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Abstract. We consider the problem of computing a maximal indepen-
dent set (MIS) in an extremely harsh broadcast model that relies only on
carrier sensing. The model consists of an anonymous broadcast network
in which nodes have no knowledge about the topology of the network or
even an upper bound on its size. Furthermore, it is assumed that nodes
wake up asynchronously. At each time slot a node can either beep (i.e.,
emit a signal) or be silent. At a particular time slot, beeping nodes re-
ceive no feedback, while silent nodes can only differentiate between none
of its neighbors beeping, or at least one neighbor beeping.
We start by proving a lower bound that shows that in this model, it is
not possible to locally converge to an MIS in sub-polynomial time. We
then study four different relaxations of the model which allow us to cir-
cumvent the lower bound and compute an MIS in polylogarithmic time.
First, we show that if a polynomial upper bound on the network size is
known, it is possible to find an MIS in O(log3 n) time. Second, if sleeping
nodes are awoken by neighboring beeps, then we can also find an MIS in
O(log3 n) time. Third, if in addition to this wakeup assumption we allow
beeping nodes to receive feedback to identify if at least one neighboring
node is beeping concurrently (i.e., sender-side collision detection) we can
find an MIS in O(log2 n) time. Finally, if instead we endow nodes with
synchronous clocks, it is also possible to compute an MIS in O(log2 n)
time. We remark that the last two algorithms essentially match the bit
complexity of the classic distributed MIS algorithms by Alon, Babai, and
Itai [2], and by Luby [14].

1 Introduction

An MIS is a maximal set of nodes in a network such that no two of them are
neighbors. Since the set is maximal every node in the network is either in the
MIS or a neighbor of a node in the MIS. The problem of distributively selecting
an MIS has been extensively studied in various models [2, 5, 20, 11, 13, 12, 14,
17, 15, 24] and has many applications in networking, and in particular in radio
sensor networks. Some of the practical applications include the construction of
a backbone for wireless networks, a foundation for routing and for clustering of
nodes, and generating spanning trees to reduce communication costs [20, 24].
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This paper studies the problem of computing an MIS in the discrete beeping
wireless network model of [6]. The network is modeled as an undirected graph
and time progresses in discrete and synchronous rounds, each being a time slot.
In each round a node can either transmit a “jamming” signal (aka beep) or
detect whether at least one neighbor beeps. We believe that such a model is
minimalistic enough to be implementable in many real world scenarios. For ex-
ample, it can easily be implemented using carrier sensing alone, where nodes
only differentiate between silence and the presence of a signal on the wireless
channel. Further, it has been shown that such a minimal communication model
is strong enough to efficiently solve non-trivial tasks [1, 6, 18, 23]. The model
is interesting from a practical point of view since carrier sensing typically uses
less energy to communicate and reaches larger distances when compared with
sending regular messages.

While this model is clearly useful for computer networks, it is also partially
motivated by biological processes which are often more robust and adaptable
than current computational systems. In biological systems, cells communicate
by secreting certain proteins that are sensed (“heard”) by neighboring cells [5].
This is similar to a node in a radio network transmitting a carrier signal which
is sensed (“heard”) by its neighbors. Such physical message passing allows for
an upper bound on message delay. Thus, for a computational model based on
these biological systems, we can assume a set of synchronous and anonymous
processors communicating using beeps [6] in an arbitrary topology. We have
recently shown that a variant of MIS is solved by a biological process, sensory
organ precursor (SOP) selection in flies, and that the fly’s solution provides a
novel algorithm for solving MIS [1]. Here we extend algorithms for this model in
several ways as discussed below.

This paper has two parts, we first prove a lower bound that shows that in a
beeping model with adversarial wake-up it is not possible to locally converge on
an MIS in sub-polynomial time. In the second part we present several relaxations
of this model under which polylogarithmic MIS constructions are possible.

The lower bound shows that if nodes are not endowed with any information
about the underlying communication graph, and their wake-up time is under
the control of the adversary, any (randomized) distributed algorithm to find an
MIS requires at least Ω(

√
n/ log n) rounds. We remark that this lower bound

holds much more generally. We prove the lower bound for the significantly more
powerful radio network model with arbitrary message size and collision detection,
and is therefore not an artifact of the amount of information which can be
communicated in the beeping model.

Following the lower bound, in the second part of this paper four weaker
adversarial models are considered and a polylog algorithm for MIS construction
is presented for each. First, we present an algorithm that uses a polynomial upper
bound on the size of the network, to compute an MIS in O(log3 n) rounds with
high probability. Our next two algorithms assume that nodes are awakened by
incoming messages (aka wake-on-beep). We present aO(log2 n) rounds algorithm
in the beeping model with sender collision detection (aka sender CD) which we
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believe that is the fastest MIS algorithm that does not require any information
about the network. Next, we present a O(log3 n) that works without sender
collision detection in the same wakeup model. Finally, we show that even when
nodes are only awakened by an adversary (and not by incoming messages) and
without any information about the network, its possible to use synchronous
clocks to compute an MIS in O(log2 n) time. We highlight that all the upper
bounds presented in this paper compute an MIS eventually and almost surely,
and thus only their running time is randomized.

Assumptions Running Time

Section 4 - Ω(
√
n/ log n)

Section 5 Upper bound O(log3 n)

Section 6 Wake-on-Beep + Sender CD O(log2 n)

Section 7 Wake-on-Beep O(log3 n)

Section 8 Synchronous Clocks O(log2 n)

2 Related work

The computation of an MIS has been recognized and studied as a fundamental
distributed computing problem for a long time (e.g., [2, 3, 14, 19]). Perhaps the
single most influential MIS algorithm is the elegant randomized algorithm of [2,
14], generally known as Luby’s algorithm, which has a running time of O(log n).
This algorithm works in a standard message passing model, where nodes can
concurrently reliably send and receive messages over all point-to-point links to
their neighbors. Métivier et al. [15] show how to improve the bit complexity of
Luby’s algorithm to use only O(log n) bits per channel (O(1) bits per round).
For the case where the size of the largest independent set in the neighborhood
of each node is restricted to be a constant (known as bounded independence or
growth-bounded graphs), Schneider and Wattenhofer [22] presented an algorithm
that computes an MIS in O(log∗ n) rounds. This class of graphs includes unit
disk graphs and other geometric graphs that have been studied in the context
of wireless networks.

While several methods were suggested for solving MIS in the case of sym-
metric processors, these methods have always assumed that nodes know some-
thing about the local or global topology of the network. Most previous methods
assumed that nodes know the set of active neighbors each has at each stage
of the execution. The first effort to design a distributed MIS algorithm for a
wireless communication model in which the number of neighbors is not known
is by Moscibroda and Wattenhofer [16]. They provided an algorithm for the
radio network model with a O(log9 n/ log log n) running time. This was later
improved [17] to O(log2 n). Both algorithms assume that the underlying graph
is a unit disk graph (the algorithms also work for somewhat more general classes
of geometric graphs). In addition, while the algorithms solve MIS selection in
multi-hop networks with asynchronous wake up, they still assume that an upper
bound on the number of nodes in the network is known. In addition to the upper
bound assumption their model allows for (and their algorithm uses) messages
whose size is a function of the number of nodes in the network.
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The use of carrier sensing (a.k.a. collision detection) in wireless networks
has e.g. been studied in [4, 9, 23]. As shown in [23], collision detection can be
powerful and can be used to improve the complexity of algorithms for various
basic problems. Scheideler et al. [21] show how to approximate a minimum dom-
inating set in a physical interference (SINR) model where in addition to sending
messages, nodes can perform carrier sensing. In [8], it is demonstrated how to
use carrier sensing as an elegant and efficient way for coordination in practice.

The present paper is not he first one that uses carrier sensing alone for dis-
tributed wireless network algorithms. A similar model to the beep model consid-
ered here was first studied in [7, 18]. As used here, the model has been introduced
in [6], where it is shown how to efficiently obtain a variant of graph coloring that
can be used to schedule non-overlapping message transmissions. In [1] a vari-
ant of beeping model, called there the fly model was considered. The fly model
made the three additional assumptions, which do not necessarily hold for biolog-
ical systems: that all the processors wake up together at the same synchronous
round, that a bound on the network size is known to the processors, and that
processors can detect collisions. That is, processors can listen on the medium
while broadcasting (as in some radio and local area networks). In addition to
the work from [1] the most related work to this paper are results from [23]. In
[23], it is shown that by solely using carrier sensing, an MIS can be computed in
O(log n) time in growth-bounded graphs (a.k.a. bounded independence graphs).
Here, we drop that restriction and study the MIS problem in the beeping model
for general graphs.

3 Model

Following [6], we consider a synchronous communication network modeled by an
arbitrary graph G = (V,E) where the vertices V represent processors and the
edges represent pairs of processors that can hear each other. We denote the set
of neighbors of node u in G by NG(u) = {v | {u, v} ∈ E}. For a node u ∈ V
we use dG(u) = |NG(u)| to denote its degree (number of neighbors) and we use
dmax = maxu∈V dG(u) to denote the maximum degree of G.

Instead of communicating by exchanging messages, we consider a more prim-
itive communication model that relies entirely on carrier sensing. Specifically, in
every round a participating process can choose to either beep or listen. If a pro-
cess at node v listens in round t it can only distinguish between silence (i.e., no
process u ∈ NGt(v) beeps in round t) or the presence of one or more beeps (i.e.,
there exists a process u ∈ NGt

(v) that beeps in round t). Observe that a beep
conveys less information than a conventional 1-bit message, since in the latter
it is possible to distinguish between no message, a message with a one, and a
message with a zero.

Initially all processes are asleep, and a process starts participating at the
round in which it is woken up by an adversary. We denote by Gt ⊆ G the
subgraph induced by the processes which are participating at round t.

Given an undirected graph H, a set of vertices I ⊆ V (H) is an independent
set of H if every edge e ∈ E has at most one endpoint in I. An independent set
I ⊆ V (H) is a maximal independent set of H, if for all v ∈ V (H) \ I the set
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I ∪ {v} is not independent. An event is said to occur with high probability, if it
occurs with probability at least 1 − n−c for any constant c ≥ 1, where n = |V |
is the number of nodes in the underlying communication graph. For a positive
integer k ∈ N we use [k] as short hand notation for {1, . . . , k}. In a slight abuse
of this notation we use [0] to denote the empty set ∅ and for a, b ∈ N and a < b
we use [a, b] to denote the set {a, . . . , b}.

We say a (randomized) distributed algorithm solves the MIS problem in T
rounds, if any node irrovocably decides to be either inactive or in the MIS after
being awake for at most T rounds. Furthremore, no two neighboring nodes decide
to be in the MIS, and every node which decided to be inactive has at least one
neighbor which decided to be in the MIS.

4 Lower Bound for Uniform Algorithms

In this section we show that without any additional power or priori information
about the network (e.g., an upper bound on its size or maximum degree), any
fast-converging (randomized) distributed algorithm needs at least polynomial
time to find an MIS with constant probability. In some ways, this result is the
analog of the polynomial lower bound [10] on the number of rounds required for
a successful transmission in the radio network model without collision detection
or knowledge of n.

We stress that this lower bound is not an artifact of the beep model, but a
limitation that stems from having message transmission with collisions and the
fact that nodes are required to decide (but not necessarily terminate) without
waiting until all nodes have woken up. Although we prove the lower bound for
the problem of finding an MIS, this lower bound can be generalized to other
problems (e.g., minimal dominating set, coloring, etc.).

Specifically, we prove the lower bound for the stronger communication model
of the local message broadcast with collision detection. In this communication
model a process can choose in every round either to listen or to broadcast a
message (no restrictions are made on the size of the message). When listening
a process receives silence if no message is broadcast by its neighbors, it receives
a collision if a message is broadcast by two or more neighbors, and it receives
a message if it is broadcast by exactly one of its neighbors. The beep commu-
nication model can be easily simulated by this model (instead of beeping send
a 1 bit message, and when listening translate a collision or the reception of a
message to hearing a beep) and hence the lower bound applies to the beeping
model.

At its core, our lower bound argument relies on the observation that a node
can learn essentially no information about the graph G if upon waking up, it
always hears collisions or silence. It thus has to decide whether it remains silent
or beeps within a constant number of rounds. More formally:

Proposition 1. Let A be an algorithm run by all nodes, and consider a fixed
pattern b ∈ {silent, collision}∗. If after waking up a node u hears b(r) whenever
it listens in round r, then there are two constants ` ≥ 1 and p ∈ (0, 1] that only
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depend on A and b such that either a) u remains listening indefinitely, or b) u
listens for `− 1 rounds and broadcasts in round ` with probability p.

Proof. Fix a node u and let p(r) be the probability with which node u beeps
in round r. Observe that p(r) can only depend on r, what node u heard up to
round r (i.e., b) and its random choices. Therefore, given any algorithm, either
p(r) = 0 for all r (and node u remains silent forever), or p(r) > 0 for some r, in
which case we let p = p(r) and ` = r.

We now prove the main result of this section:

Theorem 4.1. If nodes have no a priori information about the graph G then any
fast-converging distributed algorithm in the local message broadcast model with
collision detection that solves the MIS problem with constant probability requires
requires at least Ω(

√
n/ log n) rounds.

Proof. Fix any algorithm A. Using the previous proposition we split the analysis
in three cases, and in all cases we show that with probability 1 − o(1) any
algorithm runs for o(

√
n/ log n) rounds.

We first ask what happens with nodes running algorithm A that hear only
silence after waking up. Proposition 1 implies that either nodes remain silent
forever, or there are constants ` and p such that nodes broadcast after ` rounds
with probability p. In the first case, suppose nodes are in a clique, and observe
that no node will ever broadcast anything. From this it follows that nodes cannot
learn anything about the underlying graph (or even tell if they are alone). Thus,
either no one joins the MIS, or all nodes join the MIS with constant probability,
in which case their success probability is exponentially small in n.

Thus, for the rest of the argument we assume that nodes running A that
hear only silence after waking up broadcast after ` rounds with probability p.
Now we consider what happens with nodes running A that hear only collisions
after waking up. Again, by Proposition 1 we know that either they remain silent
forever, or there are constants m and p′ such that nodes broadcast after m rounds
with probability p′. In the rest of the proof we describe a different execution for
each of these cases.

CASE 1: (a node that hears only collisions remains silent forever)
For some k � ` to be fixed later, we consider a set of k− 1 cliques C1, . . . , Ck−1
and a set of k cliques U1, . . . , Uk, where each clique Ci has Θ(k log n/p) vertices,
and each clique Uj has Θ(log n) vertices. We consider a partition of each clique Ci

into k sub-cliques Ci(1), . . . , Ci(k) each with Θ(log n/p) vertices. For simplicity,
whenever we say two cliques are connected, they are connected by a complete
bipartite graph.

Consider the execution where in round i ∈ [k− 1] clique Ci wakes up, and in
round ` the cliques U1, . . . , Uk wake up simultaneously. When clique Uj wakes
up, it is is connected to sub-clique Ci(j) for each i < `. Similarly, when clique
Ci wakes up, if i ≥ ` then for j ∈ [k] sub-clique Ci(j) is connected to clique Uj .

During the first `−1 rounds only the nodes in C1 are participating, and hence
every node in C1 broadcasts in round ` + 1 with probability p. Thus w.h.p. for
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all j ∈ [k] at least two nodes in sub-clique C1(j) broadcast in round `. This
guarantees that all nodes in cliques U1, . . . , Uk hear a collision during the first
round they are awake, and hence they also listen for the second round. In turn,
this implies that the nodes in C2 hear silence during the first `− 1 rounds they
participate, and again for j ∈ [k] w.h.p. there are at least two nodes in C2(j)
that broadcast in round `+ 2.

By a straightforward inductive argument we can show (omitted) that in gen-
eral w.h.p. for each i ∈ [k − 1] and for every j ∈ [k] at least two nodes in
sub-clique Ci(j) broadcast in round ` + i. Therefore, also w.h.p., all nodes in
cliques U1, . . . , Uk hear collisions during the first k − 1 rounds after waking up.

Observe that at most one node in each Ci can join the MIS (i.e. at most
one of the sub-cliques of Ci has a node in the MIS), which implies there exists
at least one clique Uj that is connected to only non-MIS sub-cliques. However,
since the nodes in Uj are connected in a clique, exactly one node of Uj must
decide to join the MIS, but all the nodes in Uj have the same state during the
first k− 1 rounds. Therefore if nodes decide after participating for at most k− 1
rounds, w.h.p. either no one in Uj joins the MIS, or more than two nodes join
the MIS.

Finally since we have n ∈ Θ(k2 log n+k log n) nodes, we can let k ∈ Θ(
√
n/ log n)

and the theorem follows.

CASE 2: (a node that hears only collisions remains silent forever)
For some k � m to be fixed later let q =

⌊
k
4

⌋
and consider a set of k cliques

U1, . . . , Uk and a set of m − 1 cliques S1, . . . , Sm−1, where each clique Ui has
Θ(log n/p′) vertices, and each clique Si has Θ(log n/p) vertices. As before, we
say two cliques are connected if they form a complete bipartite graph.

Consider the execution where in round i ∈ [m − 1] clique Si wakes up, and
in round `+ j for j ∈ [k] clique Uj wakes up. When clique Uj wakes up, if j > 1
it is connected to every Ui for i ∈ {max(1, j − q), . . . , j − 1} and if j < m it is
also connected to every clique Sh for h ∈ {m− j, . . . ,m}.

During the first `−1 rounds only the nodes in S1 are participating, and hence
every node in S1 broadcasts in round ` + 1 with probability p, and thus w.h.p.
at least two nodes in S1 broadcast in round `+ 1. This guarantees the nodes in
U1 hear a collision upon waking up, and therefore they listen in round `+ 2. In
turn this implies the nodes in S2 hear silence during the first `− 1 rounds they
participate, and hence w.h.p. at least two nodes in S2 broadcast in round `+ 2.

By a straightforward inductive argument we can show (omitted) that in gen-
eral for i ∈ [m − 1] the nodes in Si hear silence for the first ` − 1 rounds they
participate, and w.h.p. at least two nodes in Si broadcast in round `+ i. More-
over, for j ∈ [k] the nodes in Uj hear collisions for the first m − 1 rounds they
participate, and hence w.h.p. there are at least two nodes in Uj who broadcast
in round `+m+ j − 1. This implies that w.h.p. for j ∈ [k − q] the nodes in Uj

hear collisions for the first q rounds they participate.

We argue that if nodes choose weather or not to join the MIS q rounds after
participating, then they fail w.h.p. In particular consider the nodes in clique Uj

for j ∈ {q, . . . , k − 2q}. These nodes will collisions for the first q rounds they
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participate, and they are connected to other nodes which also hear beeps for the
first q rounds they participate. Therefore, if nodes decide after participating for
less or equal than q rounds, w.h.p. either a node and all its neighbors won’t be
in the MIS, or two or more neighboring nodes join the MIS.

Finally since we have n ∈ Θ(m log n+k log n) nodes, we can let k ∈ Θ(n/ log n)
and hence q ∈ Θ(n/ log n) and the theorem follows.

5 Using an upper Bound on n

To circumvent the lower bound, this section assumes that all nodes are initially
given some upper bound N > n (its not required that all nodes are given the
same upper bound) on the total number of nodes participating in the system. The
algorithm described in this section guarantees that O(log2N log n) rounds after
a node wakes up, it knows weather it belongs to the MIS or if it is inactive (i.e.
covered by an MIS node). Therefore, if the known upper bound is polynomial in
n (i.e., N ∈ O(nc) for a constant c), then this algorithm solves the MIS problem
in O(log3 n) rounds.

Algorithm: If a node hears a beep while listening at any point during the
execution, it restarts the algorithm. When a node wakes up (or it restarts), it
stays in an inactive state where it listens for c log2N consecutive rounds. After
this inactivity period, nodes enters a competing state and group rounds into
logN phases of c logN consecutive rounds. Due to the asynchronous wake up
and the restarts, in general phases of different nodes will not be synchronized.
In each round of phase i with probability 2i/8N a node beeps, and otherwise
it listens. Thus by phase logN a node beeps with probability 1

8 in every round.
After successfully going through the logN phases of activity (recall that when
a beep is heard during any phase, the algorithm restarts) a node assumes it has
joined the MIS and into a loop where it beeps in every round with probability
1/8 forever (or until it hears a beep).

Algorithm 1 MIS with an upper bound N on the size of the network.

1: for c log2 N rounds do listen . Inactive
2: for i ∈ {1, . . . , logN} do . Competing
3: for c logN rounds do
4: with probability 2i/8N beep, otherwise listen

5: forever with probability 1
2

beep then listen, otherwise listen then beep . MIS

Theorem 1. Algorithm 1 solves the MIS problem in O(log2N log n) time, where
N is an upper bound for n that is a priori known to the nodes.

This is another example which demonstrates that knowing a priori size in-
formation about the network, even as simple as its size, can drastically change
the complexity of a problem.
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Proof Outline. First, we leverage the fact that for two neighboring nodes to go
simultaneously into the MIS they have to choose the same actions (beep or listen)
during at least c logN rounds. This does no happen w.h.p. and thus MIS nodes
are independent w.h.p. On the other hand, since nodes which are in the MIS keep
trying to break ties, an inactive node will never start competing while it has a
neighbor in the MIS, and even in the low probability event that two neighboring
nodes do join the MIS, one of them will eventually and almost surely leave the
MIS. The more elaborate part of the proof is showing that w.h.p., any node
either joins the MIS or has one of its neighbors in the MIS after O(log2N log n)
consecutive rounds. This requires three technical lemmas. First we show that if
the sum of the beep probabilities of a neighbor are greater than a large enough
constant, then they have been larger than a (smaller) constant for the c logN
preceding rounds. We then use this to show that with constant probability, when
a node u hears or produces beep, none of its neighbors beeps at the same time
(and therefore it joins the MIS). Finally, since a node hears a beep or produces
a beep every O(log2N) rounds, O(log2N log n) rounds suffice to stabilize w.h.p.

We remark that this algorithm is very robust, and in fact it works as-is if we
give the adversary the power to crash n arbitrary set of nodes at every round.
For such a powerful adversary, the running time guarantees have to be modified
slightly, since if an inactive node has a single MIS node which is then crashed
by the adversary, we must allow the inactive node to start competing to be in
the MIS again.

Knowing when you are done. We’ve argued hat with high probability every
node will (correctly) be in the MIS or the inactive state O(log3 n) rounds after
waking up, however observe that the algorithm provides no way for a node to
determine/output when it has arrived at the correct state. This is not a flaw of
the algorithm, but an inherent limitation of the model and assumptions in which
it is implemented. To see why, observe that regardless of what algorithm is used,
at every round there is a non-zero probability that all nodes which are in the
same state make the same random choices (beep or listen), and remain in the
same state on the next round. Although this probability will drop exponentially
fast with n, this already means that its impossible for a node to distinguish with
complete if it is executing alone, or if it has one or more neighbors.

If we are willing to tolerate a small probability of error, we can simply turn
Algorithm 1 (which is a Las Vegas algorithm) to a Monte Carlo algorithm and
have every node output their state O(log3 n) rounds after waking up. Theorem
1 would guarantee that with high probability the output would describe an MIS.
Another alternative, would be to endow nodes with unique identifiers encoded in
O(log n) bits. Using these identifiers its possible to augment the last phase of the
algorithm (i.e., line 5) to detect with certainty the case where two neighboring
nodes are in the MIS state in asymptotically the same round complexity (we
omit the details due to lack of space). Another alternative, which is described in
detail in the next section, is to use sender-side collision detection.
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6 Wake-on-Beep and Sender Collision Detection

This section considers a different relaxation of the model. Specifically, in addition
to allowing the adversary to wakeup nodes arbitrarily, in this and the next section
we assume that sleeping nodes wake up upon receiving a beep (aka wake-on-
beep). Moreover this section we also assume that when a node beeps, it receives
some feedback from which it can know if it beeped alone, or one of its neighbors
beeped concurrently (aka sender collision detection). We will show that in such
a model, its possible to compute an MIS in O(log2 n) time, even if there is no
knowledge of the network (including no knowledge of neighbors and / or any
upper bound on the network size).

This algorithm is an improvement of the algorithm presented in [1], which
used an upper bound on the size of the network. In this algorithm nodes go
through several iterations in which they gradually decrease the probability of
being selected. The run time of the algorithm is still O(log2 n) as we show below.
Compared to the algorithm in [1], in addition to eliminating the dependence
on any topological information, the current algorithm tolerates asynchronous
wakeups if we assume wake-on-beep.

The algorithm proceeds in phases each consisting of x steps where x is the
total number of phases performed so far (the phase counter). Assuming all nodes
start at the same round, step i of each phase consists of two exchanges. In the
first exchange nodes beep with probability 1/2i, and in the second exchange a
node that beeped in the first and did not hear a beep from any of its neighbors,
beeps again, telling its neighbors it has joined the MIS and they should become
inactive and exit the algorithm.

Asynchronous wakeup. Nodes that woke up spontaneously, or were awakened
by the adversary, propagate a wave of wake-up beeps throughout the network.
Upon hearing the first beep, which must be the wake up beep, a node broadcasts
the wake up beep on the next round, and then waits one round to ensure none
of its neighbors is still waking up. This ensures that all neighbors of a node
wakeup either at the same round as that node or one round before, or after, that
node. Due to these possible differences in wakeup time, we divide each exchange
between 3 rounds. Nodes listen in all three rounds to incoming messages. During
the second round of the first exchange each active node broadcasts a message to
its neighbors with probability pi (the value of pi is given in the algorithm). The
second exchange also takes three rounds. A node that has broadcast a message
in the first exchange joins the MIS if none of its neighbors had broadcast in any
of the three round of the first exchange. Such node broadcasts again a message
in the second round of the second exchange telling its neighbors to terminate
the algorithm. The algorithm is presented in Figure 2.

Safety properties. While the algorithm in [1] used a different set of coin
flip probabilities, it relied on a similar two exchanges structure to guarantee
the safety properties of the algorithm (when the algorithm terminates nodes
are either MIS nodes or connected to a MIS node and no two MIS nodes are
connected to each other). In that paper each exchange was only one round (since
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Algorithm 2 MIS with wake-on-beep and sender-side collision detection

1: upon waking up (by adversary or beep) do beep to wake up neighbors
2: wait for 1 round; x← 0 . while neighbors wake up
3: repeat
4: x← x + 1 . 2x is current size estimate
5: for i ∈ {0, . . . , x} do . log 2x phases
6: ** exchange 1 ** with 3 rounds
7: listen for 1 round; v ← 0 . round 1
8: with probability 1/2i, beep and set v ← 1 . round 2
9: listen for 1 round . round 3

10: if received beep in any round of exchange 1 then v ← 0
11: ** exchange 2 ** with 3 rounds
12: listen for 1 round . round 1
13: if v = 1 then beep and join MIS . round 2
14: listen for 1 round . round 3
15: until in MIS or received beep in any round of exchange 2

we assumed synchronous wakeup). We thus need to show that replacing each
one round exchange with a three round exchange does not affect the MIS safety
properties of our algorithm. We will thus start by proving that the termination
lemma from [1], which relies on the fact that all neighbors are using the same
probability distribution in each exchange, still holds.

Lemma 1. All messages received by node j in the first exchange of step i were
sent by processors using the same probability as j in that step (see [? ] for proof).

Note that a similar argument would show that all messages received in the
second exchange of step i are from processors that are in the second exchange of
that step. Since our safety proof only relies on the coherence of the exchange they
still hold for this algorithm. Notice also that by adding a listening round at the
beginning and end of each exchange the algorithm now works in the un-slotted
model (with at most doubling the round complexity).

Runtime analysis. After establishing the safety guarantees, we next prove
that with high probability all nodes terminate the algorithm in O(log2 n) time
where n is the number of nodes that participate in the algorithm. Let dv be the
number of active neighbors of node v. We start with the following definition [2]:
a node v is Good if it has at least dv/3 active neighbors u, s.t., du ≤ dv.

Lemma 4.4 from [2]: In every graph G at least half of the edges touch a
Good vertex. Thus,

∑
v∈Good dv ≥ |E|/2.

Note that we need less than O(log2n) steps to reach x ≥ log n since each
phase until x = log n has less than logn steps. When x ≥ log n, the first log n
steps in each phase are using the probabilities: 1, 1/2, 1/4, ..., 2/n, 1/n. Below we
show that from the time x = log n, we need at most O(log n) more phases to
guarantee that all processors terminate the algorithms with high probability.

Lemma 2. The expected number of edges deleted in a phase (with more than
log n steps) is Ω(|E|)
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Proof. Fix a phase j, and fix a Good vertex v. We show that the expected
number of edges incident with v that are deleted in this phase is Ω(dv). Assume
that at the beginning of phase j, 2k ≤ dv ≤ 2k+1 for some k < log n. If when we
reach step i = k in phase j at least dv/20 edges incident with v were removed
already we are done. Otherwise, at step i there are still at least dv/3− dv/20 >
dv/4 ≥ 2k−2 neighbors u of v with du ≤ dv. Node v and all its neighbors u are
flipping coins with probability 1

2k
at this step and thus the probability that at

least one of them would broadcast is:

p(v or u, neighbor of v with du ≤ dv, broadcasts) ≥ 1−(1− 1

2k
)2

k−2 ∼= 1−1/e1/4

On the other hand, all such nodes u, and v, have less than 2k+1 neighbors.
Thus, the probability that a node from this set that broadcasts a message does
not collide with any other node is:

p(no collisions) ≥ (1− 1

2k
)2

k+1 ∼= 1/e2

Thus, in every phase a Good node v has probability of at least (1− 1
e1/4

) 1
e2 ≥

1
27 to be removed. Thus, the probability that v is removed is Ω(1) which means
that the expected number of edges incident with v removed during this phase is
Ω(dv).
Since half the edges touch a Good node, by the linearity of expectation the ex-
pected number of edges removed in each phase is ≥ 1

2Ω(
∑

v∈Good dv) = Ω(|E|).
Note that since the number of edges removed in a phase in a graph (V,E)

is clearly always at most |E|, the last lemma implies that for any given history,
with probability at least Ω(1), the number of edges removed in a phase is at
least a constant fraction of the number of edges that have not been deleted yet.
Therefore there are two positive constants p and c, both bounded away from
zero, so that the probability that in a phase at least a fraction c of the number
of remaining edges are deleted is at least p. Call a phase successful if at least a
fraction c of the remaining edges are deleted during the phase.

By the above reasoning, the probability of having at least z successful phases
among m phases is at least the probability that a binomial random variable
with parameters m and p is at least z. By the standard estimates for Binomial
distributions, and by the obvious fact that O(log |E|/c) = O(log n), starting
from x = log n we need an additional O(log n) phases to finish the algorithm.
Since each of these additional O(log n) phases consists of O(log n) steps, and
since as discussed above until x = log n we have less than O(log2 n) steps, the
total running time of the algorithm is O(log2 n).

7 Wake-on-Beep with no collision detection

This section shows how to solve MIS in the wake-on-beep model with no collision
detection. To extend our algorithm to a model with no collision detection we
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increase the number of exchanges in each step from 3 to x (x is the same as
in Algorithm 2 and represents current estimate of the network size). Prior to
starting the exchanges in each step each active processor flips a coin with the
same probability as in Algorithm 2. If the flip outcome is 0 (tail) the processor
only listens in the next cx exchanges (for a constant c discussed below). If the flip
outcome is 1 the processor sets v = 1 and sets, with probability 0.5, every entry
in the vector X of size cx to 1 (the rest are 0). In the following exchanges the
processor broadcasts a beep if X(j) = 1 where j is the index of that exchange and
only listens if X(j) = 0. If at any of the exchanges it listens it hears a beep it sets
v = 0 and stops broadcasting (even in the selected exchanges). If a node hears a
beep during these exchanges it does not exit the algorithm. Instead, it denotes
the fact that one of its neighbors beeped and sets itself to be inactive. If it does
not hear a beep in any of the exchanges of a future phase it becomes active and
continues as described above. Similarly, a node that beeped and did not hear any
beep in a specific step (indicating that it can join the MIS) continues to beep
indefinitely (by selecting half the exchanges in all future steps and following the
algorithm above).

However, the guarantees we provide differ from those in the stronger collision
detection model. Specifically, the algorithm guarantees that after a certain time
(which depends on the network size and is derived below), all MIS members are
fixed, and the safety requirements hold (all nodes not in the MIS are connected
to a node in the MIS and no two MIS members are connected). Until this time
nodes can decide to become MIS members and later drop from the set if they find
out that one of their neighbors has also decided to join the MIS. Since nodes do
not have an estimate of the network size the processors continue to perform the
algorithm indefinitely. At the end of the section we describe a stopping criteria
that could be used if an estimate of the network size were available.

The main difference between this algorithm and Algorithm 2 a set of com-
petition exchanges that are added at the end of each coin flip. The number of
competition exchanges is equal to the current phase counter (which serves as the
current estimate of the network size). Initially the competition rounds are short
and so they would not necessarily remove all collisions. We require that nodes
that attempt to join continue to participate in all future competition rounds
(when v = 1). Processors that detect a MIS member as a neighbor set z to 1
and do not broadcast until they go through one complete set of competition
exchanges in which they do not hear any beep. If and when this happens they
set z = 0 and become potential MIS candidate again.

While not all collisions will be resolved at the early phases, when x ≥ log n
each set of competition exchanges is very likely to remove all collisions. We prove
below that once we arrive at such x values, all collisions are resolved with very
high probability such that only one processor in a set of colliding processors
remains with v = 1 at the end of these competition exchanges. From there,
it takes another O(log n) phases to select all members of the MIS as we have
shown for Algorithm 1. Since each such phase takes (O(log n) steps with each step
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Algorithm 3 MIS with wake-on-beep without sender-side collision detection

1: upon waking up (by adversary or beep) do beep to wake up neighbors
2: wait for 1 round; x← 0; v ← 0; z ← 0 . while neighbors wake up
3: repeat forever
4: x← x + 1
5: for i ∈ {0, . . . , x} do
6: if v = 0 ∧ z = 0 then with probability 1/2i set v ← 1
7: X ← random 0/1-vector of length cx . c is a constant
8: z ← 0
9: ** cx competition exchanges **

10: for k ∈ {1, . . . , cx} do
11: listen for 1 round
12: if beep received then v ← 0; z ← 1 . z = 1: conn. to node in MIS
13: if v = 0 ∨X[k] = 0 then
14: listen for 1 round; if beep received then v ← 0; z ← 1
15: else . v = 1 ∧X[k] = 1
16: beep for 1 round

17: listen for 1 round; if beep received then v ← 0;

taking O(log n) rounds for the competition, the total run time of the algorithm
is O(log3 n).

Below we prove that if two neighbors in the network have v = 1 after the coin
flip in step i in a phase with x ≥ log n, then with high probability one would set
v = 0 at the end of step i of that phase and so at most one of them enters the
MIS.

Lemma 3. Assume processor y collided with one or more of its neighbors setting
v = 1 in step i of phase x ≥ log n. Then the probability that y would still be
colliding with any of its neighbors at the end of the cx competition exchanges for
step i is ≤ 1

nc/3 .

Proof. If at any of the exchanges in this step all neighbors of y have v = 0 we
are done. Otherwise in each exchange, with probability at least 1/4 y decided
not to broadcast whereas one of its colliding neighbors decided to broadcast.
Thus, the probability that y does not resolve its collision in a specific exchange
is ≤ 3/4. Since there are (c log n) exchanges in this step, the probability that y is
still colliding at the end of these competition exchanges ≤ ( 3

4 )c logn ≤ 1
nc/3 .

Note that if a collision is not resolved in a specific exchange the colliding
nodes continue to broadcast in the following phase. As we proved in the previous
section, if all collisions are resolved in the O(log n) phases that follow the phase
x = log n the algorithm will result in a MIS set with very high probability. Since
we only need O(log2 n) < n steps for this, and we have n nodes, the probability
that there exists a step and a node in phase x ≥ log n such that a node that
collided during this step with a neighbor does not resolve this collision in that
step is smaller than 1

nc/3−2 . Thus, with probability ≥ 1− 1
nc/3−2 all collisions are

detected and the MIS safety condition holds.
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7.1 Stopping criteria when an upper bound on network size exists

TODO: I would remark that if you use this stopping criteria you are
turning the algorithm into monte carlo, since if you stop there is a
small chance that your output is wrong. The above algorithm leads to
a MIS set and does not require knowledge of the network size. However, the
time it takes to reach the MIS set is a function of the size of the network and
so if nodes do not have an estimate of this number they cannot terminate the
algorithm and need to indefinitely listen to incoming messages. Note that, as the
analysis above indicates, if a rough estimate on the network size n exists, nodes
can terminate the algorithm when x = 2 log n+ 1. At that phase we have a high
probability that every collision that has occurred during the last log n phases
has been resolved (≥ 1− 1

nc/3−2 ) and as proved in the previous section when all
collisions are resolved the algorithm terminates with very high probability.

8 Synchronized Clocks

For this section the only assumption we make on top of the beep model is that
that nodes have synchronized clocks, i.e., know the current round number t.

Algorithm: Nodes have three different internal states: inactive, competing, and
MIS. Each node has a parameter k that is monotone increasing during the exe-
cution of the algorithm. All nodes start in the inactive state with k = 6.

Nodes communicate in beep-triples, and synchronize by starting a triple only
when t ≡ 0 (mod 3). The first bit of the triple is the Restart-Bit. A beep is sent
for the Restart-Bit if and only if t ≡ 0 (mod k). If a node hears a beep on its
Restart-Bit it doubles its k and if it is active it becomes inactive. The second
bit sent in the triple is the MIS-Bit. A beep is sent for the MIS-Bit if and only
if a node is in the MIS state. If a node hears a beep on the MIS-bit it becomes
inactive. The last bit send in a triple is the Competing-Bit. If inactive, a node
listens to this bit, otherwise it sends a beep with with probability 1/2. If a node
hears a beep on the Competing-Bit it becomes inactive. Furthermore, if a node is
in the MIS-state and hears a beep on the Competing-Bit it doubles its k. Lastly,
a node transitions from inactive to active between any time t and t+ 1 for t ≡ 0
(mod k). Similarly, if a node is active when t = 0 mod k then it transitions to
the MIS state. In the sequel, we refer to this algorithm as Algorithm 2. The state
transitions are also depicted in Figure 1.

inactive
MIS: 0; Comp.: 0

competing
MIS: 0; Comp.: random

MIS
MIS: 1; Comp.: random

Restart : (t ≡ 0 mod k), if hear 1 then k = k · 2
t ≡ 0 mod k t ≡ 0 mod k

k = k · 2
hear 1hear 1

Fig. 1. State Diagram for Algorithm 2
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Idea: The idea of the algorithm is to employ Luby’s permutation algorithm
in which a node picks a random O(log n)-size priority which it shares with its
neighbors. A node then joins the MIS if it has the highest priority among its
neighbors, and all neighbors of an MIS node become inactive. Despite the fact
that this algorithm is described for the message exchange model, it is straight-
forward to adapt the priority comparisons to the beep model. For this, a node
sends its priority bit by bit, starting with the highest-order bit and using a beep
for a 1. The only further modification is that a node stops sending its priority if
it has already heard a beep on a higher order bit during which it remained silent
because it had a zero in the corresponding bit. Using this simple procedure, a
node can easily realize when a neighboring node has a higher priority. Further-
more, a node can observe that it has the highest-priority in its neighborhood
which is exactly the case if it does not hear any beep .

Therefore, as long as nodes have a synchronous start and know n (or an
upper bound) it is straightforward to get Luby’s algorithm working in the beep
model in O(log2 n) rounds.

In the rest of this section we show how to remove the need for an upper
bound on n and a synchronous start. We solely rely on synchronized clocks to
synchronize among nodes when a round to transmits a new priority starts. Our
algorithm uses k to compute an estimate for the required priority-size O(log n).
Whenever a collision occurs and two nodes tie for the highest priority the al-
gorithm concludes that k is not large enough yet and doubles its guess. The
algorithm uses the Restart-Bit to ensure that nodes locally work with the same
k and run in a synchronized manner in which priority comparisons start at the
same time (namely every t ≡ 0 (mod k)). It is not obvious that either a similar
k or a synchronized priority comparison is necessary but it turns out that algo-
rithms without them can stall for a long time. In the first case this is because
repeatedly nodes with a too small k enter the MIS state simultaneously while
in the second case many asynchronously competing nodes (even with the same,
large enough k) keep eliminating each other without one becoming dominant
and transitioning into the MIS state.

Analysis: To proof the algorithm’s correctness, we first show two lemmas that
show that with high probability k cannot be super-logarithmic.

Lemma 4. With high probability k ∈ O(log n) for all nodes during the execution
of the algorithm.

Proof. We start by showing that two neighboring nodes u, v in the MIS state
must have the same k and transitioned to the MIS state at the same time. We
prove both statements by contradiction.

For the first part assume that nodes u and v are in the MIS state but u
transitioned to this state (the last time) before v. In this case v would have
received the MIS-bit from u and become inactive instead of joining the MIS, a
contradiction.

Similarly, for sake of contradiction, we assume that ku < kv. In this case,
during the active phase of u before it transitioned to the MIS at time t it would
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have set its Restart-bit to 0 at time t− ku and received a 1 from v and become
inactive, contradicting the assumption that ku < kv.

Given this we now show that for a specific node u it is unlikely to become the
first node with a too large k. For this we note that ku gets doubled because of
a Restart-Bit only if a beep from a node with a larger k is received. This node
can therefore not be responsible for u becoming the first node getting a too large
k. The second way k can increase is if a node transitions out of the MIS state
because it receives a Competing-Bit from a neighbor v. In this case, we know
that u competed against at least one such neighbor for k rounds with none of
them loosing. The probability of this to happen is 2−k. Hence, if k ∈ Θ(log n),
this does not happen w.h.p. A union bound over all nodes and the polynomial
number of rounds in which nodes are not yet stable finishes the proof.

Theorem 2. If during an execution the O(log n) neighborhood of a node u has
not changed for Ω(log2 n) rounds then u is stable, i.e., u is either in the MIS
state with all its neighbors being inactive or it has at least one neighbor in the
MIS state whose neighbors are all inactive.

Proof. First observe that if the whole graph has the same value of k and no
two neighboring nodes transition to the MIS state at the same time, then our
algorithm behaves exactly as Luby’s original permutation algorithm, and there-
fore terminates after O(k log n) rounds with high probability. From a standard
locality argument, it follows that a node u also becomes stable if the above as-
sumptions only hold for a O(k log n) neighborhood around u. Moreover, since
Luby’s algorithm performs only O(log n) rounds in the message passing model,
we can improve our locality argument to show that in if a O(log n) neighborhood
around u is well-behaved, then u behaves as in Luby’s algorithm.

Since the values for k are monotone increasing and propagate between two
neighboring nodes u, v with different k (i.e., ku > kv) in at most 2ku steps, it
follows that for a node u it takes at most O(ku log n) rounds until either ku
increases or all nodes v in the O(log n) neighborhood of u have kv = ku for
at least O(k log n) rounds. We can furthermore assume that these O(k log n)
rounds are collision free (i.e, no two neighboring nodes go into the MIS), since
any collision leads with high probability within O(log n) rounds to an increased
k value for one of the nodes.

For any value of k, within O(k log n) rounds a node thus either performs
Luby’s algorithm for O(log n) priority exchanges, or it increases its k. Since k
increases in powers of two and, according to Lemma 4, with high probability it

does not exceed O(log n), after at most
∑O(log logn)

i 2i ·3 ·O(k log n) = O(log2 n)
rounds the status labeling around a O(log n) neighborhood of u is a proper MIS.
This means that u is stable at some point and it is not hard to verify that the
function of the MIS-bit guarantees that this property is preserved for the rest of
the execution.

We remark that as the algorithm of Section 5, this algorithm is also robust
enough to work as-is with an adversary capable of crashing nodes (with the same
caveats on the guarantees mentioned in Section 5).
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