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Abstract

It is shown that for any set of 2n points in general position in the plane there is a non-crossing

perfect matching of n straight line segments whose total length is at least 2/π of the maximum

possible total length of a (possibly crossing) perfect matching on these points. The constant

2/π is best possible and a non-crossing matching whose length is at least as above can be found

in polynomial time. Similar results are obtained for the problem of finding a long non-crossing

Hamilton path and a long non-crossing spanning tree for a given set of points in the plane.

1 Introduction

A geometric graph is a pair G = (V,E) , where V is a finite set of points in general position in the

plane and E is a family of closed straight line-segments whose end-points lie in V . The elements of

V are called vertices and these of E are called edges. The length of G, denoted by L(G), is the sum

of Euclidean lengths of all edges of G. G is non-crossing if the interiors of all its edges are pairwise

disjoint.

Several results in Combinatorial and Computational Geometry deal with the extremal values of

the length L(G) of a geometric graph G of a prescribed type on a given set of vertices in the plane.

The best known example of a problem of this type is the (Euclidean) travelling salesman problem

in which one is interested in finding a Hamilton cycle (or path) G of minimum possible length on a
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given set of points in the plane. It is well known that this problem is NP-hard ([5]), and there are

numerous results on approximating the optimal solution and on the properties of such a solution.

See, e.g., [4].

In this paper we consider the problem of finding a non-crossing geometric graphG of a prescribed

type on a given set of points in the plane, whose length L(G) is maximum. We consider this problem

when the desired graph G is a perfect matching, a Hamilton path, or a spanning tree. Somewhat

surprisingly, in all these cases there is always a non-crossing G of the desired type whose length

L(G) is at least some absolute constant times the maximum possible length of a possibly crossing

graph G of the corresponding type on the same set of points. We note that this is not true for some

other, similar, classes of graphs G. For example, the maximum possible length of a non-crossing

Hamilton cycle on a set of n evenly distributed points on the unit cycle is smaller than the length

of the cycle, whereas the length of the maximum possible (crossing) Hamilton cycle on this set of

points is Ω(n), showing that the ratio between the two is unbounded as n grows.

Our main results are summarized in the following three theorems. All the graphs mentioned

in their statements (i.e., the perfect matchings, the Hamilton paths and the spanning trees) are

geometric graphs and hence their edges are straight line segments.

Theorem 1.1 Let V be a set of 2n points in general position in the plane and let LM denote

the maximum possible length of a (possibly crossing) perfect matching on V . Then there is a non-

crossing perfect matching on V whose length is at least 2
πLM . Such a non-crossing perfect matching

can be found in polynomial time (in n, for a given set V as above). Moreover, the constant 2/π is

the best possible constant (for which the assertion of the theorem holds for every n).

Theorem 1.2 Let V be a set of n points in general position in the plane and let LP denote

the maximum possible length of a (possibly crossing) Hamilton path on V . Then there is a non-

crossing Hamilton path on V whose length is at least 1
πLP . Such a non-crossing path can be found

in polynomial time.

Theorem 1.3 Let V be a set of n points in general position in the plane and let LT denote the

maximum possible length of a (possibly crossing) spanning tree on V . Then there is a non-crossing

spanning tree on V whose length is at least n
2n−2LT ( > 1

2LT ). Such a non-crossing tree can be

found in polynomial time.
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Note that the three theorem above supply efficient algorithms that approximate the maximum

possible length of a non-crossing perfect matching, Hamilton path or spanning tree on a given set

of points. We do not know if finding the exact value of the corresponding maximum is NP-hard

for any of these problems, but suspect that this is the case for all of them. This, however, remains

open.

2 Perfect matchings

A well known Olympiad problem (see, e.g., [3],[2]) asserts that for any two sets X and Y in the

plane, where |X| = |Y | = n and X ∪ Y is in general position, there is a non-crossing perfect

matching that matches the points of X with these of Y . In the proofs of Theorems 1.1 and 1.2 we

need the following slightly stronger result for a special case of this fact.

Lemma 2.1 Let l be a strainght line in the plane, let X be a set of n points in the right side of l

and let Y be a set of n points in its left side. Suppose, further, that X ∪ Y is in general position.

Then there is a non-crossing perfect matching xiyi (1 ≤ i ≤ n) that matches X and Y so that for

every i, 1 ≤ i < n, either the two open line segments xixi+1, xiyi+1 or the two open line segments

yixi+1, yiyi+1 do not intersect the convex hull of {xi+1, . . . , xn, yi+1, . . . , yn}. Given the points in X

and in Y , such a matching can be found in time O(n log n).

Proof Without loss of generality, suppose l is a vertical line. For any set of points Z, let C(Z)

denote its convex hull. Put X1 = X, Y1 = Y and observe that the two convex hulls C(X1) and

C(Y1) are disjoint. Let l1 be a common tangent to these hulls, so that both of them lie below it.

Obviously l1 contains a point of X1 and a point of Y1. Denote these points by x1 and y1 and define

X2 = X − x1, Y2 = Y − y1. Let l2 be a common tangent to C(X2) and C(Y2) so that both hulls

lie below it. Let x2 be the unique intersection point of l2 and C(X2) and let y2 be the unique

intersection point of l2 and C(Y2). Define X3 = X2 − x2, Y3 = Y2 − y2 and continue in the same

manner. This procedure defines our matching xiyi. It is not difficult to check that it is non-crossing

and satisfies the assertion of the lemma. Moreover, it can be found in time O(n log n), as shown in

[7]. 2

Next we prove the following simple statement.
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Lemma 2.2 Let z1, . . . , z2n be a set of n points on a line appearing in this order from left to right

on the line and let y be a point on the line segment joining zn and zn+1. Then the total length of

any perfect matching on the above points is at most the sum of distances of y to the 2n points zj.

Equality holds for any matching that matches each point to the left of y to a point to its right and

only for these matchings.

Proof Given a perfect matching on the points zj , one can replace each edge zizj of the matching by

the two line segments ziy and zjy whose total length is at least that of zizj , by the (one dimensional)

triangle inequality. Since this procedure replaces the matching by the 2n segments yzj and since

each application of the triangle inequality is strict unless the matched points lie in opposite sides

of y the desired result follows. 2

The next proposition establishes the first part of Theorem 1.1

Proposition 2.3 Let V be a set of 2n points in general position in the plane and let LM denote

the maximum possible length of a (possibly crossing) perfect matching on V . Then there is a non-

crossing perfect matching on V whose length is at least 2
πLM . Such a non-crossing perfect matching

can be found in time o(n5/2 log n). Moreover, for any ε > 0 a non-crossing matching of length at

least (1− ε) 2
πLM can be found in time O(n log n/

√
ε).

Proof Let PM be a (possibly crossing) perfect matching of length LM on the points of V . For a

line l in the plane and for v ∈ V , let Pl(v) denote the (orthogonal) projection of v on l. Observe

that for any line segment s = uv of length g, if the slope of l is chosen uniformly and randomly in

the range [0, π), then the expected length of the projection of s on l, i.e., the expected length of

the segment Pl(u)Pl(v) is:
1
π
g

∫ π

0
| cosα| dα =

2
π
g.

Therefore, by linearity of expectation, the expected total length of the projection of the matching

PM on l is 2
πLM . It follows that there is a line l so that the projection of PM on l is of length at

least 2
πLM . Let z1, . . . , z2n be the projections of the points of V on l and suppose these appear in

this order on l. (It is easy to see that we may assume these are all distinct). Let y be a point on the

line segment znzn+1. By Lemma 2.2 the length of the projection of PM on l is at most the sum of

the distances between y and the points zi, and this last sum is the length of any perfect matching

between the points z1, . . . , zn and zn+1, . . . , z2n. Let xi be the point of V whose projection on l is zi

4



(1 ≤ i ≤ n), and let yi be the point of V whose projection on l is zn+i (1 ≤ i ≤ n). By Lemma 2.1

there is a non-crossing matching M that matches the points xi to the points yj . The projection of

this matching on l matches the points zj with j ≤ n to the points zk with k > n. Thus the length

of this projection is at least 2
πLM and since the length of M is at least the length of its projection

we conclude that L(M) ≥ 2
πLM , as needed.

In order to convert the proof above to an algorithm observe that one only has to find a non-

crossing matching between X and Y for any possible partition V = X ∪ Y with |X| = |Y | = n

so that X and Y can be separated by a line. It is well known (see [6]) that there are at most

o(n3/2) such partitions and all of them can be found in time o(n3/2). For each partition we can

find the corresponding non-crossing matching in time O(n log n), by Lemma 2.1. The matching of

maximum length found is the one to be chosen by the algorithm.

If a non-crossing matching of length at least (1 − ε) 2
πLM suffices it is enough to choose b/

√
ε

lines li of evenly distributed slopes in [0, π), where b is an absolute constant. As shown above there

is always a line l so that the length of the projection of PM on l is at least 2
πLM . Let li be the

line among our lines whose slope is closest to that of l. It is easy to check that for sufficiently large

b the projection of LM on li is at least (1 − ε) 2
πLM , (since cos t = 1 − O(t2) for small t). Hence

it suffices to find a non-crossing matching for the appropriate O(1/
√
ε) pairs (X,Y ) obtained by

projecting V on the lines li, yielding a total running time of O(n log n/
√
ε). This completes the

proof of the proposition. 2

In order to complete the proof of Theorem 1.1 it remains to show that the constant 2/π is best

possible. To this end we prove the following.

Lemma 2.4 The maximum length of a non-crossing perfect matching on 2n evenly distributed

points on a cycle of radius 1 is the length of any perfect matching consisting of pairwise parallel

edges, which is

C2k = 4(cos
π

4k
+ cos

3π
4k

+ . . .+ cos
(2k − 1)π

4k
)

for n = 2k and

C2k+1 = 2(1 + 2(cos
π

2k + 1
+ cos

2π
2k + 1

+ . . .+ cos
kπ

2k + 1
))

for n = 2k + 1.
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Proof The n points split the cycle into n equal circular arcs. Define the span of a segment joining

two of the points to be the number of such arcs in the shorter semi-cycle defined by its two ends.

Thus, the span is always an integer between 1 and n. Observe that the span of any segment which

is part of a non-crossing perfect matching is always an odd integer since it must split the other

points into two even sets. Let M be a non-crossing perfect matching on our points. For each odd

i, i ≤ n, let Ni denote the number of segments in M whose span is at least i.

Claim: For each admissible i, Ni ≤ n− i+ 1.

Proof: Since every two segments of span n cross we may and will assume that i < n. If Ni ≤ 1

there is nothing to prove. Otherwise, one can easily check that there are two segments p1p2 and

p3p4 in our matching, each of span at least i, with the following properties. p1, . . . , p4 appear in

this order (clockwise) on the cycle and there is no other segment of span at least i in M that has

an endpoint among the points on the cycle from p1 to p2 (clockwise) or from p3 to p4. (To see this,

consider the ”rightmost” and ”leftmost” segments of span at least i in M). There are at least i− 1

points on each of the open circular arcs p1p2 and p3p4 and hence all the endpoints of the segments

of M of span at least i lie in a set of 2n− 2(i− 1) points, implying the assertion of the claim.

Returning to the proof of the lemma, observe that for a perfect matching on our points consisting

of parallel edges there are precisely n− i+ 1 segments of span at least i for each odd i ≤ n. Let li

denote the Euclidean length of a segment of span i. Note that the sequence li is increasing. Define

Ni = 0 for all i > n and observe that the number of segments of span precisely i in M is Ni−Ni+2

for all odd i ≤ n. Therefore,

L(M) =
∑

i≤n,i≡1(mod 2)

(Ni −Ni+2)li = N1l1 +
∑

3≤i≤n,i≡1(mod 2)

Ni(li − li−2)

≤ nl1 +
∑

3≤i≤n,i≡1(mod 2)

(n− i+ 1)(li − li−2) =
∑

1≤i≤n,i≡1(mod 2)

(n− i+ 1)(li − li−2),

where the last inequality follows from the fact that li ≥ li−2 and from the claim. However, the right

hand side of the last inequality is precisely the length of a perfect matching consisting of parallel

edges (which is given analytically in the assertion of the lemma). This completes the proof. 2

It is worth noting that the last lemma can be proved in a somewhat simpler way, as observed

by R. Adin [1]. However, the proof presented above can be easily applied to deduce similar bounds

for the other problems considered here and is thus more useful.
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By the definition of an integral as a limit of the corresponding Riemann sums, one can easily

conclude that

lim
k 7→∞

C2k

4k
= lim

k 7→∞

C2k+1

4k + 2
=
∫ π

0
| cosα| dα =

2
π
.

Since the length of a maximum (crossing) perfect matching on our points is 2n it follows, by Lemma

2.4, that 2
π is indeed the best possible constant in Theorem 1.1, completing its proof. 2

3 Hamilton paths

In this section we prove Theorem 1.2. Let V be a set of n points in general position in the plane

and let H be a possibly crossing Hamilton path on V of maximum possible length L(H) = LP . We

must show that there is a non-crossing Hamilton path of length at least 1
πLP . The proof, which

resembles the one presented in the previous section, is somewhat simpler in case n is even. In this

case one can first complete H to a Hamilton cycle H ′ by adding to it the missing edge. Clearly

L(H ′) ≥ L(H) and since n is even H ′ is a union of two perfect matchings on V . It follows that

there is a perfect matching M on V of length L(M) ≥ L(H)/2. By the argument given in the proof

of Proposition 2.3 there is a line l in the plane so that the length of the projection of M on l is at

least
2
π
L(H)/2 =

1
π
L(H).

Put n = 2k, let z1, . . . , z2k denote the projections of the points in V on l and assume they appear

in this order on l from left to right. Let X be the set of points of V whose projections are z1, . . . , zk

and put Y = V − X. By the argument given in the previous section, the length of any perfect

matching that matches the points of X with these of Y is at least the length of the projection of

M on l, i.e., it is at least 1
πL(H). In order to obtain a non-crossing Hamilton path on V of the

desired length it thus suffices to show that there is such a path that contains a perfect matching as

above. To do so observe that by Lemma 2.1 there is a numbering of the points in X and Y and a

non-crossing perfect matching xiyi, (1 ≤ i ≤ k) so that for every 1 ≤ i < k, either

(i) xixi+1, xiyi+1 do not intersect the convex hull of {xi+1, . . . xk, yi+1, . . . , yk} , or

(ii) yixi+1, yiyi+1 do not intersect the convex hull of {xi+1, . . . xk, yi+1, . . . , yk}.

This enables us to complete the perfect matching xiyi into a non-crossing Hamilton path.

Indeed, assuming that a non-crossing Hamilton path on {xi+1, . . . yk} has already been defined so
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that its starting point is either xi+1 or yi+1 it can be extended by joining its starting point to xi

in case (i) holds or to yi in case (ii) holds. The arguments of the pervious section can be easily

applied to convert the last proof into an algorithm for finding a path with the required properties

in time o(n5/2 log n), or a non-crossing path of length at least 1−ε
π LP in time O(n log n/

√
ε). This

completes the proof of Theorem 1.2 for even n.

The proof for odd n is similar, but contains an additional complication. Suppose n = 2k + 1,

and let us call any matching of k edges on a set of 2k+ 1 points, a near perfect matching. An easy

modification of Lemma 2.2 is the following result, whose simple proof, which is analogous to that

of Lemma 2.2, is omitted.

Lemma 3.1 Let z1, . . . , z2k+1 be a set of 2k + 1 points on a line appearing in this order on the

line. Then the total length of any near perfect matching on the above points is at most the sum

of distances of zk+1 to the other 2k points zj. Equality holds for any matching that matches each

point to the left of zk+1 to a point to its right and only for these matchings.

Suppose, now, that V is a set of points in general position in the plane, |V | = 2k + 1, and let H

be a (possibly crossing) Hamilton path of maximum length L(H) = LP on V . Obviously H is a

union of two near-perfect matchings on V and hence the length of one of them is at least L(H)/2.

Thus there is a line l so that the length of the projection of some near perfect matching on l is at

least 1
πLP . Let z1, . . . z2k+1 be the projections of the points of V on l written according to their

order on l, let X ⊂ V be the set of points projected to z1, . . . , zk and let Y ⊂ V be the set of

points projected to zk+1, . . . , z2k+1. Let z be the unique point in V − (X ∪ Y ). The length of any

matching that matches the points of X to those of Y is at least 1
πLP , and hence it suffices to prove

that there is a non-crossing Hamilton path on V containing such a matching. This can be shown

by applying Lemma 2.1 to the two sets X and Y . As before, it is easy to see that the matching

guaranteed by the Lemma can be extended to a Hamilton path on X ∪Y . Moreover, since we may

assume that the additional point z lies on the line separating X and Y (which intersects all the

edges in the matching) it is not difficult to see that there is an edge of the path so that the line

segments joining its two ends to z do not intersect the path. Therefore, one can replace such an

edge by the two edges joining its ends to z to get, by the triangle inequality, a Hamilton path on

V whose length is at least 1
πLP . This clearly yields an efficient algorithm as before, completing the
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proof of Theorem 1.2. 2

It is worth noting that evenly distributed points on a cycle show easily that the constant 1
π in

Theorem 1.2 cannot be replaced by any constant larger than 2
π . We do not know the best possible

constant in this theorem.

4 Spanning trees

The proof of Theorem 1.3 is simpler than these of the previous two theorems, and follows as a

special case of a more general result that holds in arbitrary metric spaces. If V is a set of points in

a metric space, and T is a graph on V , the length of T , denoted by L(T ), is the sum of lengths of

the edges of T , where the length of an edge is the distance between its two end-points. If v ∈ V ,

the star at v, denoted by Sv, is the spanning tree on V consisting of all edges {vu : u ∈ V − v}.

Obviously, if the metric space is the Euclidean plane and V is a set of points in general position,

then each such star Sv is non-crossing. Therefore, Theorem 1.3 follows from the following result.

Proposition 4.1 Let V be a set of n points in an arbitrary metric space and let T be a spanning

tree of maximum length on V . Then there is a v ∈ V so that

L(Sv) ≥
n

2n− 2
L(T ). (1)

Moreover, this estimate is best possible for every even n.

Proof To see that the above estimate (if true) is best possible for every n = 2k let p1 and p2 be

two points in a metric space the distance between which is 1, and let V consist of k copies of p1

and k copies of p2. Then the total length of any star on a member of V is k = n/2, whereas the

maximum possible length of a spanning tree on V is n− 1. The ratio between these two quantities

is n/(2n− 2), as desired. (Note that by a small perturbation one can give an example with almost

the same ratio without repeated points).

It remains to show that there is always a star satisfying (1). For every v ∈ V , define a (multi)

graph Rv on V by letting its set of edges consist of all edges of T incident with v together with two

additional edges vx and vy for every edge xy of T with x, y 6= v. Thus Rv is a (multi) graph with

2(n− 1)− deg(v) edges, where deg(v) is the degree of v in T , and all these edges are incident with
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v. Moreover, by the triangle inequality L(Rv) ≥ L(T ) for all v. In addition, the number of copies

of the edge uv in Rv is precisely deg(u).

Let l(uv) denote the length of the edge uv and let V2 denote the set of all
(n

2

)
(unordered) pairs

of members of V . Then, by the previous paragraph

nL(T ) ≤
∑
v∈V

L(Rv) =
∑
uv∈V2

(deg(u) + deg(v))l(uv)

=
∑
v∈V

deg(v)L(Sv) ≤ (
∑
v∈V

deg(v)) Maxv∈V L(Sv) = (2n− 2) Maxv∈V L(Sv).

Therefore,

Maxv∈V L(Sv) ≥
n

2n− 2
L(T ),

completing the proof. 2

It is not too difficult to extend Lemma 2.4 and deduce from that extension that the constant
1
2 in Theorem 1.3 cannot be replaced by any constant larger than 2

π . We do not know the best

possible constant in this theorem. Our techniques can be used to obtain, for a given set V of n

points in general position in the plane, a non-crossing spanning tree on V of length Ω(LT ) in linear

time. We omit the details.
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