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Abstract

A family of permutations F of [n] = {1, 2, . . . , n} is (ε, k)-min-wise independent if for every
nonempty subset X of at most k elements of [n], and for any x ∈ X, the probability that in
a random element π of F , π(x) is the minimum element of π(X), deviates from 1/|X| by at
most ε/|X|. This notion can be defined for the uniform case, when the elements of F are picked
according to a uniform distribution, or for the more general, biased case, in which the elements
of F are chosen according to a given distribution D. It is known that this notion is a useful tool
for indexing replicated documents on the web.

We show that even in the more general, biased case, for all admissible k and ε and all large
n, the size of F must satisfy

|F| ≥ Ω
(

k

ε2 log(1/ε)
log n

)
,

as well as

|F| ≥ Ω
(

k2

ε log(1/ε)
log n

)
.

This improves the best known previous estimates even for the uniform case.
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1 Introduction

1.1 Background

A family F of permutations of [n] = {1, 2, . . . , n} is an ε-approximate k-restricted min-wise inde-
pendent family (or an (ε, k)-min-wise independent family, for short) if for every nonempty subset X

of at most k elements of [n], and for any x ∈ X, the probability that in a random element π of F ,
π(x) is the minimum element of π(X), deviates from 1/|X| by at most ε/|X|. This notion can be
defined for the uniform case, when the elements of F are picked according to a uniform distribution,
or for the more general, biased case, in which the elements of F are chosen according to a given
distribution D.

The notion of (ε, k)-min-wise independent families, as well as the related ones of k-restricted
min-wise independent families (corresponding to the case ε = 0), min-wise independent families
(corresponding to ε = 0, k = n), and ε-min-wise independent families (corresponding to k = n),
were introduced by Broder et al. [5] and further investigated in [6, 7, 8, 9, 11, 12, 13]. These form a
basic tool to estimate resemblance between documents [4] and have applications of detecting almost
identical documents on the Web [4] and of reducing the amount of randomness used by probabilistic
algorithms [10]. Among the several variants of min-wise independence, we focus on the notion of
(ε, k)-min-wise independent families defined above, and investigate the minimum possible size of
families F ⊆ Sn of (ε, k)-min-wise independent permutations.

1.2 Known results

For families F ⊆ Sn of (ε, k)-min-wise independent permutations, Broder et al. [5] proved upper and
lower bounds for |F| as in Table 1.

Table 1: Known results on (ε, k)-min-wise independent permutations

Constructive
Upper Bound (uniform)

24k+o(k)k2 log log(n/ε) [5, Theorem 5]

Non-constructive
Upper Bound (uniform)

O
(

k2

ε2 log
(

n
k

))
[5, Theorem 4]

Lower Bound (uniform) Ω
(
k2(1−

√
8ε)
)

[5, Theorem 6]

Lower Bound (biased) Ω
(
min

{
k2k/2 log

(
n
k

)
, log (1/ε)(log n−log log(1/ε))

ε1/3

})
[5, Theorem 9]
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Note that there is a large gap between the upper and lower bounds. The lower bound for the
uniform distribution depends only on k and ε and does not grow with n, which seems unnatural.
The lower bound for biased distributions gives |F| = Ω(k2k/2 log(n/k)) if k < 2

3 log(1/ε) and |F| =
Ω( log (1/ε)(log n−log log(1/ε))

ε1/3 ) otherwise. Thus for any fixed ε > 0, if k is large, then the lower bound
for biased distributions depends only on n and ε and does not grow with k. Therefore, it seems that
there should be a tighter lower bound for |F| that depends on all variables n, k, and ε.

1.3 The main results

Our main results in the present paper are the following two improved lower bounds for the minimum
possible cardinality of (ε, k)-min-wise independent permutation families.

Theorem 1.1 For any 0 < ε < 1
8 and k ≥ 3, and all sufficiently large n, the following holds. Let

F ⊂ Sn be an (ε, k)-min-wise independent family of permutations of [n], with respect to a distribution
D on F . Then

|F| ≥ Ω
(

k

ε2 log(1/ε)
log n

)
.

Theorem 1.2 For any 0 < ε < 1
11 and k ≥ 3, and all sufficiently large n, the following holds. Let

F ⊂ Sn be an (ε, k)-min-wise independent family of permutations of [n], with respect to a distribution
D on F . Then

|F| ≥ Ω

(
k2

ε log(1/ε)
log n

)
.

The proofs combine a linear-algebra approach with a geometric lemma proved in [1] and a few
additional combinatorial arguments. Throughout the proofs we omit all floor and ceiling signs
whenever these are not crucial, and make no attempt to optimize the absolute constants.

2 Proofs

An m by m real matrix is diagonally dominant if the absolute value of each diagonal entry in the
matrix exceeds the sum of the absolute values of all other entries in its row. It is easy and well known
that every matrix of this type is nonsingular. In particular, if each diagonal entry is at least 1, and
the absolute value of every other entry is smaller than 1/m, then the matrix has full rank. The basic
tool applied in our proofs is an extension of this result which shows that even if the assumptions are
relaxed and one only assumes that each diagonal entry is at least 1/2 and the absolute value of each
other entry is at most δ there is still a meaningful lower bound for the rank. A statement of this
form is proved in [1], where it is shown that it can be interpreted as a geometric result, supplying a
lower bound for the minimum possible dimension of an Euclidean space in which one can embed a
simplex of m equilateral points with low distortion.
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Lemma 2.1 ([1, Theorem 9.3]) Let B = (bi,j) be an m by m real matrix with bi,i = 1 for all i

and |bi,j | ≤ δ for all i 6= j. If the rank of B is r, and 1√
m
≤ δ < 1/2, then

r ≥ Ω
(

1
δ2 log(1/δ)

log m

)
.

Corollary 2.2 Let B be an m by m real matrix with bi,i ≥ 1/2 for all i and |bi,j | ≤ δ for all i 6= j.
If the rank of B is r, and 1

2
√

m
≤ δ < 1/4, then

r ≥ Ω
(

1
δ2 log(1/δ)

log m

)
.

Proof: Let C = (ci,j) be the m by m diagonal matrix defined by ci,i = 1/bi,i for all i. Then every
diagonal entry of CB is 1 and every off-diagonal entry is of absolute value at most 2δ. The result
thus follows from Lemma 2.1. 2

Proof of Theorem 1.1: Let F be an (ε, k)-min-wise independent family of permutations of [n],
with respect to the distribution D, where ε > 0, k ≥ 3 and n is large. Put s = k/3, L = n/s and
partition [n] into L pairwise disjoint sets X0, X1, . . . , XL−1, each of size s, where X0 = {1, 2, . . . , s}.
Put F = {π1, π2, . . . , πd}, m = L− 1, and define, for each h ∈ [s], an m by d matrix U (h) = (u(h)

ij ) as
follows:

u
(h)
ij =


√

PrD(πj) if min(πj(X0 ∪Xi)) = πj(h)

0 otherwise.
(1)

Define V (h) = (v(h)
ij ) = U (h)(U (h))T and observe that v

(h)
ii is precisely the probability that h is

the minimum element of X0 ∪Xi (according to the distribution D on F), whereas for i 6= j, v
(h)
ij is

the probability that h is the minimum element of X0 ∪Xi ∪Xj according to the same distribution.
By the assumption on F and D, each v

(h)
ii deviates from 1

2s by at most ε
2s , and each v

(h)
ij for i 6= j

deviates from 1
3s by at most ε

3s . In addition, by the definition of the matrices U (h), for any distinct
h, g ∈ [s], U (h)(U (g))T = 0.

Let U be the ms by d matrix defined by UT = [(U (1))T , (U (2))T , . . . , (U (s))T ]. Then V = UUT

is a block-diagonal matrix whose blocks are the matrices V (h), implying that its rank is the sum of
ranks of the matrices V (h).

The crucial claim now is that the rank of each matrix V (h) is at least Ω( 1
ε2 log(1/ε)

log m). Indeed,
if we subtract from V (h) the rank-one matrix in which every entry is exactly 1

3s , and multiply the
result by 6s, then from the assumption that 0 < ε < 1

8 , we get a matrix in which each diagonal entry
is at least

6s

(
1− ε

2s
− 1

3s

)
= 1− 3ε >

5
8

>
1
2
,

and each off-diagonal entry is in absolute value at most

6s

(
1 + ε

3s
− 1

3s

)
= 2ε <

1
4
.

4



As the above subtraction and multiplication can change the rank by at most 1, the assertion of the
claim follows from Corollary 2.2. Combining this with the fact that for all large n (n > k2 will suffice
here), log m > 0.5 log n, and the fact that |F| = d ≥ rank(V ), the assertion of the theorem follows.
2

In order to prove Theorem 1.2 we need an additional simple lemma.

Lemma 2.3 Let ε > 0 be a real and let s ≥ 1 and M ≥ 2s2 be integers. If εs > 1, then there is
a collection of more than N = ( M

2s2 )εs subsets of cardinality s of [M ] = {1, 2, . . . ,M}, so that the
intersection of any two of them has cardinality at most εs.

Proof : Starting with the family of all s-subsets of [M ], pick an arbitrary s-subset, and omit all
s-subsets that intersect it by more than εs elements. As long as there is a yet unchosen s-subset that
has not been omitted, pick it, and omit all those that intersect it by more than εs elements. Clearly
this produces a collection of at least (M

s

)( s
εs

)( M−s
(1−ε)s

)
+ 1

s-subsets satisfying the desired intersection condition, and a simple calculation shows that for M ≥
2s2 this quantity is at least ( M

2s2 )εs (with room to spare). 2

Proof of Theorem 1.2: Let ε,F and D be as in the assumption of the theorem. Put s = k/3
and let X0 = [s] consist of the first s elements of [n]. Put M = n − s, let N = ( M

2s2 )εs, and let
X1, X2, . . . , XN be a collection of subsets of cardinality s of {s + 1, . . . , n}, so that each pair of them
has at most εs common elements. (The existence of such a collection follows from Lemma 2.3. ) For
every h ∈ [s] define an N by d matrix U (h) by (1), and an N by N matrix V (h) = U (h)(U (h))T .

By the reasoning described in the proof of Theorem 1.1 every diagonal matrix of V (h) deviates
from 1

2s by at most ε
2s , whereas for i 6= j, v

(h)
ij deviates from 1

|X0∪Xi∪Xj | by at most ε
|X0∪Xi∪Xj | .

However, since the intersection of Xi and Xj is of size at most εs, it follows that each such off-
diagonal entry is at least 1−ε

3s and at most 1+ε
(3−ε)s . We can thus subtract, as before, a constant 1

3s

from each entry of V (h) and multiply the resulting matrix by 6s to get a matrix in which every
diagonal entry is at least

6s

(
1− ε

2s
− 1

3s

)
= 1− 3ε >

8
11

>
1
2
,

and every off-diagonal entry is, in absolute value, at most

6s

{
1 + ε

(3− ε)s
− 1

3s

}
=

8ε

3− ε
<

1
4
,

using the assumption that 0 < ε < 1
11 . By Corollary 2.2 the rank of such a matrix is at least

Ω( 1
ε2 log(1/ε)

log N), and as for large n,

log N = εs log
n− s

2s2
≥ 0.5εs log n = Ω(εk log n),
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the assertion of Theorem 1.2 follows, as in the proof of Theorem 1.1. 2

3 Concluding remarks

Although our results provide an asymptotically optimal bound, up to a constant factor, for the
minimum possible cardinality of (ε, k)-min-wise independent families of permutations for fixed ε

and all admissible n � k, for small ε there is still a gap between the known upper and lower bounds,
and it will be interesting to close it.

Lemma 2.1 seems useful in obtaining lower bounds for the smallest possible size of a sample space
supporting random variables exhibiting some approximate independence properties. One example is
given here. In a similar way one can apply the lemma to show that the minimum possible size of
a sample space supporting n k-wise ε-biased binary random variables is Ω( k

ε2 log(1/ε)
log n), which is

tight, up to the log(1/ε)-term. The lemma can also be applied to derive a quick, nearly tight upper
bound for the maximum possible rate of a binary error correcting code in which every code-word
is of Hamming weight that deviates from n/2 by at most εn, a nearly tight lower bound for the
minimum possible distortion in an embedding of a simplex in a low-dimensional Euclidean space,
and a nontrivial upper bound for the maximum possible number of real vectors of length n so that
the `1-distance between every pair is exactly 1. See [1], [3], [2] for some further examples and details.

Acknowledgment: We would like to thank Yoshinori Takei for his valuable comments and for
insightful discussions on an earlier version of the paper.
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