η ≥ min
(
Ω(2kε), 1

(4k+2)2k

)
. Clearly it is enough to

perform O(1
η) rounds of the algorithm in order to detect a violation with probability at least 2

3 .
This completes the proof of the theorem.

8

4.1 Self-Correcting and a Lower Bound

From Lemmas 2, 3, and 5 one can immediately conclude the following:

Corollary 7 Consider a function f : {0, 1}n → {0, 1} that is ε-close to a degree-k polynomial
g : {0, 1}n → {0, 1}, where ε < 2

(4k+2)2k . Then the function f can be self-corrected. That is, for any
given x ∈ {0, 1}n, it is possible to obtain the value g(x) with probability at least 1− εk by querying
f on 2k − 1 points in {0, 1}n.

The following is a lower bound on families of functions that correspond to linear codes.

Theorem 2 Let F be any family of functions f : {0, 1}n → {0, 1} that corresponds to a linear code
C. Let d denote the minimum distance of the code C and let d̄ denote the minimum distance of the
dual code of C.
Every testing algorithm for the family F must perform Ω(d̄) queries, and if the distance parameter
ε is at most d/2n+1, then Ω(1/ε) is also a lower bound for the necessary number of queries.

As noted in the introduction, the family Pk corresponds to the shortened Reed-Muller codeR(k, n)∗.
It is well known (see [MS77, Chap. 13]) that the distance of R(k, n)∗ is 2n−k and the distance of
the dual code (which is a punctured Reed-Muller code) is 2k+1 − 1. Hence we obtain the following
corollary.

Corollary 8 Every algorithm for testing Pk with distance parameter ε must perform
Ω
(
max(1

ε , 2
k+1)

)
queries.

Proof of Theorem 2: We start with showing that Ω(d̄) queries are necessary. A well known
fact from coding theory (see [MS77, Chap. 5]) states the following: for every linear code C whose
dual code has distance d̄, if we examine a sub-word having length d′, d′ < d̄, of a uniformly selected
codeword in C, then the resulting sub-word is uniformly distributed in {0, 1}d′ . Hence it is not
possible to distinguish between a random codeword in C and a random word in 2n (which with high
probability is far from any codeword) using less than d̄ queries.
We now turn to the case ε < d/2n+1 . To prove the lower bound here, we apply, as usual, the Yao
principle by defining two distributions, one of positive instances, and the other of negative ones,
and then by showing that in order to distinguish between those distributions any algorithm must
perform Ω(1/ε) queries. The positive distribution has all its mass at the zero vector 0̄ = (0, . . . , 0).
To define the negative distribution, partition the set of all coordinates into t = 1/ε nearly equal parts
I1, . . . , It and give weight 1/t to each of the characteristic vectors wi of Ii, i = 1, . . . , t. (Observe
that indeed 0̄ ∈ C due to linearity, and dist(wi, C) = ε due to the assumption on the minimum
distance of C). Finally, a random instance is generated by first choosing one of the distributions
with probability 1/2, and then generating a vector according to the chosen distribution. It is easy
to check (see, e.g., [AKNS99] for details) that in order to give a correct answer with probability at
least 2/3, the algorithm has to query Ω(1/ε) bits of the input.

5 Concluding remarks

We first note that in view of the above lower bound, our upper bound is almost tight.

9

It will be interesting to study analogous questions for other linear binary codes. Several recent
papers, including [BSHR03], [BSSVW03], deal with related questions. As shown above, a code is
not testable with a constant number of queries if its dual distance is not a constant, and it seems
plausible to conjecture that if the dual distance is a constant, and there is a doubly transitive
permutation group acting on the coordinates that maps the dual code to itself, then the code can
be testable with a constant number of queries. The automorphism group of punctured Reed-Muller
codes contains the general linear group GL(n, 2), and thus those codes supply an example with
these properties. Another interesting example is duals of BCH codes (this class also contains
linear functions as a particular case). Another possible extension of the results could be the
study of testability of low-degree multivariate polynomials over small fields GF (q). This situation
corresponds to generalized Reed-Muller codes [KLP68].

References

[AKNS99] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable
with a constant number of queries. In Proceedings of the Fortieth Annual Symposium
on Foundations of Computer Science, pages 645–655, 1999.

[AS97] S. Arora and S. Safra. Improved low-degree testing and its applications. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pages
485–495, 1997.

[BCH+95] M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing in
characteristic two. In Proceedings of the Thirty-Sixth Annual Symposium on Founda-
tions of Computer Science, pages 432–441, 1995.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1(1):3–40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing, pages 21–31, 1991.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically check-
able proofs and applications to approximation. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on the Theory of Computing, pages 294–304, 1993.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47:549–595, 1993.

[BS94] M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings of the
Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pages 184–193,
1994.

[BSHR03] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF properties are hard to test. In
Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Computing,
2003. To appear.

[BSSVW03] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Derandomizing low de-
gree tests via epsilon-biased spaces. In Proceedings of the Thirty-Fifth Annual ACM
Symposium on the Theory of Computing, 2003. To appear.

10

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique
is almost NP-complete. Journal of the Association for Computing Machinery, pages
268–292, 1996.

[FS95] K. Friedl and M. Sudan. Some improvements to total degree tests. In
Proceedings of the 3rd Annual Israel Symposium on Theory of Computing
and Systems, pages 190–198, 1995. Corrected version available online at
http://theory.lcs.mit.edu/˜madhu/papers/friedl.ps.

[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proceedings of
the Twenty-Third Annual ACM Symposium on Theory of Computing, pages 32–42,
1991.

[Hal67] M. Hall. Combinatorial Theory. John Wiley & Sons, 1967.

[KLP68] T. Kasami, S. Lin, and W.W. Peterson. New generalizations of the reed-muller codes,
part i: Primitive codes. IEEE Transactions on Information Theory, pages 189–199,
1968.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North
Holland, 1977.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[Sud95] M. Sudan. Private communications, 1995.

11

