
Erratum: Maximum connected matching in bipartite graphs

1 Result

Recall the following definitions and results from [1].

Definition 2.3: For a given graph G, a connected matching in G is a matching M such that

every two edges of M are connected by an edge of G. Let νc(G) denote the size of the maximum

cardinality of a connected matching in G.

Theorem 3.1: Given a bipartite graph G with n vertices on each side, it is NP-hard to

approximate νc(G) within a factor of n1−ε for any ε > 0 under a randomized polynomial time

reduction.

Definition 3.2: Fix n ∈ N . A bipartite graphHCn = (A = {u1, . . . , un}, B = {v1, . . . , vn}, EH)

is said to be a bipartite half-cover of Kn if (1) for every {i, j} ⊆ [n], (ui, vj) ∈ EH or (uj , vi) ∈ EH ,

and (2) for every i ∈ [n], (ui, vi) /∈ EH .

Claim 3.3: There is an O(n)-time randomized algorithm that on input n ∈ N outputs a graph

HCn, which is a bipartite half-cover of Kn such that νc(HCn) ≤ O(log n) with probability

1− o(1).

As remarked in [1] a deterministic polynomial time construction of such graphs would imply

that the hardness result in Theorem 3.1 holds under a deterministic reduction (as opposed to

the randomized reduction stated). Here we show how to modify the proof of Theorem 3.1 and

get that a weaker hardness result holds under deterministic reduction. In particular, this gives

that the problem of computing νc(G) for a given input bipartite graph G is APX-hard (and

hence also NP-hard). Moreover, it is NP-hard to approximate this quantity up to any constant

factor. This is stated in the following result.

Theorem 1.1. Given a bipartite graph G with n vertices on each side, the problem of computing

νc(G) up to any constant factor is NP-hard. In particular the problem is APX-hard.

2 Proof

We need the fact that it is NP-hard to approximate the clique number of a graph even when

this number is linear. This is well known, in particular we state the following result of Hastad

[4] (see proof of Theorem 8.1 there).

Theorem 2.1 ([4]). Given an n-vertex graph G, it is NP-hard to distinguish, for any fixed

ε > 0, between the case that the size w(G) of the maximum clique of G is at least n
4 (1− ε) and

the case that w(G) is at most n
8 (1 + ε).

1



Note that by a simple powering construction this implies that for any constant k it is NP-

hard to distinguish between the case that the clique number is at least n
4k

(1− ε)k and the case

it is at most n
8k

(1 + ε)k.

The main tool in the proof is the following (weak) derandomized version of Claim 3.3 above.

Theorem 2.2. There is a deterministic polynomial time algorithm that on input n ∈ N (of the

form s2k for some integers s, k) outputs a graph HCn, which is a bipartite half-cover of Kn such

that

νc(HCn) ≤ n

eΩ(
√

logn)
.

The proof of this theorem is based on two lemmas. The first is an efficient deterministic algorithm

for constructing an initial relatively small half cover, and the second is an efficient procedure for

squaring a half cover. The desired graph is obtained from the small initial graph by repeated

squaring.

Lemma 2.3. There is a deterministic algorithm that on input n ∈ N outputs, in time polynomial

in n, a graph H, which is a bipartite half-cover of Km for m = e
√

logn such that

νc(H) ≤ O(logm) = O(
√

log n).

Proof (sketch): Apply the method of conditional expectations to the proof of Claim 3.3

given in [1]. (See, for example, [2], Section 16.1 for a similar argument.) The running time is

mO(logm) = nO(1). �

Lemma 2.4. There is a deterministic polynomial time algorithm which, given as an input a

bipartite half cover F of Kp with νc(F ) ≤ εp where 0 < ε < 1/4, outputs a bipartite half cover

F ′ of Kp2 satisfying νc(F
′) ≤ 4εp2.

Proof: Let the vertex classes of F be A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bp} where for

every i aibi is not an edge. We construct the graph F ′ by blowing up H as follows. Replace

each vertex ai by a set Ui of p vertices and each vertex bj by a set Vj of p vertices, where all

these sets are pairwise disjoint. The vertex classes of F ′ are U = ∪iUi and V = ∪jVj . For each

1 ≤ i ≤ p, the bipartite graph between Ui and Vi is a copy of F . For every 1 ≤ i 6= j ≤ p, the

bipartite graph between Ui and Vj is complete if aibj is an edge of F , otherwise it is edgeless.

It is easy to see that the constructed graph F ′ is a bipartite half cover of Kp2 . In order to

complete the proof we show that

νc(F
′) ≤ 4εp2. (1)

Indeed, let M be a maximum connected matching in F ′. Construct an auxiliary graph F”

on the classes of vertices A,B by letting aibj be an edge if and only if i 6= j and there is at

least one edge of M connecting a vertex of Ui and a vertex of Vj . Any matching in F” can be
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partitioned into three disjoint matchings, where none of these three matchings saturates both

ai and bi.

Note that each of these three matchings in F” must be a connected matching in F , and

hence its size is at most εp. This shows that the size of the maximum matching in F” is at most

3εp. By König’s Theorem this means that F” has a vertex cover of size at most 3εp, implying

that all edges of M that do not connect a vertex of Ui with one of Vi (for some i, with the same

index i) are covered by the vertices in at most 3εp of the blocks Ui, Vj . This gives a total of at

most 3εp2 edges of M . In addition, for each fixed i the connected matching M can contain at

most εp edges connecting a vertex in Ui and one in Vi, adding at most εp2 additional edges and

establishing (1). This completes the proof of the lemma. �

Starting with the graph H1 = H in Lemma 2.3 apply Lemma 2.4 repeatedly k times, where

2k =
√

log n. In each application 2p is the number of vertices of the bipartite graph F to which

the lemma is applied, and ε is the ratio between νc(F ) and p. This process shows that there is

a deterministic algorithm that on input n ∈ N (of the form s2k for some integers s, k) outputs,

in time polynomial in n, a graph HC, which is a bipartite half-cover of Kn such that

νc(HC) ≤ 4k
O(
√

log n)

e
√

logn
n =

n

eΩ(
√

logn)
.

This establishes the statement of Theorem 2.2. The assumption that n is of the form s2k is not

essential, as it is possible to remove, if needed, an appropriate number of vertices of the resulting

half-cover in each of the applications of the lemma.

The assertion of Theorem 1.1 follows from Theorem 2.2 and the paragraph following it,

together with Theorem 2.1, by following the argument given in [1] for proving Theorem 3.1,

based on Claim 3.4 in [1]. We omit the details.

Acknowledgment We thank Cyriac Antony and Daniel Paulusma [3] for pointing out a flaw

in a previous proof we suggested in [1] for a weaker version of Theorem 1.1. The result here is

stronger than the one claimed in [1] as it shows that the problem of computing νc(G) for a given

bipartite input graph G is not only NP-hard but is also APX-hard. In fact, even the problem of

approximating νc(G) up to any constant factor is NP-hard. A full derandomization of Claim 3.3

may lead to a version of Theorem 3.1 which holds under a deterministic polynomial reduction.
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