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ALEXANDER MAGAZINOV, AND YINON SPINKA

Abstract. We study and classify proper q-colorings of the Zd lattice, iden-

tifying three regimes where different combinatorial behavior holds: (1) When
q ≤ d + 1, there exist frozen colorings, that is, proper q-colorings of Zd which

cannot be modified on any finite subset. (2) We prove a strong list-coloring

property which implies that, when q ≥ d + 2, any proper q-coloring of the
boundary of a box of side length n ≥ d + 2 can be extended to a proper q-

coloring of the entire box. (3) When q ≥ 2d+1, the latter holds for any n ≥ 1.

Consequently, we classify the space of proper q-colorings of the Zd lattice by
their mixing properties.

1. Introduction

A proper coloring of a graph G is an assignment of a color (say a number in Z)
to each vertex of G so that adjacent vertices are assigned different colors. For an
integer q ≥ 2, a (proper) q-coloring of G is a proper coloring in which all colors
belong to a fixed set of size q, e.g., {0, 1, . . . , q − 1}.

In this work, we mainly consider the d-dimensional integer lattice Zd for d ≥ 1.
We view it both as the group and its Cayley graph with respect to the standard
generators. Notice that, in this case, the number of neighbors of each vertex is 2d.

Our first result is about frozen q-colorings. A q-coloring of Zd is frozen if any
q-coloring of Zd which differs from it on finitely many sites is identical to it. The
existence of a frozen q-coloring precludes the possibility of any reasonable mixing
property.

Theorem 1.1. There exist frozen q-colorings of Zd if and only if 2 ≤ q ≤ d+ 1.

Since there are no frozen q-colorings of Zd when q ≥ d + 2, a natural question
is how unconstrained are proper colorings in this regime. In order to understand
better what happens when q ≥ d+ 2, we show that a certain list-coloring property
of large boxes in Zd holds. A consequence of this property will be that whenever
q ≥ d+ 2, large boxes in Zd have the property that any partial proper q-coloring of
their boundary can be extended to a proper q-coloring of (the interior of) the entire
box. To state the list-coloring result precisely, we now introduce some definitions.

For a graph G and a function L : G→ N, we say that G is L-list-colorable if for
any collection of sets – also called lists – {Sv}v∈G with |Sv| ≥ L(v), there exists a
proper coloring f of G such that f(v) ∈ Sv for all v ∈ G.

Denote [n] := {1, . . . , n}. Depending on the context, [n]d = {1, . . . , n}d may also
be interpreted as an induced subgraph of Zd. Define Ld

n : [n]d → {2, . . . , d+ 2} by

Ld
n(~i) := 2 + |{1 ≤ k ≤ d : 1 < |ik| < n}|.
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Our second result is the following.

Theorem 1.2. The graph [n]d is Ld
n-list-colorable whenever n ≥ d+ 2.

The above results have implications for the mixing properties of the set of all
q-colorings. Specifically, we characterise when the set of q-colorings of Zd is topo-
logically mixing, strongly irreducible, has the finite extension property and is topo-
logically strong spatial mixing (see Section 4 for definitions and results). Mixing
properties have important consequences in statistical physics [10], dynamical sys-
tems [3], and the study of constrained satisfaction problems [7]. We discuss some
of these aspects in Section 5.

The rest of the paper is organized as follows. Section 2 is dedicated to frozen
q-colorings and, in particular, contains the proof of Theorem 1.1. In addition,
we also prove a result about non-existence of frozen q-colorings in general graphs
satisfying appropriate expansion properties. Section 3 is dedicated to list-colorings
and, in particular, contains the proof of Theorem 1.2. In Section 4, we introduce
a hierarchy of mixing properties and, using the previous results, show that for a
fixed dimension d, there exist two critical numbers of colors, namely q = d+ 1 and
q = 2d, that determine three different mixing regimes. Finally, in Section 5, we
conclude with a discussion and open questions.

We end this section with some notation that will be used throughout the paper.
The set of edges of a graph G is denoted by EG. Given U, V ⊂ G, we denote by
E(U, V ) ⊂ EG the set of edges between a vertex of U and a vertex of V . Given a
set U ⊂ G, we denote the external vertex boundary of U by

∂U := {v ∈ G \ U : v is adjacent to some u ∈ U}.

2. Frozen q-colorings

In this section, we prove Theorem 1.1. We split the proof into two parts: exis-
tence and non-existence of frozen q-colorings. Theorem 1.1 is a direct consequence
of Proposition 2.1 and Corollary 2.3 below. We begin with the existence of frozen
q-colorings when q ≤ d + 1. Many constructions have appeared in the past which
are similar in principle (see, e.g., [8, Section 8]).

Proposition 2.1. There exist frozen q-colorings of Zd for any 2 ≤ q ≤ d+ 1.

Proof. First suppose that q = d+ 1 and let x ∈ {0, 1, . . . , q − 1}Zd

be given by

x~i :=

d∑
k=1

kik (mod q) for all ~i ∈ Zd.

First, let us verify that x is a q-coloring. Indeed, for ~i ∈ Zd and ~ek the unit
vector in the kth direction (1 ≤ k ≤ d), we have that

x~i+~ek
= x~i + k (mod q).

In particular, x~i+~ek
−x~i = k 6= 0 (mod q), and thus adjacent vertices have different

colors.
Let us now show that x is frozen. Suppose that y is a q-coloring that differs

from x on finitely many sites. Among all ~i such that x~i 6= y~i, we choose one which

maximizes
∑d

k=1 ik. Then, for any 1 ≤ k ≤ d,

y~i+~ek
= x~i+~ek

= x~i + k (mod q).
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Therefore,
{y~i+~ek

: 1 ≤ k ≤ d} = {0, 1, . . . , q − 1} \ {x~i}.
Since y is a proper q-coloring, it must be that y~i = x~i, contradicting the choice of~i.

Now, to deal with the case q < d+ 1, notice that by the previous construction,
we already have a frozen q-coloring of Zq−1. Thus, it suffices to prove that we
can always extend a frozen q-coloring x of Zr to Zr+1, as we may then proceed by
induction on r. Given a frozen q-coloring x of Zr, consider the q-coloring y of Zr+1

defined as
y(i1,...,ir+1) := x(i1,...,ir−1,ir+ir+1),

which is clearly proper, since if (i1, . . . , ir+1) is adjacent to (j1, . . . , jr+1) in Zr+1,
then (i1, . . . , ir−1, ir + ir+1) is adjacent to (j1, . . . , jr−1, jr + jr+1) in Zr. Notice
that y is also frozen, since y restricted to Zr × {ir+1} can be seen as a translate of
the frozen q-coloring x. �

Next we prove that no frozen q-coloring exists when q ≥ d+2. While this follows
from the list-coloring result given in Theorem 1.2 (see also Theorem 4.4), we give
a direct argument here which applies in greater generality. Let us now state the
result precisely.

The edge-isoperimetric constant of a graph G is

h(G) := inf
F

|E(F,G \ F )|
|F |

,

where the infimum is taken over all non-empty finite subsets of vertices F . As for
Zd, a q-coloring of G is frozen if any q-coloring of G which differs from it on finitely
many sites is identical to it.

Proposition 2.2. Let G be a graph of maximum degree ∆ and q > 1
2∆+ 1

2h(G)+1.
Then there do not exist frozen q-colorings of G.

Since, in the Zd case, ∆ = 2d and h(Zd) = 0 (e.g., consider sets of the form
F = [n]d for increasing n), we have the following corollary.

Corollary 2.3. There do not exist frozen q-colorings of Zd for any q ≥ d+ 2.

Proposition 2.2 is sharp in many cases, including Zd (Theorem 1.1), the triangu-
lar lattice (see Figure 1), the honeycomb lattice (trivially, since a 2-coloring of an
infinite connected bipartite graph is always frozen), and regular trees (see [9, 16]).

We remark that finite (non-empty) graphs never admit frozen q-colorings since
the colors can always be permuted. Proposition 2.2 is thus trivial for finite graphs.
Nevertheless, our argument can provide meaningful information for finite graphs as
well. Proposition 2.2 is an immediate consequence of the following.

Given a subset F of vertices of G, we say that a q-coloring of G is frozen on F if
any q-coloring of G which differs from it on a subset of F is identical to it. Thus,
a q-coloring is frozen if and only if it is frozen on every finite set.

Proposition 2.4. Let G be a graph, q ≥ 2, and F ⊂ G finite. If (q − 1)|F | >
|EF |+ |E(F,G \ F )|, then no q-coloring of G is frozen on F .

Since 2|EF | + |E(F,G \ F )| equals the sum of the degrees of vertices in F , the
following is an immediate corollary to Proposition 2.4.

Corollary 2.5. Let G be a graph of maximum degree ∆, q ≥ 2, and F ⊂ G finite.
If (q − 1− ∆

2 )|F | > 1
2 |E(F,G \ F )|, then no q-coloring of G is frozen on F .
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Figure 1. A frozen 4-coloring of the triangular lattice.

Proof of Proposition 2.4. Suppose towards a contradiction that there exists a q-
coloring of G which is frozen on F . Consider the restriction of the coloring to the
finite graph G′ := (F ∪∂F,EF ∪E(F,G\F )). For distinct colors i and j, let G′i,j be
the subgraph of G′ consisting of edges between vertices colored i and j. A bi-color
component is a connected component of any such G′i,j . Let A be the collection of
bi-color components. Note that the bi-color components partition the edges of G′

so that
∑

A∈A |EA| = |EF | + |E(F,G \ F )|. Note also that, since the q-coloring is
frozen on F , each A ∈ A contains a vertex in ∂F , as otherwise, the two colors in A
could be swapped (contradicting that the coloring is frozen). Hence, each A ∈ A
contains at most |EA| vertices of F . Thus, we have∑

A∈A
|A ∩ F | ≤

∑
A∈A
|EA| = |EF |+ |E(F,G \ F )|.

On the other hand, using again that the q-coloring is frozen on F (and hence also
on each individual vertex in F ), we see that each vertex in F is contained in exactly
q− 1 bi-color components, and it follows that

∑
A∈A |A∩F | = (q− 1)|F |. We thus

conclude that (q − 1)|F | ≤ |EF |+ |E(F,G \ F )|, contradicting the assumption. �

We remark that the proof of Proposition 2.4 shows something stronger, namely,
that (under the assumption) any q-coloring of G can be modified by swapping the
two colors of a bi-color component (a so-called Kempe chain move) contained in F .

We end this section with a short discussion about the existence of single-site
frozen q-colorings, those which are frozen on every F having |F | = 1. Given a
graph G of maximum degree ∆, it is clear that there do not exist single-site frozen
q-colorings of G whenever q ≥ ∆+2. On the other hand, on Zd, it is straightforward
to check that

x~i :=

d∑
k=1

kik (mod 2d+ 1), ~i ∈ Zd,
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defines a single-site frozen (2d+1)-coloring of Zd. Similar constructions (like in the
proof of Proposition 2.1) yield single-site frozen q-colorings of Zd for any 2 ≤ q ≤ 2d.
Thus, single-site frozen q-colorings of Zd exist if and only if 2 ≤ q ≤ 2d+ 1.

3. List-colorability

In this section, we prove Theorem 1.2. We will use the main result from [2].
We say that a digraph D is L-list-colorable if the underlying undirected graph is
such. Define LD(v) := d+

D(v) + 1, where d+
D(v) is the out-degree of v in D. The

following is [2, Theorem 1.1] specialized to digraphs having no odd directed cycles
(this special case also follows from Richardson’s Theorem; see [2, Remark 2.4]).

Theorem 3.1. A finite digraph D having no odd directed cycles is LD-list-colorable.

Thus, Theorem 3.1 allows to prove L-list-colorability of an undirected graph G
by exhibiting an orientation of the edges of G so that the out-degree of any vertex v
is strictly less than L(v). The following provides a sufficient (and in fact necessary)
condition for such an orientation to exist (see the closely related [2, Lemma 3.1]).

Corollary 3.2. Let G be a finite bipartite graph and let L : G→ N satisfy∑
v∈H

(L(v)− 1) ≥ |EH | for any induced subgraph H ⊂ G.

Then G is L-list-colorable.

Proof. DenoteG = (V,E) and consider the set V := {(v, i) : v ∈ V, 1 ≤ i ≤ L(v)−1}
containing L(v) − 1 copies of any vertex v. Let G be the bipartite graph with
bipartition classes E and V in which {e, (v, i)} is an edge in G if and only if v is
incident to e. For any F ⊂ E, letting H be the subgraph of G induced by the
endpoints of F , we see that the number of neighbors of F is

∑
v∈H(L(v) − 1) ≥

|EH | ≥ |F |. Thus, by Hall’s theorem, G contains a matching of size |E|. Given
such a matching, we obtain a digraph D on V by orienting each edge e ∈ E from
the vertex it is matched to outwards. In this orientation of G, the out-degree of
any vertex v is at most L(v)− 1 so that LD(v) ≤ L(v). Since G is bipartite, D has
no odd directed cycles. It follows from Theorem 3.1 that D (and hence also G) is
L-list-colorable. �

Proof of Theorem 1.2. Let {Kt}dt=0 be the level sets of Ld
n, that is,

Kt : =
{
~i ∈ [n]d : Ld

n(~i) = t+ 2
}

=
{
~i ∈ [n]d : |{1 ≤ j ≤ d : 1 < |ij | < n}| = t

}
.

Let H be an induced subgraph of G. Denote Ht := H ∩Kt for 0 ≤ t ≤ d and
H−1 := ∅. By Corollary 3.2, it suffices to show that

d∑
t=0

(t+ 1)|Ht| ≥
d∑

t=0

(|EHt
|+ |E(Ht, Ht−1)|).

We will in fact prove this inequality term-by-term, namely, that for any 0 ≤ t ≤ d,

(t+ 1)|Ht| ≥ |EHt
|+ |E(Ht, Ht−1)|. (1)

Since this is trivial for t = 0 (the right-hand side is zero), we fix 1 ≤ t ≤ d and aim
to show that (1) holds for this t.
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Write degv(G) for the degree of a vertex v in a graph G. Note that for all~i ∈ Kt,
we have that deg~i(Kt ∪Kt−1) = 2t. Thus,

2t|Ht| =
∑
~i∈Ht

deg~i(Kt ∪Kt−1).

The right-hand side counts the sum of the number of oriented edges (u, v) such
that u ∈ Ht and v ∈ Kt ∪Kt−1. We thus see that

2t|Ht| = 2|EHt
|+ |E(Ht,Kt \Ht)|+ |E(Ht, Ht−1)|+ |E(Ht,Kt−1 \Ht−1)|.

Hence, to obtain (1), it suffices to show that

2|Ht|+ |E(Ht,Kt \Ht)|+ |E(Ht,Kt−1 \Ht−1)| ≥ |E(Ht, Ht−1)|.
Since putting Ht−1 = Kt−1 only increases the right-hand side and decreases the

left-hand side, it suffices to prove that

2|Ht|+ |E(Ht,Kt \Ht)| ≥ |E(Ht,Kt−1)|.
To prove this, we partition E(Ht,Kt−1) into two sets, E1 and E2, and show that

|E1| ≤ |E(Ht,Kt \Ht)| and |E2| ≤ 2|Ht|.
Given e ∈ E(Ht,Kt−1), letting ~i ∈ Ht and unit vector ~u be such that e =

{~i,~i+ ~u}, we denote the line in the box [n]d in the direction e by

Line(e) := {~i−m~u ∈ Kt : m ∈ Z}

= {~i−m~u : m = 0, . . . , n− 3}.
We now partition E(Ht,Kt−1) into the two sets

E1 := {e ∈ E(Ht,Kt−1) : Line(e) 6⊂ Ht},
E2 := {e ∈ E(Ht,Kt−1) : Line(e) ⊂ Ht}.

We begin by showing that |E1| ≤ |E(Ht,Kt \ Ht)|. To this end, it suffices to
construct an injective map f : E1 → E(Ht,Kt \Ht). For e ∈ E1, define

f(e) := {~i− (m− 1)~u,~i−m~u},

where ~i ∈ Ht and unit vector ~u are such that e = {~i,~i + ~u}, and where m is the

smallest positive integer such that ~i−m~u ∈ Kt \Ht. It is straightforward to check
that f is injective.

We now show that |E2| ≤ 2|Ht|. Denote the set of lines contained in Ht by

Lt := {Line(e) : e ∈ E2},
and note that |E2| = 2|Lt|. Observe also that every vertex belongs to at most d
lines and that each line in Lt consists of exactly n− 2 vertices of Ht. Thus,

|Lt| ≤
d|Ht|
n− 2

≤ |Ht|. �

Let us make a remark about two aspects of the tightness of Theorem 1.2. The
first concerns the assumption that n ≥ d + 2: We show in Section 5 that [2]2 is
L2

2-list-colorable (here 2 = n < d + 2 = 4), while [2]3 is not L3
2-list-colorable (here

2 = n < d + 2 = 5). Fixing d, the question of the ‘optimal’ value of n such that
[n]d is Ld

n-list-colorable remains; the use of the word optimal is justified in the
next proposition. The second aspect concerns the sizes of the lists: [n]d may be
L-list-colorable for functions L which are pointwise smaller-or-equal than Ld

n. For
example, [n]2 is min{L2

n, 3}-list-colorable; see Question 5.7.
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Proposition 3.3. Let n ≥ 2 and d ≥ 1. Suppose [n]d is Ld
n-list-colorable. Then,

(1) [n]d−1 is Ld−1
n -list-colorable and

(2) [n+ 1]d is Ld
n+1-list-colorable.

Proof. Notice that the function Ld−1
n is just the restriction Ld

n|[n]d−1×{1} after iden-

tifying [n]d−1 with [n]d−1 × {1}. This proves the first part.
For the second part, we start by coloring [n + 1]d \ [n]d and then using the

given hypothesis to color the portion which is left, that is, [n]d. In order to color
[n + 1]d \ [n]d, we proceed by decomposing it into copies of [n]k, where 0 ≤ k ≤
d − 1, and successively coloring them in increasing order of k (using the first part
repeatedly). �

4. Mixing properties

In this section, we study various aspects of rigidity and mixing ofXd
q , the set of all

proper q-colorings of Zd (the color set here is always taken to be {1, . . . , q}). Let us
discuss some consequences of the above theorems in terms of mixing properties. The
space Xd

q is an instance of a so-called shift space [3], and the following properties,

which we define only for Xd
q , are applicable in this more general context (for a

general introduction to mixing properties, we would refer the reader to [3] and in
the context of graph homomorphisms to [6, 12]).

Given nonempty sets U, V ⊂ Zd, we denote

dist(U, V ) := min
~i∈U,~j∈V

|~i−~j|1.

Also, we denote by Bd
n the set {−n, . . . , n}d.

Four important mixing properties (in increasing order of strength) are:

(1) Xd
q is topologically mixing (TM) if for all U, V ⊂ Zd, there exists n ∈ N

such that for all~i ∈ Zd for which d(U+~i, V ) ≥ n and x, y ∈ Xd
q there exists

z ∈ Xd
q such that z|U+~i = x|U+~i and z|V = y|V .

(2) Xd
q is strongly irreducible (SI) with gap n if for all x, y ∈ Xd

q and U, V ⊂ Zd

for which dist(U, V ) ≥ n, there exists z ∈ Xd
q such that z|U = x|V and

z|U = y|V .
(3) Xd

q has the finite extension property (FEP) with distance n if for any U ⊆ Zd

and any coloring u of U , if u can be extended to a q-coloring of U + Bd
n,

then u can be extended to a q-coloring of Zd.
(4) Xd

q is topologically strong spatial mixing (TSSM) with gap n if for all x, y ∈
Xd

q and U, V,W ⊂ Zd for which dist(U, V ) ≥ n and x|W = y|W , there exists

z ∈ Xd
q such that z|U∪W = x|U∪W and z|V ∪W = y|V ∪W .

The following implications hold:

(TSSM) =⇒ (FEP) =⇒ (SI) =⇒ (TM). (2)

The first implication follows from [5, Proposition 2.12] and the additional obser-
vation that though the FEP property in [5] is seemingly different from ours, it is
in fact equivalent (the gap might be different for the two definitions though). The
other two implications are straightforward to verify.

A partial q-coloring of U is a q-coloring of a subset C of U , i.e., an assignment
of colors in {1, . . . , q} to each vertex in C such that any pair of adjacent vertices in
C have different colors. We call C the support of the partial q-coloring.
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We say that Xd
q is n-fillable if any partial q-coloring of ∂[n]d with support C can

be extended to a q-coloring of [n]d ∪ C. Notice that Xd
q is 1-fillable if and only if

given any q-coloring of the neighbors of a vertex, we can always extend it to the
vertex itself, and this is true if and only if q ≥ 2d + 1. In [17], this last property
was called single-site fillability (SSF) and used in the context of shift spaces.

Proposition 4.1. If [n]d is Ld
n-list-colorable, then Xd

q is n-fillable for q ≥ d+ 2.

Proof. Fix q ≥ d + 2 and suppose that [n]d is Ld
n-list-colorable. Let c be a partial

q-coloring of ∂[n]d with support C. Now consider the lists S : Bd
n → 2{1,2,...,q} given

by

S(~i) := {1, 2 . . . , q} \ {c~j : ~j ∈ C ∩ ∂{~i}}.

Then, clearly |S(~i)| ≥ Ld
n(~i). Since [n]d is Ld

n-list-colorable, we have that c
extends to a proper coloring of [n]d ∪ C. �

For d = 2 and q ≥ 4, n-fillability already followed from [20, Section 4.4] and the
analogous property for a 2× 2 box is also true (see [4]).

For q ≤ d + 1 and any n, we can also construct an explicit partial q-coloring of
∂[n]d which cannot be extended to a q-coloring of [n]d. Observe that the frozen
q-coloring x defined in the proof of Proposition 2.1 has an additional property:
Restricting x to the elements of ∂[n]d with at least one coordinate zero extends to
a q-coloring of [n]d in a unique manner. Now we let

C := {(i1, . . . , id) ∈ ∂[n]d : ik = 0 for some k} ∪ {(n+ 1, 1, . . . , 1)}
and define c to be the q-coloring of C which coincides with x everywhere except at
(n+ 1, 1, . . . , 1), where it is equal to x(n,1,...,1); it is clear that c cannot be extended

to a coloring of [n]d.
Now we consider the following generalization to more general shapes.

Proposition 4.2. If Xd
q is n-fillable, then for any subset U ⊆ Zd that can be

written as a union of translations of [n]d and any partial q-coloring c of ∂U , there
exists an extension of c to a q-coloring of U ∪ C, where C is the support of c.

Proof. Suppose that Xd
q is n-fillable for some n ∈ N. Consider any set F ⊂ Zd such

that U =
⋃

~j∈F (~j + [n]d). Without loss of generality, suppose that F is minimal,

i.e., for every proper subset F ′,
⋃

~j∈F ′(
~j + [n]d) is a proper subset of U .

Now, given an arbitrary~i ∈ F , proceed by using the n-fillability property to find
a coloring a of ~i + [n]d and considering its boundary to be colored according to c

restricted to C∩∂(~i+[n]d). Next, iterate this process with U ′, C ′, and c′, where U ′

is
⋃

~j∈F\{~i}(
~j + [n]d), C ′ is ∂U ′, and c′ is the restriction to C ′ of the concatenation

of the partial colorings a and c. If F is finite, this process finishes in at most |F |
steps, and if F is infinite, we can conclude by the compactness of {1, . . . , q}U . �

Proposition 4.3. If Xd
q is (2n+ 1)-fillable, then it satisfies FEP with distance 2n.

Proof. In this proof, we suppress the d in the notation of Bd
n. Consider U ⊆ Zd

and a coloring u of U that can be extended to a proper q-coloring u of U +B2n.

Now, consider a family of vectors {~k`}`∈N in Zd such that {~k` + Bn}`∈N is a

partition of Zd. For example, {n~k + Bn}~k∈Zd would be enough. Let S ⊆ N be the

set of indices ` such that (~k` +Bn) ∩ U 6= ∅.
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Notice that U ⊆
⋃

`∈S(~k` + Bn) ⊆ U + B2n. Indeed, if ~i ∈ U , then, since

{~k` + Bn}`∈N is a partition of Zd, there exists (a unique) `∗ ∈ S such that ~i ∈
(~k`∗ +Bn). On the other hand, if ~i ∈ (~k`∗ +Bn) for some `∗ ∈ S, then there exists
~j ∈ (~k`∗ +Bn) ∩ U , so ‖~i−~j‖∞ ≤ 2n. Therefore, ~i ∈ (~j +B2n) ⊆ U +B2n.

Finally, consider u′ to be the restriction of u to
⋃

`∈S(~k` + Bn). Then, u′ is

a proper partial coloring and the complement of its support {~k` + Bn}`∈N\S is a
(disjoint) union of boxesBn with perhaps partially defined colorings on its boundary

(the restriction of u′ to ∂(~k` +Bn)). Then, observing that Bn is just a translation
of [2n+ 1]d, by Proposition 4.2, we conclude. �

From what has been observed in [5, Proposition 2.12], it follows for Xd
q that

FEP with distance 0 is equivalent to TSSM. Furthermore, it is easy to see that
FEP with distance n implies SI with gap 2n. Considering all this, we have the
following result.

Theorem 4.4. Let d ≥ 1. Then,

(1) For 3 ≤ q ≤ d+ 1, Xd
q is TM, but not SI.

(2) For d+ 2 ≤ q ≤ 2d, Xd
q is FEP, but not TSSM.

(3) For 2d+ 1 ≤ q, Xd
q is TSSM.

In the following, ~i ∈ Zd is called even or odd if the sum of its coordinates
is even or odd, respectively. Let ~e1, ~e2, . . . , ~e2d be the unit vectors in Zd, where
~ei = −~e2d−i+1 for 1 ≤ i ≤ d.

Proof. We split the proof into the three cases in the statement.

• Case 1: 3 ≤ q ≤ d+ 1. In [12], it is shown that, for all d, Xd
q is topologically

mixing if and only if q ≥ 3. However, Xd
q is not SI if q ≤ d+1. By Theorem 1.1,

we have in fact that there exist frozen q-colorings, which is stronger, i.e., if Xd
q

has a frozen q-coloring, then it cannot be SI: Let x be a frozen q-coloring and
y any q-coloring which differs from x at ~0. Let n ≥ 1, U = ∂Bn and V = {~0}.
Observe that there does not exists a q-coloring z which agrees with x on U and
y on V , while dist(U, V ) = n.

• Case 2: d + 2 ≤ q ≤ 2d. By Proposition 4.1, Xd
q is n-fillable for q ≥ d + 2.

Therefore, by Proposition 4.3, Xd
q satisfies FEP with distance n.

Fix n ∈ N and let S := ∂{m~e1 : m ∈ Z}, U := {(0, . . . , 0)}, and V := {n~e1}.
Let x, y ∈ Xd

q be given by

x~i :=


m+ t mod (q − 2) if ~i = m~e1 + ~et for 2 ≤ t ≤ 2d− 1 and m ∈ Z
q − 2 if ~i /∈ ∂{m~e1 : m ∈ Z} is odd

q − 1 if ~i /∈ ∂{m~e1 : m ∈ Z} is even

and

y~i :=


m+ t mod (q − 2) if ~i = m~e1 + ~et for 2 ≤ t ≤ 2d− 1 and m ∈ Z
q − 1 if ~i /∈ ∂{m~e1 : m ∈ Z} is odd

q − 2 if ~i /∈ ∂{m~e1 : m ∈ Z} is even.
9



Clearly x|S = y|S . Suppose that z ∈ Xd
q is such that z|U∪S := x|U∪S . We

have that

z(0,...,0) = x(0,...,0) = q − 1

zm~e1+~et = xm~e1+~et = m+ t mod (q − 2)

for 2 ≤ t ≤ 2d− 1 and m ∈ Z. Since q ≤ 2d, it follows that for all m ∈ Z,

{zm~e1+~et : 2 ≤ t ≤ 2d− 1} = {0, 1, . . . , q − 3}

and hence zm~e1 = xm~e1 for all m ∈ Z and z|V 6= y|V . Since n was arbitrary,
we have that Xd

q is not TSSM.

• Case 3: 2d+ 1 ≤ q. In this case, Xd
q is 0-fillable and thus satisfies TSSM. �

5. Discussion

5.1. Gibbs measures and the influence of boundaries. One of the key moti-
vations of this paper was to study the influence of a q-coloring of the boundary of
a box on the colorings inside. Given n, d, q ∈ N and x ∈ Xd

q , let

Xx,n,d,q :=
{
y ∈ Xd

q : y|Zd\[n]d = x|Zd\[n]d
}
.

If Xd
q is SI, then there exists n0 ∈ N such that for all x ∈ Xd

q and n ≥ n0,

1 ≥ lim
n→∞

log |Xx,n,d,q|
log |{q-colorings of [n]d}|

≥ lim
n→∞

log |{q-colorings of [1 + n0, n− n0]d}|
log |{q-colorings of [n]d}|

= 1.

It is not difficult to prove that the limit

lim
n→∞

1

nd
log |{q-colorings of [n]d}|

exists for all d, q and is referred to as the entropy (of Xd
q ), denoted by hd,q. If the

limit

lim
n→∞

1

nd
log |Xx,n,d,q|

exists, then it is denoted by hx,d,q.
By Theorem 4.4, (2) and the calculation above, we have that for q ≥ d + 2,

hx,d,q = hd,q for all x ∈ Xd
q . If q ≤ d+ 1, then there are frozen q-colorings x ∈ Xd,q

by Theorem 1.1. For such x, hx,d,q = 0.

Question 5.1. Given q ≤ d+1, what is the set of possible values hx,d,q for x ∈ Xd
q ?

Is it the entire interval [0, hd,q]?

This has been established for q = 3 in [21] using the “height function” formalism,
which is missing for other values of q.

For q ≥ d + 2, one of the main questions that we would like to address is the
following. Let µx,n,d,q denote the uniform measure on Xx,n,d,q.

Question 5.2. For what values of q and d does Xd
q have a unique Gibbs measure?

In other words, do the measures µx,n,d,q converge weakly as n goes to infinity to the
same limit for all x ∈ Xd

q ?
10



This has been proved in the case when q ≥ 3.6d [14] and we suspect that there
exists a sequence qd satisfying limd→∞

qd
d = 1 such that it is true when q ≥ qd. Note

that the existence of frozen colorings preclude the possibility of a unique Gibbs
measure, so that Theorem 1.1 implies that this does not hold when q ≤ d+ 1. We
also mention that it has recently been shown [19] that there are multiple maximal-
entropy Gibbs measures when d ≥ Cq10 log3 q for some absolute constant C > 0.

5.2. Sampling a uniform q-coloring of [n]d. Suppose that we are to sample a
random coloring according to µx,n,d,q. One way to obtain an approximate such
sample is by the Markov Chain Monte Carlo method: construct an ergodic Markov
chain on Xx,n,d,q whose stationary distribution is µx,n,d,q, and run it for a long
time. A common way to devise such a Markov chain is via the Metropolis–Hastings
algorithm for an appropriate set of possible local changes. We mention a couple of
such local changes, and address the corresponding ergodicity requirement, namely,
whether one can transition between any two elements of Xx,n,d,q via the local
changes.

Let us fix d ≥ 2 and q ≥ 3 for the following discusssion. We refer to [11] for
some more details.

A boundary pivot move is a pair (x, y) ∈ Xd
q ×Xd

q such that they differ at most

on a single site. We say that Xd
q has the boundary pivot property if for all x ∈ Xd

q ,
n ∈ N, and y ∈ Xx,n,d,q there exists a sequence of boundary pivot moves from x to
y contained in Xx,n,d,q. It is well-known that Xd

q has the boundary pivot property
when q = 3 and it is quite easy to prove it for q ≥ 2d + 2 [13, Proposition 3.4].
For d + 2 ≤ q ≤ 2d + 1, a weaker property holds: A boundary N -pivot move is a
pair (x, y) ∈ Xd

q × Xd
q such that they differ at most on a translate of [N ]d. We

say that Xd
q has the generalized boundary pivot property if there exists N ∈ N such

that for all x ∈ Xd
q , n ∈ N, and y ∈ Xx,n,d,q, there exists a sequence of boundary

N -pivot moves from x to y contained in Xx,n,d,q. The space Xq
d has the generalized

boundary pivot property – this is a consequence of the n-fillability property (which
holds by Theorem 1.2 and Proposition 4.1). The proof of this implication follows
from the ideas in [11, Proposition 0.1] (look also at the proof of [4, Lemma 4.6] for
similar proof).

Question 5.3. For which q and d does Xd
q satisfy the generalized boundary pivot

property?

We remark that we do not know of any value of (q, d) for which Xd
q does not

satisfy the generalized boundary pivot property. To apply the generalized boundary
pivot property, we will still need to be able to sample a uniform coloring on a smaller,
but still ostensibly large, box. It will then help to know if another property holds
in this case in which such a sampling is not necessary. A Kempe move is a pair
(x, y) ∈ Xd

q ×Xd
q such that y is obtained from x by swapping the colors on a bicolor

component. We say that Xd
q is Kempe move connected if for all x ∈ Xd

q , n ∈ N,
and y ∈ Xx,n,d,q, there exists a sequence of Kempe moves from x to y contained in
Xx,n,d,q.

Question 5.4. For which q and d is Xd
q Kempe move connected?

Again, we are not aware of any (q, d) for which Xd
q is not Kempe move connected.
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{0,1}

{0,2}

{0,2}

{0,1}

{1,2}

{2,3}

{2,3}

{1,2}

{0,1}

Figure 2. The lists S|[2]2×{2} (front) and S|[2]2×{1} (back).

5.3. Extension of a q-coloring of ∂[n]d to [n]d for q ≤ d+ 1. It was indicated
after the end of the proof of Proposition 4.1 that when 3 ≤ q ≤ d + 1, there exist
q-colorings of ∂[n]d which do not have an extension into [n]d.

Question 5.5. Characterise q-colorings of ∂[n]d which have an extension to [n]d.
What is the complexity of determining (in terms of n, q and d) whether an extension
is possible?

For q = 3, using the “height functions” formalism, the complexity is known to
be of the order n log n for d = 2 (it follows from arguments very similar to those in
[18]) and n2(d−1) for higher dimensions.

5.4. Optimizing the parameters of list-colorability. We would be interested
to determine for which n and L it holds that [n]d is L-list-colorable. We have shown
that [n]d is L-list-colorable when n ≥ d + 2 and L = Ld

n, but we have not tried to
optimize n or L. We raise two questions, one concerning the optimal n, and the
other related to improving L.

It can be shown (e.g., by Theorem 3.1) that [2]2 is L2
2-list-colorable. On the other

hand, [2]3 is not L2
3-list-colorable. To see this, consider the lists S : [2]3 → 2{0,1,2,3}

given by Figure 2. The two possible list-colorings of [2]2 × {1} are 1 0
0 2 and 0 2

1 0 ,
which are incompatible with those of [2]2 × {2}, that are 1 2

2 3 and 2 3
1 2 .

Recall that, due to Proposition 3.3, the property of being Ld
n-list-colorable is

monotone in n, so it is natural to ask the following question.

Question 5.6. What is the smallest n for which [n]d is Ld
n-list-colorable?

Regarding improvements to the function L, we note that it might be possible
to decrease Ld

n pointwise and still find that [n]d is list-colorable. For example, in
dimension d = 2, it is not hard to show using Theorem 3.1, that [n]2 is L-list-
colorable for the function L := min{L2

n, 3} (simply orient the external face in a
cycle and all other edges in the positive direction; note that L = L2

n ≡ 2 if n = 2,
but otherwise L 6= L2

n).

Question 5.7. What is the smallest k for which [n]d is min{Ld
n, k}-list-colorable

for large enough n?

Other functions L which one may wonder about are the constant functions. We
say that G is k-list-colorable if it is L-list-colorable for the constant function L ≡ k.

12



Though k-list-colorability is slightly less related to mixing properties, it is still an
interesting combinatorial problem.

Question 5.8. What is the smallest k for which [n]d is k-list-colorable for all n?

Using the Lovász local lemma, one may show that k ≥ Cd/ log d suffices for some
constant C > 0 (this holds for any triangle-free graph with maximum degree d [15];
see also [1]). We remark that this easily leads to a proof that Xd

q is 2-fillable when
q ≥ d + Cd/ log d, and that this approach to showing fillability can also be useful
for proper colorings of other graphs besides Zd.
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