Correction: Basic Network Creation Games

Noga Alon* Erik D. Demaine ${ }^{\dagger} \quad$ MohammadTaghi Hajiaghayi ${ }^{\ddagger}$
Panagiotis Kanellopoulos ${ }^{\S}$ Tom Leighton

Abstract

We prove a previously stated but incorrectly proved theorem: there is a diameter-3 graph in which replacing any edge $\{v, w\}$ of the graph with $\left\{v, w^{\prime}\right\}$, for any vertex w^{\prime}, does not decrease the total sum of distances from v to all other nodes (a property called sum equilibrium).

Theorem 5 in [1] states that there exists a diameter-3 sum equilibrium graph, that is, an undirected graph such that, for every edge $\{v, w\}$ and every node w^{\prime}, replacing edge $\{v, w\}$ with $\left\{v, w^{\prime}\right\}$ does not decrease the total sum of distances from v to all other nodes (and thus no vertex v has incentive to swap an incident edge). In this short note, we observe an error in the original construction and proof, but present a different example that is indeed a diameter- 3 sum equilibrium graph, thereby restoring the theorem.

First we describe why Figure 3 of [1] is not in sum equilibrium. Specifically, vertex d_{1} has an incentive to replace the edge $\left\{d_{1}, c_{1,1}\right\}$ with $\left\{d_{1}, c_{2,1}\right\}$, as the total distance is 27 in the first case and 26 in the last. The original proof ignores that $c_{2,1}$ is a neighbor of $c_{1,1}$ and, hence, Lemma 8 of [1] implies that the distance from d_{1} to $c_{1,1}$ increases by 1 and not by 2 as claimed.

Figure 1 below presents a diameter- 3 sum equilibrium graph G (which is also simpler than the original construction). In this instance, vertices v_{2}, v_{4}, v_{5}, and v_{7} have local diameter 2 so, by Lemma 6 of [1], they have no incentive to swap any edge. (Lemma 6 states that a vertex of local diameter 2 never has incentive to swap an incident edge, as the number of distance- 1 neighbors remains fixed, and thus the number of nodes at distance ≥ 2 remains fixed, so keeping their distances equal to 2 is optimal.) Among the remaining vertices, by symmetry, it suffices to prove that v_{1} and v_{3} do not have an incentive to swap edges.

Consider vertex v_{i} for $i \in\{1,3\}$. Let G_{-i} be the graph obtained by removing vertex v_{i} and its incident edges; refer to Figure 2. The sum of distances for v_{i} in G is 13 . Because v_{i} has degree 2 , the smallest possible sum of distances for v_{i} is 12 , which can be obtained if v_{i} were connected to two vertices that form a dominating set in G_{-i}. (A dominating set of cardinality larger than

[^0]

Figure 1: A diameter-3 sum equilibrium graph.
two can safely be ignored because v_{i}, having degree 2 , cannot connect to all its vertices in order to reduce the sum of distances to less than 13.) Furthermore, the only dominating set in G_{-i} with cardinality 2 consists of vertices with degree 3 in G_{-i}, i.e., vertices v_{4} and v_{7} for G_{-1} and vertices v_{5} and v_{7} for G_{-3}. (To see that, note that, because G_{-i} contains 7 vertices, the dominating set should contain at least one vertex of degree 3, and the subgraph of G_{-i} obtained after removing a vertex of degree 3 and its neighbors consists of a line of three vertices; clearly, the middle vertex of the line, which in all cases has degree 3 in G_{-i}, is the only possible choice for inclusion in the dominating set.)

Figure 2: Graphs G_{-1} (top) and G_{-3} (bottom). Grey vertices form the only dominating sets of cardinality two.

We conclude that, in order for vertex v_{i} to reduce the sum of distances to $12, v_{i}$ should connect to both vertices of G that form a dominating set in G_{-i}. The claim follows by noticing that, in G, v_{i} is not connected to any of these two vertices, and hence cannot improve its sum of distances with a single edge swap. This concludes the proof of Theorem 5 in [1].

We have verified by exhaustive computer search that no graph with fewer than eight vertices is in sum equilibrium. Among graphs with eight vertices, Figure 1 has the fewest number 10 of edges, along with one other graph in which edge $\left\{v_{2}, v_{7}\right\}$ is replaced by $\left\{v_{3}, v_{6}\right\}$; there are also examples with 11 and 12 edges.

Acknowledgments

We thank Vahid Liaghat for implementing the computer search.

References

[1] N. Alon, E. D. Demaine, M. T. Hajiaghayi, and T. Leighton. Basic network creation games. SIAM Journal on Discrete Mathematics, 27(2):656-668, 2013.

[^0]: ${ }^{*}$ Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; and IAS, Princeton, NJ 08540, USA; nogaa@tau.ac.il Supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation, by an ERC Advanced Grant, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
 ${ }^{\dagger}$ MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA, edemaine@mit.edu Supported in part by NSF grant CCF-1161626 and DARPA/AFOSR grant FA9550-12-1-0423.
 ${ }^{\dagger}$ Computer Science Department, University of Maryland, College Park, MD 20742; and AT\&T Labs - Research, 180 Park Ave., Florham Park, NJ 07932, USA; hajiagha@cs.umd.edu. Supported in part by NSF CAREER award 1053605 , NSF grant CCF-1161626, ONR YIP award N000141110662, and DARPA/AFOSR grant FA9550-12-1-0423.
 ${ }^{\S}$ Computer Engineering \& Informatics Department, University of Patras, 26504, Rio, Greece, kanellop@ceid. upatras.gr
 ${ }^{7}$ Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; and Akamai Technologies; ftl@math.mit.edu

