
The maximum edit distance from hereditary graph properties

Noga Alon ∗ Uri Stav †

September 21, 2007

Abstract

For a graph property P, the edit distance of a graph G from P, denoted EP(G), is the
minimum number of edge modifications (additions or deletions) one needs to apply to G in
order to turn it into a graph satisfying P. What is the largest possible edit distance of a graph
on n vertices from P? Denote this distance by ed(n,P).

A graph property is hereditary if it is closed under removal of vertices. In [7], the authors
show that for any hereditary property, a random graph G(n, p(P)) essentially achieves the
maximal distance from P, proving: ed(n,P) = EP(G(n, p(P))) + o(n2) with high probability.
The proof implicitly asserts the existence of such p(P), but it does not supply a general tool for
determining its value or the edit distance.

In this paper, we determine the values of p(P) and ed(n,P) for some subfamilies of hered-
itary properties including sparse hereditary properties, complement invariant properties, (r, s)-
colorability and more. We provide methods for analyzing the maximum edit distance from the
graph properties of being induced H-free for some graphs H, and use it to show that in some
natural cases G(n, 1/2) is not the furthest graph. Throughout the paper, the various tools let us
deduce the asymptotic maximum edit distance from some well studied hereditary graph proper-
ties, such as being Perfect, Chordal, Interval, Permutation, Claw-Free, Cograph and more. We
also determine the edit distance of G(n, 1/2) from any hereditary property, and investigate the
behavior of EP(G(n, p)) as a function of p.

The proofs combine several tools in Extremal Graph Theory, including strengthened versions
of the Szemerédi Regularity Lemma, Ramsey Theory and properties of random graphs.
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1 Introduction

1.1 Definitions and motivation

A graph property is a set of graphs closed under isomorphism. A graph property is hereditary
if it is closed under removal of vertices (and not necessarily under removal of edges). Equivalently,
such properties are closed under taking induced subgraphs.

Given two graphs on n vertices, G1 and G2, the edit distance between G1 and G2 is the
minimum number of edge additions and/or deletions that are needed in order to turn G1 into a
graph isomorphic to G2. We denote this quantity by ∆(G1, G2).

For a given graph property P, let Pn denote the set of (labelled) graphs on n vertices which
satisfy P. We want to investigate how far a graph G is from satisfying P, and thus define the edit
distance of a graph G from P by EP(G) = min{∆(G, G′) | G′ ∈ P |V (G)|}. In words, EP(G) is the
minimum edit distance of G to a graph satisfying P.

In this paper we address the following extremal question: Given a hereditary graph property
P, what is the graph on n vertices with the largest edit distance from P? That is, the graph to
which one has to apply the largest number of edge modifications in order to obtain a member of
P. Denote the maximal possible distance by ed(n, P).

Although this question seems natural on its own, it is mainly motivated by problems in theoret-
ical computer science. In the edge-modification problem of the property P, one wants to determine
EP(G) given an input graph G. Clearly, the computational complexity of such an optimization
problem strongly depends on the graph property at hand. Narrowing our discussion to hereditary
properties is one of the mildest and yet natural restrictions. These properties have attracted the
attention of researchers in various areas of graph theory and in theoretical and applied computer
science (cf., for example, [24], [27], [31] and their references). Some of them are the following well
studied graph properties:

• Perfect Graphs: A graph G is perfect if for every induced subgraph G′ of G, the chromatic
number of G′ equals the size of the largest clique in G′.

• Chordal Graphs: A graph is chordal if it contains no induced cycle of length at least 4.

• Interval Graphs: A graph G on n vertices is an interval graph if there are closed intervals
on the real line I1, . . . , In such that (i, j) ∈ E(G) if and only if Ii ∩ Ij 6= ∅.

• Permutation Graphs: A graph G on n vertices is a permutation graph if there is a per-
mutation σ of {1, . . . , n} such that (i, j) ∈ E(G) if and only if (i, j) is an inversion under
σ.

• Cographs: This class is defined recursively as follows. A graph consisting of a single vertex
is a cograph, the complement of every cograph is also a cograph and so is the disjoint union of
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any two cographs. Equivalently, as shown in [18], this is exactly the class of induced P4-free
graphs, where Pi denotes the path on i vertices.

In fact, almost all interesting graph properties are hereditary. The recent results of [5] on the
approximability of edge-modification problems for monotone graph properties indicate that the
extremal aspects of edge-modification problems for hereditary properties should be helpful in ob-
taining tools for establishing the hardness of such problems. We note that another motivation for
this question comes from the investigation of Hamming distance between matrices, as described in
[9] and [10].

1.2 Related work

In [7], the authors showed that for any hereditary property P, the maximal distance from P is
essentially achieved by a random graph G(n, p) with an edge density that depends on P.

Theorem 1.1. ([7]) Let P be an arbitrary hereditary graph property. Then there exists p = p(P) ∈
[0, 1], such that almost surely (that is, with probability that tends to 1 as n tends to infinity),

ed(n,P) = EP(G(n, p)) + o(n2) . (1)

The proof of Theorem 1.1 implicitly asserts the existence of such p, but it does not supply a
general tool for determining its value or the edit distance. It is thus a natural question to seek for
the value of p(P) for hereditary properties P, and to find the edit distance of G(n, p(P)) from P.

For example, consider the family of monotone graph properties. A graph property M is mono-
tone if it is closed under removal of vertices and edges. Clearly, every monotone graph property
is also hereditary, and when modifying a graph G in the most economical way in order to obtain
a graph in M one only deletes edges from G. Hence, trivially, for any monotone graph property
M, the furthest graph from satisfying M is the complete graph. In our notations, this means that
p(M) = 1. Moreover, Turán’s Theorem [34] and its various extensions (most notably by Erdős
and Stone [23], and by Erdős and Simonovits [21]) show that for any monotone graph property M:
ed(n,M) = (1

r − o(1))
(
n
2

)
where r = min{χ(F )− 1 | F /∈M}.

Any hereditary property can be defined by its (possibly infinite) set of minimal forbidden
induced subgraphs. This is a family of graphs F∗

P such that a graph G belongs to P if and only if
it does not contain an induced copy of a member of F∗

P . If F∗
P consists of a single graph F∗

P = {H},
then P contains all graphs excluding an induced subgraph isomorphic to H. We call these graphs
induced H-free, and denote such a property by P∗

H . Practicing the above definitions, we note
that any result involving a graph H immediately implies an analogous result for its complement
(denoted H), since EP∗

H
(G) = EP∗

H
(G) and hence ed(n,P∗H) = ed(n,P∗

H
).

Axenovich, Kézdy and Martin addressed the extremal question of finding ed(n,P∗H). They
recently showed in [9] that ed(n,P∗H) is bounded by a function of H as follows. Define χB(H) to
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be the least integer k + 1 such that for all (r, s) satisfying r + s = k + 1 the vertices of H can be
partitioned into r+s sets, r of them spanning empty graphs and s spanning complete graphs.1 For
such H, they show that

(
1
2k

− o(1))
(

n

2

)
< ed(n,P∗H) ≤ 1

k

(
n

2

)
. (2)

The gap left in this general bound is settled in [9] for some families of graphs. In particular, for
self-complementary graphs (i.e. H = H) it is shown there that ed(n,P∗H) = ( 1

2k − o(1))
(
n
2

)
. We

note that the lower bound of (2) is attained by the random graph G(n, 1/2). Therefore, whenever
the lower bound of (2) is asymptotically tight, it follows that, in our notation, p = 1

2 satisfies (1)
for P∗H .

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we detail all the new results proved
in this paper. In Section 3 we review the definitions and state the Regularity Lemmas which will
be used in the proofs, as well as some auxiliary definitions and tools. Sections 4, 5, 6, 7, 8 and
9 contain the proofs of all the results. Section 10 consists of some concluding remarks and open
problems.

2 The new results

We determine values of p(P) and establish bounds on the maximum edit distance for the following
subfamilies of hereditary properties. In this section we only state the results, while the proofs
appear in the following sections.

2.1 Sparse hereditary properties

We write |Pn| for the number of labelled graphs on n vertices that satisfy P. Scheinerman and Zito
([32]) showed that |Pn| belongs to one of few possible classes of functions. Several other papers
sharpen these results, focusing on sparse hereditary properties (Balogh, Bollobás and Weinreich
[11], [12]), dense hereditary properties (Bollobás and Thomason [14], [16] and Alekseev [1]) and
properties of the type P∗H (Prömel and Steger [28] ,[29], [30]).

Let us focus on the edit distance of “sparse” hereditary properties, for which |Pn| = 2o(n2).
Consider Pn as a set of points in the space of all n-vertex graphs. Intuitively, it seems that if
there are “few” graphs in Pn, then there should be some graph on n vertices that is “far” from all
the points representing members of Pn. Confirming this intuition, we show the following result.
Denote by e(G) = |E(G)| the number of edges of the graph G.

1This parameter was first defined by Prömel and Steger in [29], where it was denoted by τ(H)
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Theorem 2.1. Let P be a hereditary property such that |Pn| = 2o(n2). Then precisely one of the
following holds:

1. Any G ∈ P satisfies e(G) = o(n2), ed(n,P) = (1− o(1))
(
n
2

)
and p(P) = 1.

2. Any G ∈ P satisfies e(G) = o(n2), ed(n,P) = (1− o(1))
(
n
2

)
and p(P) = 0.

3. For every n there are graphs G1, G2 ∈ Pn such that e(G1) = Ω(n2) and e(G2) = Ω(n2),
ed(n,P) = (1

2 − o(1))
(
n
2

)
and p(P) = 1

2 .

There are many natural sparse hereditary properties for which an asymptotic result is immedi-
ately attained by applying the above theorem. For example, the following well known result refers
to the natural graph properties of being Interval, Permutation or Cograph.

Lemma 2.2. Let P be one of the three hereditary properties of Interval graphs, Permutation graphs
or Cographs. Then |Pn| = 2Θ(n log n).

Corollary 2.3. Let P be one of the three hereditary properties of Interval graphs, Permutation
graphs or Cographs. Then p(P) = 1

2 and ed(n,P) = 1
2

(
n
2

)
−O(n1.5

√
log n ).

This result can be extended to a much wider family of graph properties, defined by polynomials
as follows. Let Q = {Q1, . . . , Qt} be real polynomials in 2d variables, and let b : {−1, 0, 1}t → {0, 1}
be a binary mapping from all possible sign patterns of the polynomials. We say that an ordered
pair of points ci, cj ∈ Rd satisfies (Q, b) if

b(sign(Q1(ci, cj)), . . . , sign(Qt(ci, cj))) = 1 .

In words, (ci, cj) satisfies (Q, b) if the sign pattern of the substitution of the coordinates of ci and
cj in the polynomials has value 1 in b. We define the following class of graphs.

Definition 2.4. For a pair (Q, b) as above, the labelled set of n > 0 points c1, . . . , cn ∈ Rd defines
a graph G on n vertices where (i, j) is an edge in G if and only if (ci, cj) satisfies (Q, b), for
1 ≤ i < j ≤ n. We denote by PQ,b the collection of all such graphs obtained by any n-tuple of
points in Rd, n > 0.

For any Q and b, PQ,b is a hereditary graph property. Note that if for any pair of points
ci, cj ∈ Rd the value of b(sign(Q1(ci, cj)), . . . , sign(Qt(ci, cj))) is constant, then PQ,b contains
either only complete graphs or only empty graphs. In order to avoid this trivial case, if there is a
pair of points (ci, cj) that satisfies (Q, b) and a pair of points (c‘

i, c
‘
j) that does not satisfy (Q, b)

then we say that (Q, b) is non-trivial.

Lemma 2.5. Let PQ,b be a graph property as defined above, where (Q, b) is non-trivial. Then
p(PQ,b) = 1

2 and ed(n,PQ,b) = 1
2

(
n
2

)
−O(n1.5

√
log n ).

We note that many natural families of intersection graphs of various geometric bodies may be
represented by polynomials as above. See Example 4.5 in Section 4.
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2.2 Complement invariant properties

A graph property P is complement invariant if it is closed under taking the complement of a graph,
i.e. G ∈ P if and only if G ∈ P. In Section 5 we sketch the proof of a property of the expectation
of EP(G(n, p)) as a function of p, based on the methods of [7]. It also yields the following result
on complement invariant properties.

Theorem 2.6. For any hereditary complement invariant graph property P, p = 1
2 satisfies condition

(1) of Theorem 1.1.

For example, it follows that G(n, 1/2) is essentially the furthest graph from being perfect.

2.3 (r, s)-colorability

Due to the broad range of hereditary properties, when studying them one seeks a small family of
hereditary properties that approximate every other one in some sense. The simplest such family is
defined by (r, s)-colorability of graphs. These properties were introduced in several contexts, and
seem to capture important algorithmic and extremal characteristics of hereditary properties. See
e.g. Prömel and Steger ([29], [30]), Bollobás and Thomason ([16], [15]) and Alekseev [1]. We define
them as follows.

Definition 2.7. For any pair of integers (r, s), such that r+s > 0, we say that a graph G = (V,E) is
(r,s)-colorable if there is a partition of V into r +s (possibly empty) subsets I1, . . . , Ir, C1, . . . , Cs

such that each Ik induces an independent set in G, and each Ck induces a clique in G.

For example, (r, 0)-colorable graphs are r-colorable graphs. We denote by Pr,s the graph property
comprising all the (r, s)-colorable graphs. Clearly, for any pair (r, s), the property Pr,s is hereditary.

Suppose that a graph H is not (r, s)-colorable. In this case, Pr,s ⊆ P∗H and hence ed(n,Pr,s) ≥
ed(n,P∗H). An upper bound for ed(n,Pr,s) therefore provides an upper bound for ed(n,P∗H). In
[16], Bollobás and Thomason showed that for any hereditary property P, there is some Pr,s ⊆ P
such that the size of P is asymptotically close to the size of Pr,s in the logarithmic sense, that
is log |Pn| = (1 − o(1)) log |Pn

r,s|. It is therefore not surprising that in some cases one can show
for a graph G, that EP(G) cannot be much smaller than EPr,s(G). This motivates the following
extremal question: Given a pair of integers (r, s), r + s > 0, what is the maximal edit distance of
a graph G on n vertices from being (r, s)-colorable? We prove:

Theorem 2.8. For any pair of integers (r, s), such that r + s > 0,

ed(n,Pr,s) = (
1

(
√

r +
√

s)2
− o(1))

(
n

2

)
.

The proof of Theorem 2.8 also provides the value of p(Pr,s) for any (r, s). In Section 6 we describe
another broader family of properties used for approximating hereditary properties, and a method
for analyzing its edit distance.
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2.4 The edit distance of G(n, 1/2) from hereditary properties

The importance of random graphs with respect to the edit distance problem, which is derived from
Theorem 1.1, motivates another natural question: is there a robust method for determining the
typical edit distance of G(n, p) from an arbitrary hereditary property P? As it turns out, this
question is much easier when p = 1

2 .

Definition 2.9. Let P be a hereditary property. Define the binary chromatic number of P as
the least integer k +1 such that for any (r, s) satisfying r + s = k +1 there is a graph not in P that
is (r, s)-colorable, and denote it by χB(P). Equivalently,

χB(P) = 1 + max{r + s : Pr,s ⊆ P} .

This definition extends the definition of the binary chromatic number for graphs from [9] and [29]
since χB(P∗H) = χB(H).

Theorem 2.10. Let P be an arbitrary hereditary property, then with high probability

EP(G(n, 1/2)) =
( 1

2(χB(P)− 1)
± o(1)

)(n

2

)
.

Example 2.11. Let P be the class of perfect graphs. In this case, e.g., P2,0 ⊂ P. On the other
hand, C5 is not perfect and whenever r + s ≥ 3, C5 is (r, s)-colorable and therefore Pr,s * P. Thus,
χB(P) = 3 and since being perfect is complement invariant, by Theorem 2.6 and Theorem 2.10:
ed(n,P) = EP(G(n, 1

2)) = (1
4 − o(1))

(
n
2

)
.

2.5 Induced H-freeness

Having proved general results on the edit distance from hereditary properties, we demonstrate that
in some natural case a random graph with a density which differs from 1

2 is the furthest from
satisfying P, even when P = P∗H . The well studied (see e.g. [19]) family of (induced) claw-free
graphs is a good example for that. A claw K1,3 consists of a vertex connected to three other vertices
(no two of which are connected). For short we omit the ’induced’, and as usual call such graphs
claw-free2.

We first make the following observation on (r, s)-colorability of claw-free graphs. If a graph G

is edgeless, i.e. (1, 0)-colorable, then certainly it is claw free. On the other hand, if G is (0, 2)-
colorable, i.e. its vertices can be partitioned into two sets, each spanning a clique, then it is again
claw-free. It is not difficult to verify that (2, 0), (0, 3), and (1, 1) colorable graphs may contain an
induced copy of K1,3, and therefore are not guaranteed to be claw-free. Hence, the binary chromatic
number of P∗K1,3

is 3. The general bounds of [9] show that (1
4 − o(1))

(
n
2

)
≤ ed(n,P∗K1,3

) ≤ 1
2

(
n
2

)
.

The lower bound is attained by G(n, 1
2) (this also follows from Theorem 2.10). Nevertheless, this

turns out to be far from optimal as we show that the extremal probability is in fact 1
3 .

2A graph without any weak copies of a claw has maximum degree at most two, and hence consists of a disjoint

collection of cycles and paths.
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Theorem 2.12. Let K1,3 denote a claw. Then p(P∗K1,3
) = 1

3 and ed(n,P∗K1,3
) = (1

3 − o(1))
(
n
2

)
.

Similar results are also obtained for all the graphs H on at most four vertices.

A natural question which arises from the asymptotic results is whether it is possible to determine
the exact value of ed(n,P) for a given P = P∗H . If H consists of 2 vertices, then it is either an edge
or an independent set of size two. In these cases, P∗H consists of either empty or complete graphs
and thus the edit distance is

(
n
2

)
. Let us briefly review the graphs H on three vertices. The triangle

K3 corresponds to the classical result of Turán [34] (or its special case due to Mantel [26]). The
other options are either a path P3 consisting of three vertices or its complement. In [9] it is shown
that ed(n,P∗P3

) = bn
2 c(d

n
2 e − 1), and hence when |V (H)| ≤ 3 all values of ed(n,P∗H) are known.

We thus discuss some graphs on four vertices. For the cycle of length four, denoted C4, we
show:

Theorem 2.13. If n is even, then ed(n,P∗C4
) =

(
n/2
2

)
, and an extremal graph in this case is Kn

2
, n
2
.

The proof also yields:

Corollary 2.14. Let P denote the class of all chordal graphs. Then ed(2n,P) =
(
n
2

)
.

We also prove an improved upper bound for the edit distance from being a cograph, which
shows, together with Corollary 2.3:

Theorem 2.15. For the property P∗P4
: 1

2

(
n
2

)
−O(n1.5

√
log n) < ed(n,P∗P4

) < 1
2

(
n
2

)
− Ω(n1.5).

3 Regularity lemma background and preliminaries

In this section we discuss the basic notions of regularity, some of the basic applications of regular
partitions and state the regularity lemmas that we use in the proofs of Theorems 2.10 and 2.12.
See [25] for a comprehensive survey on the regularity lemma.

For a set of vertices A ⊆ V , we denote by E(A) the set of edges of the graph induced by A in
G. We also denote by e(A) the size of E(A). Similarly, for every two nonempty disjoint vertex sets
A and B of a graph G, E(A,B) stands for the set of edges of G between A and B, and e(A,B) is
the number of edges . The edge density of the pair is defined as d(A,B) = e(A,B)/|A||B|. When
several graphs on the same set of vertices are involved, we write dG(A,B) to specify the graph to
which we refer.

Definition 3.1. (γ-regular pair) A pair (A,B) is γ-regular, if for any two subsets A′ ⊆ A and
B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′)− d(A,B)| ≤ γ holds.

The following simple fact about regular pairs is very useful. It roughly states that in a regular
pair there cannot be too many vertices with low degrees.
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Fact 3.2. Let (A,B) be a γ-regular pair with density η, and let Y ⊆ B be of size at least γ|B|.
Then all but at most γ|A| of the vertices of A have at least (η − γ)|Y | neighbors in Y .

Proof: Assume that for some X, such that |X| ≥ γ|A|, for all v ∈ X the inequality does not hold.
This means that there are less than (η − γ)|X||Y | edges connecting vertices of X and Y . Hence,
the pair (X, Y ) contradicts the γ-regularity of the pair (A,B).

�

A very useful lemma that we use in this paper is Lemma 3.3 below. This is a version of the
classical key lemma, which helps us find induced copies of some fixed graph F , whenever a family
of vertex sets are pairwise regular “enough” and their densities correspond to the edge-set of F .
Several versions of this lemma were previously proved in papers using the regularity lemma (e.g.
[4], [16], [25]).

Lemma 3.3. For every real 0 < η < 1 and integer f ≥ 1 there exists γ = γ3.3(η, f) with the
following property. Suppose that F is a graph on f vertices v1, . . . , vf , and that U1, . . . , Uf is an
f-tuple of disjoint vertex sets of a graph G such that for every 1 ≤ i < j ≤ f the pair (Ui, Uj) is
γ-regular. Moreover, suppose that whenever (vi, vj) ∈ E(F ) we have d(Ui, Uj) ≥ η, and whenever
(vi, vj) 6∈ E(F ) we have d(Ui, Uj) ≤ 1 − η. Then, some f-tuple u1 ∈ U1, . . . , uf ∈ Uf spans an
induced copy of F , where each ui plays the role of vi.

Note, that in terms of regularity, Lemma 3.3 requires all the pairs (Ui, Uj) to be γ-regular.
However, and this will be very important later in the paper, the requirements in terms of density
are not very restrictive. In particular, if η ≤ d(Ui, Uj) ≤ 1− η then we don’t care whether (i, j) is
an edge of F or not.

A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi|
and |Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular each Vi has one of two
possible sizes).

Our main tool in the proofs is Lemma 3.4 below. A stronger version of this lemma is proved in
[3]. This lemma can be considered as a strengthened variant of the standard regularity lemma of
Szemerédi [33]. The advantage of this version is obtaining a regular partition in which all pairs are
regular, where - roughly speaking - we compromise on the densities of the edges sets and consider
only an induced subgraph of our graph which represents well the whole graph.

Lemma 3.4. ([3]) For every integer m and every γ > 0 there is T = T3.4(m, γ) which satisfies the
following. Any graph G on n ≥ T vertices, has an equipartition A = {Vi | 1 ≤ i ≤ k} of V (G) and
an induced subgraph U of G, with an equipartition B = {Ui | 1 ≤ i ≤ k} of the vertices of U , that
satisfy:

1. m ≤ k ≤ T .

2. Ui ⊆ Vi for all i ≥ 1, and |Ui| ≥ n/T .
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3. In the equipartition B, all pairs are γ-regular.

4. All but at most γ
(
k
2

)
of the pairs 1 ≤ i < j ≤ k are such that |d(Vi, Vj)− d(Ui, Uj)| < γ.

The following is a version of the regularity lemma which applies to edge colored graphs. It
asserts that there is an equipartition which is regular with respect to all the colors simultaneously.
We denote by dc(X, Y ) the density of the edges of color c between X and Y .

Lemma 3.5. ([25], Multi-Color Regularity Lemma) For any γ > 0 and integers m, r, there
exists an integer T = T3.5(m, r, γ) with the following property: Any graph G on n ≥ T vertices, with
edges colored by r colors, has an equipartition A = {Vi | 1 ≤ i ≤ k} of V (G) with m ≤ k ≤ T , for
which all pairs (Vi, Vj) but at most γ

(
k
2

)
of them, satisfy the following regularity condition: for every

X ⊆ Vi and Y ⊆ Vj of size |X|, |Y | ≥ γ|Vi|, and every 1 ≤ c ≤ r, we have |dc(X, Y )−dc(Vi, Vj)| < γ.

3.1 Regularity graphs

The following definitions suggest very useful tools for modelling regular partitions of graphs, with
respect to induced subgraphs.

Definition 3.6. Suppose G is a graph, with vertex subsets A = {U1, . . . , Uk} and let η > 0. The
cluster graph for the partition A with respect to η is a complete, labelled, edge colored graph K with
V (K) = {1, . . . , k}. The color of the edge (i, j) is white if d(Ui, Uj) < η, black if d(Ui, Uj) > 1− η

and otherwise (i, j) is colored grey.

For a regularity graph K, we denote by EB(K), EW (K) and EG(K) the sets of black, white and
grey edges of K respectively. This model relates to induced subgraphs by the following definition.

Definition 3.7. For an arbitrary simple graph F , we say that a cluster graph K contains a colored

copy of F if there is an injective mapping ϕ : V (F ) 7→ V (K), which satisfies the following for
every u, v ∈ V (F ):

1. If (u, v) ∈ E(F ) then (ϕ(u), ϕ(v)) is colored black or grey.

2. If (u, v) 6∈ E(F ) then (ϕ(u), ϕ(v)) is colored white or grey.

The above definitions should be considered with Lemma 3.3 in mind, which leads to the following
corollary.

Corollary 3.8. Let η > 0 and f be some integer. Suppose G is a graph with vertex subsets
A = {U1, . . . , Uk} such that for any 1 ≤ i < j ≤ k, Ui and Uj is a γ = γ3.3(η, f)-regular pair. Let
K be a cluster graph of A with respect to η. If K contains a colored copy of a graph F with at most
f vertices, then G contains an induced subgraph isomorphic to F .

10



3.2 Random graphs

The following lemma states that in a random graph, with high probability, the edge density between
and within any two large enough sets of vertices is close to the density of the graph. This lemma
will be useful in various places along this paper. The proof is a standard application of Chernoff’s
inequality.

Lemma 3.9. Assume 0 ≤ p ≤ 1, and f : N → N satisfies f(n) = ω(n1.5). Then for a sufficiently
large n, with high probability, G = G(n, p) satisfies

1. For any set A ⊆ V (G): | e(A)− p
(|A|

2

)
| < f(n) .

2. For any pair of disjoint sets A,B ⊆ V (G): | e(A,B)− p|A||B| | < f(n).

Proof. Let A be a fixed set of vertices in G = G(n, p). By Chernoff’s inequality (see e.g. pp. 266
in [6]):

Pr

[
| e(A)− p

(
|A|
2

)
| > f(n)

]
< 2 exp

{
−2(f(n))2(|A|

2

) }
< 2 exp

{
−(f(n))2

n2

}
= e−ω(n) .

Similarly, for any disjoint sets A,B

Pr [ | e(A,B)− p|A||B| | > f(n)] < 2 exp
{
−(f(n))2

|A||B|

}
< 2 exp

{
−(f(n))2

n2

}
= e−ω(n) .

The probability that all such sets A and pairs of sets (A,B) satisfy the conditions of the lemma is
therefore at least 1− 4ne−ω(n), which tends to 1 as n grows. �

4 Sparse hereditary properties

The following lemma is useful when the property P is sparse:

Lemma 4.1. ed(n,P) ≥ 1
2

(
n
2

)
− n

√
log |Pn|.

Proof. We denote by ∆`(G1, G2) the edit distance between two labelled graphs on the same set of
vertices. By Chernoff’s inequality, for every fixed graph G0:

p = Pr
[
∆`(G(n, 1/2), G0) <

1
2

(
n

2

)
− n

√
log |Pn|

]
< e

−(n
√

log |Pn|)2

2(n
2) < e− log |Pn| =

1
|Pn|

,

and hence, by the union bound for all the graphs in Pn,

Pr
[
EP(G = G(n, 1/2)) ≥ 1

2

(
n

2

)
− n

√
log |Pn|

]
≥ 1− |Pn|p > 0

which shows that indeed such a graph exists and completes the proof. �
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Proof of Theorem 2.1:

We first make the following observations on (infinite) hereditary properties. Denote the empty
graph on n vertices by En. By Ramsey Theorem, at least one of Kn and En belongs to Pn for
infinitely many n. Since P is hereditary, it in fact belongs to Pn for every n. We may assume,
without loss of generality, that En ∈ Pn. Otherwise, we proceed with P ′ = {G : G ∈ P} since
clearly p(P) = 1− p(P ′) and ed(n,P) = ed(n,P ′).

Hence En ∈ Pn for every n. Further assume the following: for any ε > 0 there is nε such that

∀n ≥ nε, G ∈ Pn : e(G) ≤ ε

(
n

2

)
.

In this case, since all the graphs in P have very few edges ed(n,P) ≥ EP(Kn) = (1 − o(1))
(
n
2

)
.

Hence indeed such P satisfies p(P) = 1 which proves case 1 in Theorem 2.1, and the analogous case
2 for P ′.

Otherwise, there is some ε > 0 and an infinite sequence of graphs G1, G2, . . . ∈ P such that
e(Gi) > ε

(|V (Gi)|
2

)
. Again, since P is hereditary, by a successive removal of vertices with the lowest

degree from Gi, we get

∀n ≥ 2 ∃G ∈ Pn : e(G) > ε

(
n

2

)
. (3)

In order to complete the proof of Theorem 2.1, we show that in this case the edit distance is
upper bounded by 1

2

(
n
2

)
(Lemma 4.3 below). We will use the following simple fact:

Fact 4.2. Suppose G1, G2 are graphs on n vertices, with edge densities d1, d2 respectively. Then
∆(G1, G2) ≤ (d1(1− d2) + (1− d1)d2)

(
n
2

)
.

Proof. Consider a random labelling of the vertices of G1 and G2, and modify the edges and non-
edges of G1 that differ from G2. For any pair of vertices (u, v), the probability that the edge (u, v)
has to be modified is (d1(1 − d2) + (1 − d1)d2). Therefore, the expected number of modifications
is (d1(1 − d2) + (1 − d1)d2)

(
n
2

)
. Hence, some labelling of G1 witnesses that indeed ∆(G1, G2) ≤

(d1(1− d2) + (1− d1)d2)
(
n
2

)
. �

Lemma 4.3. Let P be a hereditary property such that the empty graph on n vertices belongs to P
for every n, and there is some ε > 0 satisfying (3). Then ed(n,P) ≤ 1

2

(
n
2

)
.

Proof. For any n and ε > 0, there is some m such that any graph G′ on m vertices with e(G′) > ε
(
m
2

)
contains a complete bipartite graph Kdn

2
e,bn

2
cas a weak subgraph (see, e.g., Chapter 6 in [13]). Let

G′ ∈ P be the graph on m vertices with edge density at least ε which is guaranteed by (3). Since P
is hereditary, the subgraph of G′ which is induced by the n vertices of that Kdn

2
e,bn

2
c also belongs

to P. Call it G1, where the edge density d1 of G1 is at least 1
2 . Hence, G1 and En both belong to

Pn. For any graph G on n vertices with edge density d, it now follows from Fact 4.2 that

EP(G) ≤ min{∆(G, G1),∆(G, En)} ≤ min{d(1− d1) + (1− d)d1, d}
(

n

2

)
.

12



However, since d1 ≥ 1
2 , the function f(d) = d(1 − d1) + (1 − d)d1 = (1 − 2d1)d + d1 is monotone

non-increasing. Hence, if d ≥ 1
2 then f(d) ≤ f(1

2) = 1
2 , which shows that

min
0≤d≤1

{d(1− d1) + (1− d)d1, d} ≤
1
2

,

thus completing the proof.

�

Lemma 4.3, together with Lemma 4.1, completes the proof of Theorem 2.1.

�

Proof of Lemma 2.2:

We make a “wasteful” counting which lets us deduce the asymptotic, making no attempt to optimize
the constants. We start with an upper bound, which we derive separately for each of the three
properties:

Cographs: Let us observe the following set of strings. We write a permutation of the numbers
{1, . . . , n} in some order, between every two numbers we write one of two possible signs (namely
either U or C) and put n pairs of parenthesis arbitrarily. We interpret those expressions as a
recursive construction of a labelled cograph on n vertices, where U stands for taking the disjoint
union, and C represents taking the complement of the disjoint union. Thus every such string
represents at most one cograph, and some of the strings are ”illegal”. On the other hand, every
labelled cograph is represented by at least one of those strings. There are less than n!2n−132n such
strings, which accumulates to 2O(n log n).

Interval graphs: Consider the set of intervals which correspond to the graph vertices. The
edge set of the graph is uniquely determined by a sorting of the multiset {1, 1, 2, 2, . . . , n, n} which
represents a sorting of the endpoints of the (labelled) intervals. There are (2n)!

2n = 2O(n log n) ways
to sort this multiset, which thus bounds the number of labelled interval graphs.

Permutation graphs: Clearly each permutation graph on n vertices is represented by a single
permutation on n elements, and hence again there are 2O(n log n) such graphs.

We now establish a lower bound for the three properties. Note that every graph consisting of
a disjoint union of complete graphs is a cograph, an interval graph and a permutation graph. The
number of such labelled graphs is exactly the n’th Bell number Bn, which satisfies ln(Bn)

n ln n = 1−o(1).
Hence, we also have that |Pn| ≥ 2Ω(n log n) for each of those classes.

�

Corollary 2.3 immediately follows from Lemma 4.1 and Lemma 2.2.

Proof of Lemma 2.5:

13



To prove the upper bound, we first show that for any n > 0 there are graphs G1, G2 ∈ Pn
Q,b with

edge densities d(G1) > 1
2 and d(G2) < 1

2 . Since (Q, b) is non-trivial, there is a pair of points c1, c2

that satisfies (Q, b). We consider a graph G1 ∈ PQ,b which is defined by the n-tuple of points in
which dn

2 e appearances of c1 are followed by bn
2 c appearances of c2. Thus, G1 has at least dn

2 eb
n
2 c

edges, and d(G1) > 1
2 . On the other hand, by choosing a pair of points that does not satisfy (Q, b)

we may construct a graph G2 similarly. By Fact 4.2, for any graph G on n vertices, if d(G) ≥ 1
2 then

∆(G, G1) ≤ 1
2

(
n
2

)
, and if d(G) ≤ 1

2 then ∆(G, G2) ≤ 1
2

(
n
2

)
. Hence, any graph G on n vertices has

min(∆(G, G1),∆(G, G2)) ≤ 1
2

(
n
2

)
and therefore ed(n,PQ,b) ≤ 1

2

(
n
2

)
.

To prove the lower bound, we use the fact that the number of labelled graphs in PQ,b is at most
the number of possible sign patterns for the polynomials Q. Formally, a sign pattern of a set of m

polynomials Q1, . . . , Qm in ` variables, is an m-tuple s ∈ {−1, 0, 1}m such that for some c ∈ R` :
si = sign(Qi(c)) for every 1 ≤ i ≤ m. The sign patterns of the polynomials is the set of all such
vectors s. The following claim was proved by Warren [35] for vectors s ∈ {−1, 1}m. In [2] it is
observed that this can be extended to vectors s ∈ {−1, 0, 1}m as well.

Claim 4.4. (Warren [35], see also [2]) Let Q1, . . . , Qm be m real polynomials in ` real variables,
and suppose the total degree of the Qis is D =

∑m
i=1 deg(Qi). If m ≥ ` then the number of all

possible sign patterns for the Qis is at most (8eD/`)`.

Thus, since in our case m =
(
n
2

)
, ` = dn and D = O(n2) < cn2 (for some constant c = c(Q)),

we get that the number of possible sign patterns is at most(
8ecn2

dn

)dn

= 2O(n log n) .

and therefore |Pn
Q,b| ≤ 2O(n log n). The lemma now follows from Lemma 4.1. �

Example 4.5. Many hereditary families of intersection graphs may be defined by polynomials. For
instance, define the class of intersection graphs of balls in Rd as follows. We represent a ball in Rd

by the (d+1)-tuple consisting of the coordinates of its center followed by its radius. Define a single
polynomial in 2(d + 1) variables

Q1(x1, . . . , xd, rx, y1, . . . , yd, ry) =
d∑

i=1

(xi − yi)2 − (rx + ry)2 ,

and b gives value 1 if the polynomial has negative value, and 0 otherwise. Thus, indeed, two
(d + 1)-tuples satisfy (Q, b) if and only if the balls they represent intersect.

Note that this observation (for d = 1), together with Lemma 2.5, gives an alternative proof for
the case of Interval graphs in Lemma 2.2 and Corollary 2.3.
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5 Complement invariant properties

As in [7], we define for any graph property P, n > 0 and p ∈ [0, 1],

en,p(P) =
E[EP(G(n, p))](

n
2

) .

In words, this is the expected fraction of the edges that need to be modified in G(n, p) in order to
obtain a graph in P. When the context is clear, we write en,p for en,p(P). It is shown in [7] that for
any hereditary graph property, the sequence {en,p}∞n=1 is monotone and thus has a limit denoted
ep.

The proof of Theorem 1.1 in [7] shows that for any hereditary property, the edit distance of a
random graph G = G(n, p) from P is obtained roughly by modifying G into a graph conforming to
some colored cluster graph F . That is, a graph that has a regular partition whose cluster graph
is F . Thus, for a given p, ep = limn→∞ en,p is the minimum of the distance from an infinite set of
colored cluster graphs3. Yet, up to o(1), the expected normalized (i.e. divided by

(
n
2

)
) edit distance

of G(n, p) from conforming to each such cluster graph F is a linear function in p. This function
only depends on the number of white and black edges and vertices in F . Hence, in fact, ep is the
minimum of an infinite set of linear functions. Any such function is concave.

Thus, omitting the details which are identical to those of the proof of Theorem 1.1, we conclude
the following by the above discussion.

Theorem 5.1. Let P be an arbitrary hereditary property, and let ep be as defined above. Then ep

is a concave function of p in the segment [0, 1].

Corollary 5.2. For any hereditary property, condition 1 of Theorem 1.1 is satisfied by every p

along a single subsegment of [0, 1] (which may be degenerated to a single point).

Example 5.3. Consider the property of being either an empty or a complete graph. G = G(n, p) is
turned into a graph satisfying this property by either removing all the edges from G, or adding all
the non-edges to G. Thus, ep is the minimum of the linear functions p and 1−p, and the maximum
of ep is attained when p = 1

2 .

Example 5.4. Let P be the hereditary property of being a complete bipartite graph. In this case,
one could turn a graph G(n, p) into a complete bipartite graph by splitting its vertices into two
sets of sizes λn and (1 − λ)n where 0 ≤ λ ≤ 1

2 , and remove all the edges inside each of those
sets while adding every non-edge between them. The expected normalized number of changes is
p(λ2 + (1− λ)2) + 2(1− p)λ(1− λ) = p(4λ2 − 4λ + 1) + 2(λ− λ2), and taking the minimum over λ

for every p we get that
3We use slightly different regularity graphs in [7]. There, on top of the edges, the vertices are also colored white

or black. This represents either empty or complete graphs that are spanned by the partition clusters.
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ep =

p p ≤ 1
2

1
2 p ≥ 1

2

.

Hence the maximum of ep is attained along the segment [12 , 1].

Proof of Theorem 2.6:

Clearly, if p is an extremal density for P, then so is 1− p, since for any graph G: EP(G) = EP(G).
Thus, by Corollary 5.2 the maximum is also attained at p = 1

2 . �

6 (r, s)-colorability and Pr,s

We prove the lower and the upper bounds of Theorem 2.8 separately.

Lemma 6.1. ed(n,Pr,s) ≤ 1
(
√

r+
√

s)2

(
n
2

)
.

Proof. We prove that for any graph G = (V,E) on n vertices, EPr,s(G) ≤ 1
(
√

r+
√

s)2

(
n
2

)
.

Let d denote the density of G, that is d = e(G)/
(
n
2

)
. Consider a random partition of the vertices

of G into r + s subsets I1, I2, . . . , Ir, C1, C2, . . . , Cs as follows. Each vertex v ∈ V chooses its set
independently, with the following distribution:

Pr[v ∈ Ik] =
1− d

r(1− d) + sd
k = 1, . . . , r ,

Pr[v ∈ Cj ] =
d

r(1− d) + sd
j = 1, . . . , s .

(4)

In what follows we calculate the expected number of changes one should apply to G in order
to make it (r, s)-colorable by turning every Ik into an independent set, and every Cj into a clique.
For any pair of vertices (u, v) in G, the edge between them needs to be modified if either

• for some 1 ≤ k ≤ r, u and v belong to Ik and (u, v) ∈ E(G), or

• for some 1 ≤ j ≤ s, u and v belong to Cj and (u, v) /∈ E(G)

Hence the expected number of modifications is

E[#changes] =

(
r

(
(1− d)

r(1− d) + sd

)2

d + s

(
d

r(1− d) + sd

)2

(1− d)

)(
n

2

)
=

r(1− d)2d + sd2(1− d)
(r(1− d) + sd)2

(
n

2

)
=

d(1− d)
r(1− d) + sd

(
n

2

)
.
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Let f(d) = d(1−d)
r(1−d)+sd

(
n
2

)
. By differentiating f , we obtain the extremum value of d:

dr,s =
√

r√
r +

√
s

.

This is the “worst” density for the parameters (r, s): a random partition of a graph with density
dr,s is expected to require the largest number of edge modifications (for the specific distribution of
|Ik|, |Cj | we chose). For a graph G with density dr,s the expected number of edge modifications is

E[#changes] ≤ f(dr,s)

=
dr,s(1− dr,s)

r(1− dr,s) + sdr,s

(
n

2

)

=

 √
r
√

s
(
√

r+
√

s)2

r
√

s√
r+
√

s
+ s

√
r√

r+
√

s

(n

2

)

=
1

(
√

r +
√

s)2

(
n

2

)
.

Hence, we showed that every graph on n vertices can be (r, s)-colored such that the number
of edges and non-edges violating the coloring is at most 1

(
√

r+
√

s)2

(
n
2

)
, which indeed proves that

ed(n,Pr,s) ≤ 1
(
√

r+
√

s)2

(
n
2

)
.

�

Lemma 6.2. ed(n,Pr,s) ≥ ( 1
(
√

r+
√

s)2
− o(1))

(
n
2

)
.

Proof. Define dr,s as in the proof of Lemma 6.1. We show that with high probability G = G(n, dr,s)
has edit distance ( 1

(
√

r+
√

s)2
− o(1))

(
n
2

)
from Pr,s. By applying Lemma 3.9 to G, with f(n) = n1.6,

with high probability, any vertex set A ⊆ V (G) satisfies | e(A)− p
(|A|

2

)
| < n1.6.

Let Ĝ ∈ Pr,s be the closest graph to G. Consider the (r, s)-coloring of Ĝ witnessing its mem-
bership in Pr,s. Denote the sizes of the vertex classes in that coloring by i1, . . . , ir, c1, . . . , cs, where

r∑
k=1

ik +
s∑

k=1

ck = n (5)

It now follows that

EPr,s(G) = ∆(G, Ĝ) = dr,s

r∑
k=1

(
ik
2

)
+ (1− dr,s)

s∑
k=1

(
ck

2

)
+ O(n1.6) (6)

By convexity, all the quantities ik are equal to each other, and so are all the quantities ck. Therefore,
the right hand side of (6), subject to (5), becomes a quadratic polynomial in one variable x = ik.
Optimizing it, we conclude that the expression (6) is minimized under the constraint (5) when the
sizes of the color classes are distributed as in (4). Hence it also follows that with high probability
G is at least ( 1

(
√

r+
√

s)2
−O( 1

n0.4 ))
(
n
2

)
far from Pr,s.

�

17



Remark 6.3. Note that the proof of Lemma 6.2 also shows that p1.1(Pr,s) = dr,s .

Remark 6.4. A result similar to Lemma 6.1 is implicitly proved in [9], where it is used for proving
the upper bound of (2) on the edit distance from P∗H for appropriate graphs H.

Remark 6.5. As pointed out by Bollobás and Thomason ( [15], [17]), for some parameters of graph
properties the approximation achieved by (r, s)-colorability is not strong enough. In particular, for
some hereditary properties, the probability Pr[G(n, p) ∈ P] cannot be approximated by Pr[G(n, p) ∈
Pr,s] for any Pr,s (when p 6= 1

2). In [17] they describe a larger family of properties called basic

properties, each of them defined by a colored graph as follows.

Let T be a complete colored labelled graph where V (T ) = [t]. Each vertex is colored either white
or black, and each edge is colored white, grey or black. The property PT consists of the graphs
G such that V (G) can be partitioned into t sets, V1, . . . , Vt, where each such set corresponds to a
vertex of T . This partition witnesses membership of G in PT if

• For every 1 ≤ i ≤ t, if the color of vertex i in T is black (white), then Vi spans a complete
(empty) graph in G.

• For any 1 ≤ i < j ≤ t, if the color of the edge (i, j) is black (white) then (Vi, Vj) span a
complete (empty) bipartite graph in G. If the color of (i, j) is grey, then there is no restriction
on E(Vi, Vj).

It is possible to show that for such properties, and any value of 0 ≤ p ≤ 1, the edit distance
EPT

(G(n, p)) can be derived from T . In this case, the sizes of the vertex sets in the partition of
V (G) are chosen as to minimize a quadratic form, which depends on the (symmetric) colors matrix
of T .

7 The edit distance of G(n, 1/2)

In this section we prove Theorem 2.10. We will use the classical theorem of Erdős and Stone [23].
Denote by Kt(`) the complete t-partite graph with ` vertices in each part.

Theorem 7.1. ([23]) Let t ≥ 2, ` > 0 and ε > 0. There is n7.1(t, `, ε), such that any graph G on
n > n7.1(t, `, ε) vertices that contains at least (1 − 1

t−1 + ε)
(
n
2

)
edges, contains a (not necessarily

induced) copy of Kt(`) as a subgraph.

Proof of Theorem 2.10:

Let P be a hereditary property, and t = χB(P) as previously defined. For a graph G =
G(n, 1/2), we assume that the assertions of Lemma 3.9 hold for f(n) = n1.6.

An upper bound is obtained as follows: By the definition of χB(P), there are some r and s such
that r+s = t−1 and Pr,s ⊆ P. We split the vertices of G into t−1 equal sized sets arbitrarily, and
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turn r of those sets into independent sets and the remaining s into cliques. We thus obtain a graph
in P by changing 1

2(t−1)

(
n
2

)
+ O(n1.6) edges in G. Hence, w.h.p. EP(G) ≤ ( 1

2(χB(P)−1) + o(1))
(
n
2

)
.

For the lower bound, we first make the following definition:

h = max
r+s=t

min{|V (H)| : H ∈ (Pr,s \ P)} .

Thus, for any pair (r, s) such that r + s ≥ t, there is some graph H on at most h vertices that
witnesses the fact that Pr,s * P.

We first sketch the proof of the lower bound, and then complete the missing details. Let ε be
an arbitrarily small positive constant. We consider a regular partition of Ĝ, the closest graph to
G in P. We obtain an induced subgraph U of Ĝ and an equipartition B of U ’s vertices into k

clusters through Lemma 3.4. Let F be a cluster graph for B. We will prove that F contains at
least ( 1

t−1 −
ε
4)
(
k
2

)
white or black edges. Each such edge in F was achieved by applying roughly

1
2(n

k )2 edge changes to G, which derives the lower bound, as B is similar to the equipartition of the
whole graph.

Thus, we assume towards a contradiction that F contains at least (1− 1
t−1 + ε

4)
(
k
2

)
grey edges.

We aim to show that in this case F contains a colored copy of a forbidden graph H which will
then lead to the contradiction. Focusing only on the grey edges in F , Theorem 7.1 implies that
F contains a copy of a complete t-partite graph K, with 4h vertices in each part, in which all the
edges between vertices in different parts are grey. For the moment, consider the grey edges inside
K’s parts as if they were white. By applying the symmetric Ramsey Theorem, each one of the
t parts of K contains a clique on h vertices, consisting of either white or black edges in F . This
implies that for some r and s such that r + s = t, F contains an induced t-partite subgraph, where
each part consists of h vertices, every edge between vertices in different parts is grey, and r of the
parts induce a white clique while the other s induce a black clique. Therefore, by the definition of
h and t, there is a colored copy of a graph H ∈ (Pr,s \ P) in F , which yields an induced copy of
H in Ĝ by Corollary 3.8. This contradicts the assumption that Ĝ ∈ P. Note that for obtaining a
colored copy of H, it is indeed possible to consider the grey edges inside the parts as if they were
white.

We now complete the missing details, which enable the above discussion. Given ε, we set η = ε
4 .

In order to make the above possible, we need the cluster graph F to be of size at least n7.1(t, 4h, ε
4).

We thus set m = n7.1(t, 4h, ε
4) and γ = min{ ε

4 , γ3.3(η, h)}. We assume n > T3.4(m, γ) and apply
Lemma 3.4 to Ĝ with m and γ. Thus we obtain an equipartition A = {Vi | 1 ≤ i ≤ k} of V (Ĝ) and
an induced subgraph U of Ĝ, with an equipartition B = {Ui | 1 ≤ i ≤ k}. We construct a cluster
graph F for the equipartition B with respect to η, and make the following observations.

1. By Lemma 3.4 all but at most ε
4

(
k
2

)
pairs 1 ≤ i < j ≤ k satisfy |dĜ(Vi, Vj)− dĜ(Ui, Uj)| < ε

4 .

2. If (i, j) is either a black or a white edge in F , then either dĜ(Ui, Uj) > 1−η or dĜ(Ui, Uj) < η

respectively.
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3. By Lemma 3.9, for a sufficiently large n, |dG(Vi, Vj)− 1
2 | <

ε
4 .

For any pair 1 ≤ i < j ≤ k satisfying condition (1), if (i, j) is not a grey edge of F , then there
were at least (1

2 −
3ε
4 )n2

k2 modifications in E(Vi, Vj). Hence, if there are at least ( 1
t−1 −

ε
4)
(
k
2

)
black

or white edges in F , then at least ( 1
t−1 −

ε
2)
(
k
2

)
of them satisfy (1) above. For a sufficiently large n,

and since t ≥ 2:

EP(G) = ∆(G, Ĝ) ≥
( 1

t− 1
− ε

2

)(k

2

)(1
2
− 3ε

4

)n2

k2
>
( 1

2(t− 1)
− ε
)(n

2

)
.

Otherwise, there are at least (1− 1
t−1 + ε

4)
(
k
2

)
grey edges in F , which yields a contradiction by

the above discussion.

�

Remark 7.2. The proof resembles proofs of [29] and [16], which also apply some versions of
Erdős-Stone Theorem and Ramsey Theorem. It is used there to show some results on the speed of
hereditary properties. The treatment here is somewhat simpler, because of the application of the
stronger Lemma 3.4 instead of using the standard regularity lemma.

8 Exact asymptotic for P∗
H for small graphs

8.1 The edit distance from being claw free

We begin the proof of Theorem 2.12 by showing an upper bound for any graph.

Lemma 8.1. For any graph G on n vertices, EP∗
K1,3

(G) ≤ 1
3

(
n
2

)
.

Proof. Recall that if a graph is either (1, 0)-colorable or (0, 2)-colorable then it is claw free. Let
G be a graph on n vertices with edge density d = |E(G)|/

(
n
2

)
. If d ≤ 1

3 , we remove all the edges
of G and thus turn it into a claw free graph, changing at most 1

3

(
n
2

)
edges this way. Otherwise,

we randomly split its vertices into two equal size sets. We add all the missing edges inside each
set, and hence again turn it into a claw free (0, 2)-colorable graph. For each 1 ≤ i < j ≤ n, the
indicator of adding the edge (i, j) to the graph has value 1 with probability less than 1

2(1− d) ≤ 1
3 .

Hence, the expected number of edges added is at most 1
3

(
n
2

)
, which completes the proof.

�

We now turn to the more challenging part of the proof of Theorem 2.12, in which we prove that
G(n, 1

3) is far from being claw free:

Lemma 8.2. With high probability, EP∗
K1,3

(G = G(n, 1
3)) ≥ (1

3 − o(1))
(
n
2

)
.
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Proof. We first describe an overview of the proof. Let G = G(n, 1
3), and Ĝ ∈ P∗K1,3

be the closest
claw free graph to G. By applying the strengthened regularity lemma, Lemma 3.4, to Ĝ we obtain
an induced subgraph and an equipartition {U1, . . . , Uk}. This partition defines a cluster graph
F on k vertices. Our choice of parameters will let us deduce by Corollary 3.8 that F does not
contain a colored copy of K1,3. We then make some observations on the structure of F . The main
results follow some assertions on cycles of length four which consist of grey edges in F . These basic
observations are followed by an application of the multi-colored regularity lemma to the cluster
graph F , to obtain even stronger results on F . These results, which are the core of the proof of
the theorem, are then translated to several constraints on the number of edges of each color in
F . Roughly, we will show that 2|EB(F )|+ |EW (F )| ≈

(
k
2

)
. In words, this last equations actually

shows that for each grey edge in F , one must ”pay” the price of a black edge. Counting the edge
modifications that result from each black and white edge in F will show that w.h.p. the number
of changes applied to G in order to obtain Ĝ is at least (1

3 − o(1))
(
n
2

)
.

We now turn to the detailed proof. We shall prove that for any ε > 0, for a large enough
n (depending on ε), with high probability, ∆(G, Ĝ) ≥ (1

3 − ε)
(
n
2

)
. Define η = ε

5 , and γ =
min{ ε

5 , γ3.3(η, 4)}. Also let m = max{T3.5(25
ε , 3, ε2

50) · 10
ε , 20

ε }. We assume n > T3.4(m, γ), and
apply Lemma 3.4 to the graph Ĝ with the parameters γ and m as defined above. We thus obtain
a regular partition A = {Vi | 1 ≤ i ≤ k} of V (Ĝ) and an induced subgraph U of Ĝ, with an
equipartition B = {Ui | 1 ≤ i ≤ k}. We construct a cluster graph F for B with respect to η. Note
that since Ĝ does not contain any induced copy of K1,3, then by Corollary 3.8, F does not contain
a colored copy of K1,3.

In the first stage of the proof we make some observations on the cycles of length four (C4)
consisting of grey edges in F . In what follows, it will be convenient to denote the vertices
of K1,3 by V (K1,3) = {h1, h2, h3, h4} where h1 is connected to all the others, i.e. E(K1,3) =
{(h1, h2), (h1, h3), (h1, h4)}. For a C4 which consists of the edges {(w, x), (x, y), (y, z), (z, w)}, we
refer to the pairs (w, y) and (x, z) as the middle edges of that C4.

Proposition 8.3. Assume {x, y, z, w} form a cycle of length four in F , such that all the edges
(x, y), (y, z), (z, w), (w, x) are grey. Then either the middle edges (x, z), (y, w) are both white or
they are both black.

Proof. Assume, towards a contradiction and w.l.o.g., that (x, z) is white and (y, w) is black. Then,
by setting ϕ(h1) = y, ϕ(h2) = x, ϕ(h3) = z, ϕ(h4) = w, we obtain a colored copy of K1,3 in the
graph spanned by {x, y, z, w} in F . If at least one of the middle edges is grey, then no matter what
the color of the other middle edge is, a proper contradicting colored copy can be found, since a
grey edge can play the role of both black and white edges. We are thus left with the possibilities
that either both middle edges are black or they are both white.

�

Proposition 8.4. Assume {w, x, y, z} form a cycle of length four in F , such that all the edges
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(w, x), (x, y), (y, z), (z, w) are grey, and both middle edges (x, z), (w, y) are white. Then for any
other vertex t ∈ V (F ) \ {w, x, y, z}, none of its edges to {w, x, y, z} is grey.

Proof. Assume, towards a contradiction, that (t, x) is grey in F . If both edges (t, y) and (t, w)
are either white or grey, then ϕ(h1) = x, ϕ(h2) = t, ϕ(h3) = y, ϕ(h4) = w defines a colored copy
of K1,3 in F . Hence, at least one of these two edges must be black. W.l.o.g., assume (t, w) is
black. We now consider two possibilities for the color of the edge (t, z). If this edge is either
white or grey, we set ϕ(h1) = w,ϕ(h2) = t, ϕ(h3) = x, ϕ(h4) = z. If (t, z) is black, we set
ϕ(h1) = t, ϕ(h2) = x, ϕ(h3) = z, ϕ(h4) = w. In both cases we obtain a colored copy of K1,3 in F ,
which completes the proof.

�

Claim 8.5. 2|EB(F )|+ |EW (F )| > (1
2 −

ε
5)k2 .

Proof. Let F1 be an induced subgraph of F , that consists of all the grey C4’s in F , for which both
middle edges are white. We denote the graph spanned by the remaining vertices in F by F2. Also
denote by k1 = |V (F1)| the number of vertices in F1, and by k2 = |V (F2)|, hence k = k1 + k2.
By Proposition 8.3, in any grey C4 in F2 both middle edges are black. Moreover, by Proposition
8.4, the grey edges of F1 form a vertex disjoint collection of C4s, and none of the edges connecting
vertices from F1 and F2 is grey. Therefore, in F there are exactly |V (F1)| grey edges that touch
some vertex in V (F1).

We first take care of the case where F2 is not large enough for applying the regularity lemma,
that is k2 < T3.5(25

ε , 3, ε2

50). In this case, by our choice of m for Lemma 3.4, and since k ≥ m ≥
T3.5(25

ε , 3, ε2

50) · 10
ε , we get that k2 < ε

10k and hence |EG(F )| < k1 + kk2 < ε
5k2 which implies the

claim.

Otherwise, we focus on the graph F2. Intuitively, in F2, any grey C4 forces the existence of some
black edges. Nevertheless, before we can formulate the tradeoff between the number of edges of
each color, we need to make one stronger observation on the structure of F2. This will be achieved
by applying the regularity lemma on F2. Since F2 is a colored graph, it is necessary to use the
multi-color version of the regularity lemma in order to prove the following proposition.

Proposition 8.6. By recoloring at most ε
20k2

2 of the grey and white edges of F2 in black, it is
possible to obtain a graph F ′

2 in which the following condition is satisfied: if (x, y) and (x, z) are
grey edges in F ′

2, then (y, z) is black in F ′
2.

Proof. We apply Lemma 3.5 to the graph F2, with γ′ = ε2

50 , r = 3, m′ = 25
ε , and obtain an

equipartition C = {Xi | 1 ≤ i ≤ l} of V (F2), with m′ ≤ l ≤ T3.5(m′, 3, γ′) clusters. Let η′ = ε
50 .

We now recolor some edges of F2 as follows. Suppose x ∈ Xi and x′ ∈ Xj :

1. If i = j, we recolor (x, x′) black.
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2. If (Xi, Xj) is not γ′-regular with respect to some color, we recolor (x, x′) black.

3. If dgrey(Xi, Xj) < η′, and (x, x′) is grey, we recolor (x, x′) black.

4. If dwhite(Xi, Xj) < η′, and (x, x′) is white, we recolor (x, x′) black.

Denote the graph we obtain after recoloring all these edges by F ′
2. Indeed we have recolored at

most

l

(
k2/l

2

)
+ γ

(
l

2

)(k2

l

)2
+ 2η′

(
l

2

)(k2

l

)2
≤ k2

2

2l
+ γ′

k2
2

2
+ η′k2

2 ≤
ε

20
k2

2

edges in F2.

Assume there is a grey C4 in F ′
2, with one of its middle edges either white or grey. By Proposition

8.3 and since black edges in F2 remain black in F ′
2, this implies that there is some grey C4 in F2,

in which both middle edges are white. However this contradicts our construction of F2. Therefore,
to complete the proof of the proposition, we will show that if (x1, x2) and (x1, x3) are grey edges
in F ′

2, and the edge (x2, x3) is either white or grey, then there must also exist a grey C4 in F ′
2,

with one of its middle edges either white or grey. This is done by a standard usage of regularity,
as follows.

Since there are no grey edges inside any Xi in F ′
2, it must be that {x1, x2, x3} come from three

different clusters, say x1 ∈ X1, x2 ∈ X2, x3 ∈ X3. Moreover, after the recoloring, dgrey(X1, X2) ≥ η′

and dgrey(X1, X3) ≥ η′.

Assume (x2, x3) is grey, and hence dgrey(X2, X3) ≥ η′. We now consider only the grey edges in
F ′

2. By Fact 3.2, there are at least (1 − 2γ′)|X2| > 0 vertices in X2 which are connected (by grey
edges) to at least (η′ − γ′) vertices both in X1 and in X3. Pick such a vertex a2 ∈ X2. Denote by
A1 ⊆ X1 the set of grey neighbors of a2 in X1, and by A3 ⊆ X3 the set of grey neighbors of a2 in
X3. Since |A1|, |A3| ≥ (η′−γ′)|Xi| > γ′|Xi|, by the definition of regularity, dgrey(A1, A3) ≥ (η′−γ′).
Therefore there must be some vertex a3 ∈ A3 with at least two neighbors in A1. Call those vertices
a1 and a′1. It now follows that {a1, a2, a

′
1, a3} spans a grey C4 in F ′

2, and (a2, a3) - one of its middle
edges - is grey.

The case where (x2, x3) is white is settled similarly. This time, we only consider the grey edges
in E(X1, X2), and E(X1, X3) and the white edges in E(X2, X3), and obtain a grey C4 with a white
middle edge. This completes the proof of Proposition 8.6.

�

Having finished all the necessary preparations, we are now ready to count the edges of each
color in F . We first calculate it for F ′

2. Let M be a maximal matching in the grey edges of F ′
2,

consisting of t edges (t ≤ k2
2 ). Denote the set of endpoints of the edges in M by VM , and by VM

the rest of the vertices of F ′
2. We make the following observations on the edges in F ′

2:

1. By the maximality of M , if x, y ∈ VM , then (x, y) is either white or black.
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2. Assume (x, y) ∈ M , and z ∈ VM . Then by Proposition 8.6, either both edges (x, z), (y, z) are
not grey, or at least one of them is black.

3. Assume (x, y), (u, v) ∈ M . Note that if, e.g., (x, u) is grey, then by Proposition 8.6 both
(x, v) and (u, y) must be black. Hence there are two options for the remaining four edges
connecting {x, y, u, v}: either none of them is grey, or at least two of them are black.

Except for the edges of M , each edge of F ′
2 is relevant to exactly one of the above observations. It

therefore follows that

2|EB(F ′
2)|+ |EW (F ′

2)| ≥
(
|VM |

2

)
+ 2t|VM |+ 4

(
t

2

)
=

(
k2 − 2t

2

)
+ 2t(k2 − 2t) + 4

(
t

2

)
=

1
2
(k2

2 + 4t2 − 4tk2 − k2 + 2t) + 2tk2 − 4t2 + 2t2 − 2t

=
1
2
(k2

2 − k2)− t

≥
(

k2

2

)
− 1

2
k2 .

Since F ′
2 is obtained by recoloring at most ε

20k2
2 edges in F2 black, when going back to F2, we

have

2|EB(F2)|+ |EW (F2)| ≥ 2|EB(F ′
2)|+ |EW (F ′

2)| −
ε

10
k2

2 ≥
(

k2

2

)
− 1

2
k2 −

ε

10
k2

2 .

Recall that there are at most k1 grey edges touching vertices of F1. Hence, besides the edges
within F2, there are at least

(
k1

2

)
− k1 + k1k2 black and white edges in F . This gives the following

bound for F (recall that k ≥ m ≥ 20
ε ):

2|EB(F )|+ |EW (F )| ≥
(

k2

2

)
− 1

2
k2 −

ε

10
k2

2 +
(

k1

2

)
− k1 + k1k2

=
(

k

2

)
− 1

2
k2 − k1 −

ε

10
k2

2

≥
(1

2
− ε

5

)
k2 .

This completes the proof of Claim 8.5. �

We have thus finished the discussion on the cluster graph F , and are ready to show the lower
bound for the distance between G and Ĝ. We use the following observations.

1. By Lemma 3.4, all but at most γ
(
k
2

)
≤ ε

5

(
k
2

)
pairs 1 ≤ i < j ≤ k satisfy |dĜ(Vi, Vj) −

dĜ(Ui, Uj)| < ε
5 .
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2. If (i, j) is either a black or a white edge in F , then either dĜ(Ui, Uj) > 1−η or dĜ(Ui, Uj) < η

respectively.

3. By Lemma 3.9, with p = 1
3 and f(n) = n1.6, with high probability, |dG(Vi, Vj)− 1

3 | <
ε
5

Hence, for all but at most ε
5

(
k
2

)
black edges (i, j) in F , there were at least ((1−η)− 1

3−
ε
5−

ε
5)n2

k2 =
(2
3 −

3ε
5 )n2

k2 modifications in E(Vi, Vj). Similarly, for all but at most ε
5

(
k
2

)
white edges in F , there

were at least (1
3 −

3ε
5 )n2

k2 modifications in E(Vi, Vj). Combining this with Claim 8.5, we get

∆(G, Ĝ) ≥
(
|EB(F )| − ε

5

(
k

2

))(2
3
− 3ε

5

)n2

k2
+
(
|EW (F )| − ε

5

(
k

2

))(1
3
− 3ε

5

)n2

k2

≥ n2

k2

[
|EB(F )|

(
2
3
− 3ε

5

)
+
((1

2
− ε

5

)
k2 − 2|EB(F )|

)(
1
3
− 3ε

5

)
− ε

5

(
k

2

)]
≥ n2

k2

(
3ε

5
|EB(F )|+

(1
2
− ε

5

)(1
3
− 3ε

5

)
k2 − εk2

10

)
>

n2

k2

((1
6
− ε

2

)
k2

)
≥
(1

3
− ε
)(n

2

)
.

�

8.2 Other graphs on four vertices

By our earlier observations, we already have tight asymptotic results on ed(n,P∗H) for H = K4, P4,
claw and their complements. The case H = C4 is discussed in Section 9. In order to analyze
ed(n,P∗H) for all graphs H on at most four vertices, we are left with two additional graphs: the
first is obtained by removing one edge from a clique of size four, denote this graph by K4 − e, and
the other is a triangle with a fourth vertex which is connected to exactly one vertex of the triangle,
denoted K3 + e. Assuming the reader is familiar with the proof of Theorem 2.12, we only sketch
the proofs of the following theorems, and emphasize the differences.

Theorem 8.7. Let H = K4 − e. Then p(P∗H) = 2
3 and ed(n,P∗H) = (1

3 − o(1))
(
n
2

)
.

Proof. (sketch) Any graph that is either (2, 0)-colorable or (0, 1)-colorable is in P∗H . Therefore,
by either turning a graph G into a clique (if the density of G is at least 2/3) or otherwise turning
it into a bipartite graph we get that for any graph G on n vertices, EP∗

H
(G) ≤ 1

3

(
n
2

)
.

On the other hand, we show that with high probability EP∗
H

(G(n, 2
3)) ≥ (1

3−o(1))
(
n
2

)
. Following

the method of Lemma 8.2, we obtain a regular partition of Ĝ ∈ P∗H and construct an appropriate
edge-colored cluster graph F on k vertices. In this case, for any C4 consisting of grey edges in
F , the middle edges must both be white in order to avoid a colored copy of H. Note that this
observation is stronger than the one we made in Lemma 8.2, and allows us to skip the splitting
of F into two separate graphs. Applying the multi-color regularity lemma to F , we get that
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after recoloring o(k2) edges in F , whenever (x, y) and (x, z) are grey then (y, z) must be white
(similar to Proposition 8.6). This is translated to a constraint on the number of edges which gives
|EB(F )|+ 2|EW (F )| ≥ (1− o(1))

(
k
2

)
. Random graph calculations then complete the proof of the

theorem.

�

Theorem 8.8. Let H = K3 + e. Then p(P∗H) = 2
3 and ed(n,P∗H) = (1

3 − o(1))
(
n
2

)
.

Proof. (sketch) Following the proof of Theorem 8.7 one should note that the restrictions on (r, s)-
colorability and on the illegal colored subgraphs of F holds also for H. Hence the same proof
applies also for this case.

�

9 Improved asymptotic results

9.1 The case H = C4

In this section we prove Theorem 2.13. We first prove the lower bound as follows.

Lemma 9.1. EP∗
C4

(Kn,n) ≥
(
n
2

)
, and in particular ed(2n,P∗C4

) ≥
(
n
2

)
.

Proof. Starting with K = Kn,n on the classes of vertices A and B, let H be an induced C4-free
graph obtained from K by a minimum number of changes (additions and deletions of edges). Let
G be the graph consisting of all edges of H that belong to K as well, and let k be the size of a
maximum matching M in G. Suppose the matching M consists of the edges a1b1, a2b2, . . . , akbk,
(ai ∈ A, bi ∈ B), and let the other vertices of A and B be ak+1, ak+2, . . . an and bk+1, bk+2, . . . bn (the
case k = n is also possible, of course). Since M is a maximum matching, there are no edges apbq

with both p and q bigger than k. In addition, for each p > k and i ≤ k, either the edge aibp or the
edge biap is missing in G (since otherwise there is an augmenting path bpaibiap, contradicting the
maximality of M). This means that to obtain H from K we have deleted at least (n−k)2+k(n−k)
edges that are incident with at least one vertex not saturated by M .

For each 1 ≤ i < j ≤ k, let Cij denote the induced copy of C4 (in K) on the vertices ai, bi, aj , bj .
We know that the edges aibi and ajbj of this cycle are also in G, hence among the four other pairs
aibj , ajbi, aiaj , bibj at least one non-edge of K is an edge of H or one edge of K is a non-edge of
G. As all these

(
k
2

)
fourtuples of pairs are pairwise disjoint (no pair belongs to two of them), this

accounts to another
(
k
2

)
modifications between K and H. Moreover, each edge omission here is an

omission of an edge with both ends saturated by M , hence it has not been counted before.

Altogether we conclude that the edit distance between K and H is at least

(n− k)2 + k(n− k) +
(

k

2

)
≥
(

n− k

2

)
+ k(n− k) +

(
k

2

)
=
(

n

2

)
.
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At this point we note that C4 is not (1, 1)-colorable and therefore every (1, 1)-colorable graph
does not contain an induced C4, namely P1,1 ⊆ P∗C4

. The graphs in P1,1 are called split graphs.

Lemma 9.2. ed(2n,P∗C4
) ≤

(
n
2

)
.

Proof. Consider some partition of the vertex set of G into two n-vertex sets V1, V2. W.l.o.g, e(V1) ≥
e(V2). Adding all the missing edges in V1, and removing all the edges in V2, turns G into a split
graph. We have thus changed at most

((
n
2

)
− e(V1)

)
+ e(V2) ≤

(
n
2

)
edges. As any split graph is also

induced C4-free, we actually obtained a graph in P∗C4
, proving the lemma.

�

This completes the proof of Theorem 2.13.

Proof of Corollary 2.14:

Clearly, every chordal graph is also induced C4-free. Hence, ed(2n,P∗C4
) ≤ ed(2n,P). Moreover,

every split graph is chordal, and thus Lemma 9.2 also applies for P, which completes the proof of
the corollary. �

9.2 The case H = P4

Corollary 2.3 gives the lower bound for Theorem 2.15. We thus complete the proof of Theorem
2.15 by proving the upper bound. We use the recursive definition of cographs and the following
result of Erdős, Goldberg, Pach and Spencer [20]:

Theorem 9.3. (Erdős et al, [20]) There exists an η > 0 such that in any graph on n vertices and
n < e ≤ 1

2

(
n
2

)
edges, one can find two disjoint subsets of vertices S and T such that |S| = |T | = n

4

and
|e(S)− e(T )| > η

√
en

Lemma 9.4. For a sufficiently large n, any graph on n vertices is at most 1
2

(
n
2

)
− 1

5ηn1.5 far from
being a cograph, where η is the constant from Theorem 9.3.

Proof. Let G be a graph on n vertices. Without loss of generality, assume e(G) ≤ 1
2

(
n
2

)
. Otherwise,

we may consider its complement since being a cograph is a complement invariant property. If
e(G) ≤ 1

2

(
n
2

)
− ηn1.5, we remove all the edges from G thus trivially turning it into a cograph.

Hence, 1
2

(
n
2

)
− ηn1.5 < e(G) ≤ 1

2

(
n
2

)
. By Theorem 9.3, we find disjoint vertex sets S and T

satisfying (for a sufficiently large n) |e(S) − e(T )| > η
√

en > 1
5ηn1.5. We modify G to obtain a

graph Ĝ as follows:

1. If e(S) ≤ 1
2

(|S|
2

)
, remove all the edges inside S. Otherwise, add all the missing edges inside S.
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2. If e(T ) ≤ 1
2

(|T |
2

)
, remove all the edges inside T . Otherwise, add all the missing edges inside

T .

3. Do the same for the remainder of G, which consists of edges connecting S and T and edges
with at least one endpoint in V (G) \ (S ∪ T ).

Ĝ is a cograph since, up to taking a complement, it is a disjoint union of S, T and V \ (S ∪ T )
where each of these three sets induces either a clique or an independent set in Ĝ. Moreover, we
change at most 1

2(
(
n
2

)
−
(|S|

2

)
−
(|T |

2

)
) edges in step 3, and at most 1

2(
(|S|

2

)
+
(|T |

2

)
)− 1

5ηn1.5 edges in
steps 1 and 2. Thus indeed we make at most 1

2

(
n
2

)
− 1

5ηn1.5 modifications.

�

10 Concluding remarks and future work

• It seems that for many of the natural hereditary properties P, the tools and methods we
describe in this paper allow one to find ed(n,P) and p(P). Yet this may still require a
substantial ad hoc effort, as in the proofs of Section 8. It would be interesting to find a
robust method for such analysis which applies to all hereditary properties. A milder task
would be to establish such a method for all the properties P∗H . Recent results of Balogh and
Martin, and of Marchant and Thomason, based on earlier work of Richer, provide the value
of p(P∗K3,3

), but the general problem remains wide open.

• Other Turán type problems on hereditary properties also arise naturally, extending well known
analogous results for monotone properties. In particular:

– Which are the graphs in P that are the closest to G(n, p(P))? Theorem 2.10 shows that
this question is much easier when p(P) = 1

2 .

– What is the exact furthest graph from P?

– Consider a monotone property which contains all graphs excluding a (weak) copy of a
fixed graph H. Some extremal features were proved for the case of H having a color
critical edge (e.g. [8], [22]). What are the analogs of these special graphs when forbidding
an induced copy H?

Related questions for the properties P∗H , were addressed by Prömel and Steger in [29]. Their
results might hint on possible answers.

• In [5], Alon, Shapira and Sudakov describe, for every monotone property M and ε > 0,
a polynomial time algorithm for approximating the edit distance of a given input graph
on n vertices from M. The algorithm obtains an additive approximation within εn2 of the
correct edit distance. A slightly different version of their algorithm provides an approximation
algorithm for edge-modification problems in the broader setting of hereditary properties.
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The authors of [5] also characterize the properties for which the above mentioned algorithm
achieves essentially the best possible approximation, that is, the monotone properties M for
which it is NP-hard to approximate EM(G) to within an additive error of n2−ε, for any ε > 0.
In a future work, we (partially) extend these results to hereditary properties, relying in part
on the ideas of the present paper. The proofs are based on a refinement of Theorem 2.10
which determines the structure of the closest graph in P to G(n, 1/2) for some hereditary
properties.
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