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Abstract

We provide a short and self-contained proof of the classical result of Kostochka and of Thomason,

ensuring that every graph of average degree d has a complete minor of order Ω(d/
√

log d).

Let G = (V,E) be a graph with |E|/|V | ≥ d. How large a complete minor are we guaranteed to find

in G? This classical question, closely related to the famed Hadwiger’s conjecture, has been thoroughly

studied over the last half a century. It is quite easy to see the answer is at least logarithmic in d. Mader

[3] proved it is of order at least d/ log d. The right order of magnitude was established independently

by Kostochka [1, 2] and by Thomason [4] to be d/
√

log d, its tightness follows by considering random

graphs. Finally, Thomason found in [5] the asymptotic value of this extremal function.

Here we provide a short and self-contained proof of the celebrated Kostochka–Thomason bound.

Theorem 1. Let G = (V,E) be a graph with |E|/|V | ≥ d, where d is a sufficiently large integer. Then

G contains a minor of the complete graph on at least d
10
√

ln d
vertices.

The constant 1/10 in the above statement is inferior to the best constant 3.13 . . . found by Thoma-

son [5] (yet is better than the constants in [1, 2]); we did not make any serious attempt to optimize

it in our arguments. The main point here is to give a short proof of the tight Ω(d/
√

log d) bound for

this classical extremal problem.

Throughout the proof we assume, whenever this is needed, that the parameters n and d are

sufficiently large. To simplify the presentation we omit all floor and ceiling signs in several places.

For a graph G = (V,E), its minimum degree is denoted by δ(G), and for v ∈ V we use NG(v) for the

external neighborhood of v in G.

We need the following lemma proven by simple probabilistic arguments.

Lemma 2. Let H = (V,E) be a graph on at most n vertices with δ(H) ≥ n/6. Let t ≤ n/
√

lnn, and

let A1, . . . , At ⊂ V with |Aj | ≤ ne−
√

lnn/3 for all 1 ≤ j ≤ t. Then there is B ⊂ V of size |B| ≤ 3.1
√

lnn
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such that B dominates all but at most ne−
√

lnn/3 vertices of V , B \ Aj 6= ∅ for all j = 1, . . . , t, and

the induced subgraph G[B] has at most six connected components.

Proof. Set s = 3.1
√

lnn and choose s vertices of V independently at random with repetitions. Let B

be the set of chosen vertices. Observe that for every vertex v ∈ V ,

Pr[N(v) ∩B = ∅] ≤
(

1− d(v)

n

)s

≤ e−
sd(v)

n ≤ e−s/6 .

Hence the expected number of vertices not dominated by B is at most ne−s/6 < ne−3.1
√

lnn/6 <

ne−
√

lnn/2, and by Markov’s inequality, it is at most ne−
√

lnn/3 with probability exceeding 1/2 (with

room to spare). Also, since |V | > δ(H) ≥ n/6, for every subset Aj ,

Pr[B ⊆ Aj ] =

(
|Aj |
|V |

)s

<

(
6|Aj |
n

)s

≤ 6se−s
√

lnn/3 = 6Θ(
√

logn)e−3.1 lnn/3 <
1

n
.

Therefore the probability that B \Aj 6= ∅ for all j is at least 1− t/n ≥ 1− 1/
√

lnn.

We now argue about the number of connected components in G[B]. Writing B = (v1 . . . , vs), for

1 ≤ i ≤ s let xi be the random variable counting the number of indices 1 ≤ j 6= i ≤ s for which vj

is a neighbor of vi. Conditioning on vi, we see that xi is distributed as a binomial random variable

with parameters s − 1 and d(vi)/|V | > 1/6. Hence invoking the standard Chernoff-type bound on

the lower tail of the binomial distribution, we derive that Pr[xi < s/7] ≤ e−Θ(s). Applying the union

bound over all 1 ≤ i ≤ s, we conclude that with probability 1 − o(1), we have xi ≥ s/7 for all i.

Finally, observe that since s �
√
|V |, with probability 1 − o(1) there are no repetitions in B, and

hence d(vi, B) = xi ≥ s/7 for all 1 ≤ i ≤ s. But then all connected components of G[B] are of size

exceeding s/7, and therefore G[B] has at most six connected components.

Combining the above three estimates, the desired result follows.

Proof of Theorem 1. Let G′ = (V ′, E′) be a minor of G such that |E′| ≥ d|V ′| and |V ′| + |E′| is

minimal. If an edge e of G′ is contained in t triangles then contracting e gives a minor of G with one

vertex and t + 1 edges less. By the minimality of G′ we have t + 1 > d, implying t ≥ d. Hence for

every edge e = (u, v) ∈ E(G′), the vertex u is connected by an edge of G′ to at least d neighbors of v.

The minimality of G′ also implies |E′| = d|V ′|, hence G′ has a vertex v of degree at most 2d. Let H

be the subgraph of G′ induced by NG′(v). Then H has at most 2d vertices and minimum degree at

least d. Obviously a minor of H is a minor of G as well.

We now argue that H contains a d/3-connected subgraph H1 with δ(H1) ≥ 2d/3. If H itself is d/3-

connected this holds for H1 = H. Otherwise there is a partition V (H) = A ∪B ∪ S, where A,B 6= ∅,
|S| < d/3, and H has no edges between A and B. Assume without loss of generality |A| ≤ |B|. Then

|A| ≤ d, and since δ(H) ≥ d, every vertex v ∈ A has at least 2d/3 neighbors in A, implying that every

pair of vertices of A has at least d/3 common neighbors in A. Hence the induced subgraph H1 := H[A]

is d/3-connected, has at most 2d vertices and satisfies δ(H1) ≥ 2d/3.

Set i = 1 and repeat the following iteration d/10
√

ln d times. Let Hi = (Vi, Ei) ⊆ H1 be the current

graph, and suppose A1, . . . , Ai−1 are subsets of Vi of cardinalities |Aj | ≤ 2de−
√

ln(2d)/3 (representing
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the non-neighbors of the previously found branch sets Bj in Vi). We assume (and justify it later) that

Hi is connected and has δ(Hi) > d/3. Then the diameter of Hi is at most 14, as on any shortest path

P = (v0, v1, . . .) in Hi the vertices at positions divisible by three have pairwise disjoint neighborhoods.

Since |V (Hi)|/δ(Hi) < 6, the number of such neighborhoods is at most 5, and therefore any shortest

path has at most 15 vertices. Applying Lemma 2 with H := Hi, n := 2d, t := i− 1, and A1, . . . , Ai−1

(for the initial step i = 1 there are no Aj ’s to plug into Lemma 2 — which of course does not hinder its

application) we get a subset Bi of cardinality |Bi| ≤ 3.1
√

ln(2d) as promised by the lemma. We now

turn Bi into a connected set by adding few vertices of Hi if necessary. Recall that Hi[Bi] has at most

six connected components. Connecting one of them by shortest paths in Hi to all others and recalling

that Hi has diameter at most 14, we conclude that by appending to Bi all the vertices of these paths

we make it connected by adding to it at most 13 · 5 = 65 vertices. Altogether we obtain a connected

subset Bi of cardinality |Bi| ≤ (3.1 + o(1))
√

ln(2d), dominating all but at most 2de−
√

ln(2d)/3 vertices

of Vi and having a vertex outside every Aj (these properties are preserved under vertex addition when

making Bi into a connected subset) — meaning connected to every previous Bj . We now update

Vi+1 := Vi − Bi, Ai := Vi+1 − NHi(Bi), and Aj := Aj ∩ Vi+1, j = 1, . . . , i − 1, and finally increment

i := i+ 1, set Hi := H[Vi], and proceed to the next iteration. The total number of vertices deleted in

all iterations satisfies: ∣∣ ∪i Bi

∣∣ ≤ d

10
√

ln d
· (3.1 + o(1))

√
ln(2d) <

d

3
,

and since we started with the d/3-connected graph H1 with δ(H1) ≥ 2d/3, we indeed have that at

each iteration the graph Hi is connected and has δ(Hi) > d/3.

After having completed all d/10
√

ln d iterations, we get a family of d/10
√

ln d branch sets Bi, all

connected, and with an edge of H1 between every pair of branch sets. Hence they form a complete

minor of order d/10
√

ln d as promised. �
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