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Abstract

Let T be a fixed tournament on k vertices. Let D(n, T ) denote the maximum number of
orientations of an n-vertex graph that have no copy of T . We prove that D(n, T ) = 2tk−1(n)

for all sufficiently (very) large n, where tk−1(n) is the maximum possible number of edges of a
graph on n vertices with no Kk, (determined by Turán’s Theorem). The proof is based on a
directed version of Szemerédi’s regularity lemma together with some additional ideas and tools
from Extremal Graph Theory, and provides an example of a precise result proved by applying
this lemma. For the two possible tournaments with three vertices we obtain separate proofs that
avoid the use of the regularity lemma and therefore show that in these cases D(n, T ) = 2bn

2/4c

already holds for (relatively) small values of n.

1 Introduction

All graphs considered here are finite and simple. For standard terminology on undirected and
directed graphs the reader is referred to [4]. Let T be some fixed tournament. An orientation of an
undirected graph G = (V,E) is called T -free if it does not contain T as a subgraph. Let D(G,T )
denote the number of orientations of G that are T -free. Let D(n, T ) denote the maximum possible
value of D(G,T ) where G is an n-vertex graph. In this paper we determine D(n, T ) precisely
for every fixed tournament T and all sufficiently large n. Problems of counting orientations and
directed subgraphs of a given type have been studied by several researchers. Examples of such
results appear in [1, 8].

The problem of determining D(n, T ) even for three-vertex tournaments is already quite compli-
cated (it is trivial for the unique two-vertex tournament). If G has no k-clique and T is a k-vertex
tournament, then, clearly, D(G,T ) = 2e(G) where e(G) denotes the number of edges of G. Thus,
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for a k-vertex tournament T we obtain the following easy lower bound:

D(n, T ) ≥ 2tk−1(n) (1)

where tk−1(n) is the maximum possible number of edges of a graph on n vertices with no Kk.
Turán’s Theorem shows that tk−1(n) is the number of edges of the unique complete (k− 1)-partite
graph with n vertices whose vertex classes are as equal as possible. In some cases, the lower bound
in (1) is not the correct answer. For example, Let T = C3 denote the directed triangle. For n = 7,
the graph G = K7 has 7! orientations that have no directed triangle (all the acyclic orientations).
Hence D(7) ≥ 7! = 5040 > 2t2(7) = 212 = 4096. Similar examples are true for other tournaments
with more than three vertices. However, all examples have n relatively small as a function of the
number of vertices of the tournament. This suggests that possibly for every tournament T , and
all n sufficiently large (as a function of T ), the lower bound in (1) is the correct value. Our main
theorem shows that this, indeed, is the case.

Theorem 1.1 Let T be a fixed tournament on k vertices. There exists n0 = n0(T ) such that for
all n ≥ n0,

D(n, T ) = 2tk−1(n).

The proof of Theorem 1.1 is presented in the next two sections. It is based on the basic approach
in [2] with some additional ideas, and uses several tools from Extremal Graph Theory, including a
(somewhat uncommon) directed version of the regularity lemma of Szemerédi. It provides a rare
example in which this lemma is used to prove results on directed graphs, and an even more rare
example of a precise result obtained with the lemma.

Unfortunately, the use of the regularity lemma forces the constant n0 appearing in Theorem
1.1 to be horribly large even for the case k = 3. In section 4 we give a different proof for the
special case T = C3 that avoids using the regularity lemma, and obtain a moderate value for
n0(C3) (that can be optimized to less than 10000). Section 4 also contains a description of a simple
reduction from the problem of counting the number or red-blue edge colorings of a graph G having
no monochromatic Kk (solved in [11] for k = 3 and in [2] for k > 3) to the problem of counting the
number of orientations of a graph G that do not contain the transitive tournament on k vertices,
denoted Tk. Using this reduction we show, in particular, that n0(T3) = 1. The final section contains
some concluding remarks and open problems.

In the rest of this paper, if x and y are vertices then xy refers to an edge between x and y in an
undirected graph and (x, y) refers to a directed edge from x to y. If X and Y are disjoint subsets of
vertices then e(XY ) denotes the number of edges between X and Y in an undirected graph, while
e(X,Y ) denotes the number of edges from X to Y in a directed graph.
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2 Graphs with many T -free orientations

Throughout the next two sections we assume that T is a fixed tournament on k + 1 vertices and
k ≥ 2. Let G be an n-vertex graph with at least 2tk(n) distinct T -free orientations. Our aim in this
section is to show that such graphs must be close to a k-partite graph. More precisely we prove
the following.

Lemma 2.1 For all δ > 0 there exists n0 = n0(k, δ), such that if G is a graph of order n ≥ n0

which has at least 2tk(n) distinct T -free orientations then there is a partition of the vertex set
V (G) = V1 ∪ · · · ∪ Vk such that

∑
i e(Vi) < δn2.

Our approach in the proof of Lemma 2.1 is similar to the one from [2] and [3], which is based
on two important tools, the Simonovits stability theorem and the Szemerédi regularity lemma.
However, we shall require a (somewhat uncommon) version of the regularity lemma for directed
graphs and a few other additional ideas. We now introduce the necessary tools and lemmas needed
for the proof of Lemma 2.1.

The stability theorem ([9], see also [4], p. 340) asserts that a Kk+1-free graph with almost as
many edges as the Turán graph is essentially k-partite. The precise statement follows.

Theorem 2.2 For every α > 0 there exists β > 0 (where β � α), such that any Kk+1-free graph
on m vertices with at least tk(m) − βm2 edges has a partition of the vertex set V = V1 ∪ · · · ∪ Vk
with

∑
i e(Vi) < αm2. 2

We also need the following lemma:

Lemma 2.3 Let γ > 0 and let H be a k-partite graph with at least tk(m)− γm2 edges. If we add
to H at least (2k+1)γm2 new edges then the new graph contains a Kk+1 with exactly one new edge
connecting two vertices in the same vertex class of H.

Proof: Let H ′ denote the new graph obtained from H by adding at least (2k+ 1)γm2 new edges.
Since H is a k-partite graph, at least (2k + 1)γm2 − γm2 = 2kγm2 new edges connect vertices in
the same vertex class of H. Hence, some vertex class X contains at least 2γm2 new edges. Since
every graph contains a bipartite spanning subgraph with more than half the number of edges, we
have that the induced subgraph of H ′ on X has a bipartite spanning subgraph with more than
γm2 edges. These edges, denoted F , together with the original edges of H define a subgraph of H ′

with more than tk(m) edges, which therefore contains a Kk+1. Such a Kk+1 must contain exactly
one edge of F and all other edges are original ones, as required. 2

Next, we introduce the directed version of Szemerédi’s regularity lemma. Although never pub-
lished, it is a relatively easy consequence of the standard regularity lemma proved in [10] and its
proof. For more details on the regularity lemma we refer the reader to the excellent survey of
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Komlós and Simonovits [7], which discusses various applications of this powerful result. We now
give the definitions necessary in order to state the directed regularity lemma.

Let G = (V,E) be a directed graph, and let A and B be two disjoint subsets of V (G). If A and
B are non-empty, define the density of edges from A to B as

d(A,B) =
e(A,B)
|A||B|

.

For ε > 0 the pair (A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B satisfying |X| > ε|A|
and |Y | > ε|B| we have

|d(X,Y )− d(A,B)| < ε |d(Y,X)− d(B,A)| < ε.

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, . . . , Vm

whose sizes are as equal as possible. An equitable partition of the set of vertices V of a directed
graph G into the classes V1, . . . , Vm is called ε-regular if |Vi| ≤ ε|V | for every i and all but at most
ε
(
m
2

)
of the pairs (Vi, Vj) are ε-regular.

The directed regularity lemma states the following:

Lemma 2.4 For every ε > 0, there is an integer M(ε) > 0 such that for every directed graph G

of order n > M there is an ε-regular partition of the vertex set of G into m classes, for some
1/ε ≤ m ≤M . 2

A useful notion associated with an ε-regular partition is that of a cluster graph. Suppose that
G is a directed graph with an ε-regular partition V = V1 ∪ · · · ∪ Vm, and η > 0 is some fixed
constant (to be thought of as small, but much larger than ε). The undirected cluster graph C(η)
is defined on the vertex set {1, . . . ,m} by declaring ij to be an edge if (Vi, Vj) is an ε-regular pair
with d(Vi, Vj) ≥ η and also d(Vj , Vi) ≥ η. From the definition, one might expect that if a cluster
graph contains a copy of Kk+1 then the original directed graph contains T (assuming ε was chosen
small enough with respect to η and k). This is indeed the case, as established in the following
slightly more general lemma whose proof is similar to an analogous lemma for the undirected case
(see [7]).

Lemma 2.5 Let η > 0 and suppose that ε < (η/2)k/k. Let G be a directed graph with an ε-regular
partition V = V1 ∪ · · · ∪ Vm and let C(η) be the cluster graph of the partition.

1. If C(η) contains Kk+1 then G contains T .

2. If C(η) does not have Kk+1 and (Vs, Vt) is an ε-regular pair with d(Vs, Vt) ≥ η but st /∈ C(η),
and the addition of st to C(η) forms a Kk+1, then G contains T .
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Proof: It clearly suffices to prove the second statement. Without loss of generality assume s = 1
and t = 2. Label the vertices of T with {1, . . . , k + 1} such that (1, 2) ∈ T (namely, there is an
edge directed from 1 to 2). We may assume that the addition of (1, 2) to C(η) forms a Kk+1 whose
vertices are 1, . . . , k+ 1. We will find a copy of T in G where vertex i of T corresponds to a vertex
of G belonging to Vi, for i = 1, . . . , k + 1.

We prove that for every p, 0 ≤ p ≤ k + 1 there are subsets Bi ⊂ Vi, 1 ≤ i ≤ k + 1, and a set of
vertices {a1, . . . , ap} where ai ∈ Bi with the following properties.
(i) |Bi| ≥ (η2 )i−1|Vi| for all 1 ≤ i ≤ p and |Bi| ≥ (η2 )p|Vi| for all p < i ≤ k + 1.
(ii) For all i = 1, . . . , p and for all i < j ≤ k + 1, if (i, j) ∈ T then (ai, v) ∈ G for all v ∈ Bj and if
(j, i) ∈ T then (v, ai) ∈ G for all v ∈ Bj .

The assertion of the lemma clearly follows from the above statement for p = k + 1 since the
vertices {a1, . . . , ak+1} induce T in G.

To prove (i) and (ii) we use induction on p. For p = 0 simply take Bi = Vi for all i. Given
the sets Bi and {a1, . . . , ap−1} satisfying (i), (ii) for p − 1 we show how to modify them to hold
for p. Observe that by assumption the cardinality of each Bj , for p < j ≤ k + 1, is bigger than
(η/2)k|Vj | ≥ ε|Vj |. For each such j if (p, j) ∈ T ((j, p) ∈ T ) let Bj

p denote the set of all vertices in
Bp that have outdegree (indegree) less than (η− ε)|Bj | into (from) Bj . We claim that |Bj

p| ≤ ε|Vp|
for each j. This is because otherwise the two sets X = Bj

p and Y = Bj would contradict the
ε-regularity of the pair (Vp, Vj), since d(Bj

p, Bj) < η − ε, whereas d(Vp, Vj) ≥ η, by assumption.
Therefore, the cardinality of the set Bp \ (Bp+1

p ∪ . . . ∪Bk+1
p ) is at least

|Bp| − (k + 1− p)ε|Vp| ≥
(η

2

)p−1
|Vp| − kε|Vp| > 0.

We can now choose arbitrarily a vertex ap in Bp \ (Bp+1
p ∪ · · · ∪ Bk+1

p ) and replace each Bj for
p < j ≤ k+ 1 by the set of outgoing (resp. incoming) neighbors of ap in Bj . Since η− ε > η/2 this
will not decrease the cardinality of each Bj by more than a factor of η/2 and it is easily seen that
the new sets Bi, and the set {a1, . . . , ap} defined in this manner satisfy the conditions (i), (ii) for
p. 2

Proof of Lemma 2.1. Let δ > 0 and let α < δ/(4k + 7). Whenever necessary we shall assume n
is sufficiently large as a function of δ and k. Let β = β(α, k) be chosen as in Theorem 2.2. Recall
that β < α. Let η < β be a positive constant to be chosen later. Let ε < (η/2)k/k and notice that
η and ε satisfy the conditions of lemma 2.5. Let M = M(ε) be as in Lemma 2.4.

Let G = (V,E) be an undirected graph with n vertices and at least 2tk(n) distinct T -free
orientations.

Let ~G be a T -free orientation of G. By applying Lemma 2.4 to ~G we get a partition V =
V1 ∪ · · · ∪ Vm satisfying the conditions of the lemma. In particular, 1/ε ≤ m ≤ M . Let C = C(η)
be the corresponding cluster graph on the vertex set {1, . . . ,m}. By Lemma 2.5, C(η) is Kk+1-free
and thus by Turán’s theorem C(η) has at most tk(m) edges.
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Our first goal is to show that for some orientation of G the resulting cluster graph has more
than tk(m)−βm2 edges. Assume this is false. In order to derive a contradiction we first bound the
number of orientations of G that could give rise to a particular partition and a particular cluster
graph C = C(η). We therefore fix the partition (that is, the vertex sets V1, . . . , Vm and the non
regular pairs) and a cluster graph agreeing with the partition.

Note that by definition, there are at most m
(dn/me

2

)
< εn2 edges of G with both endpoints in

the same part of the partition. Hence, there are at most 2εn
2

ways to orient such edges. Similarly,
there are at most ε

(
m
2

)
· (dn/me)2 < εn2 edges of G that belong to non ε-regular pairs. There are

at most 2εn
2

ways to orient such edges.
Next, consider an ε-regular pair (Vi, Vj) such that ij /∈ C(η). Thus, either e(Vi, Vj) ≤ |Vi||Vj |η

or else e(Vj , Vi) ≤ |Vi||Vj |η. In either case, if e(ViVj) is the number of undirected edges of G between
Vi and Vj then there are at most

2

b|Vi||Vj |ηc∑
q=0

(
e(ViVj)

q

) < 2
n2

m2
η · 2H(η)n2/m2 � 2H(2η)n2/m2

orientations of the edges of G belonging to this pair. Here we use the well known estimate
(
a
xa

)
≤

2H(x)a for 0 < x < 1, where H(x) = −x log2 x− (1− x) log2(1− x) is the entropy function.
Finally, consider a pair corresponding to an edge of C(η). Trivially there are at most 2(dn/me)2

possible orientations of the edges belonging to this pair.
Altogether, the total number of orientations of G giving rise to a fixed partition and a fixed

cluster graph with r ≤ tk(m)− βm2 edges is at most

2εn
2 · 2εn2 · 2H(2η)(n2/m2)(m2 ) · 2(dn/me)2r < 22εn2

2H(2η)n2
2(n2/m2)(tk(m)−βm2)2nm <

22εn2
2H(2η)n2

2(tk(n)−βn2)2nM2k

where the last inequality follows from the well known fact that for every x,

k − 1
k

x2

2
− k < tk(x) ≤ k − 1

k

x2

2
.

Note that M is a constant and there are at most nM+1 partitions of the vertex set of G into at
most M parts. Also, for every such partition there are at most 2M

2/2 choices for the cluster graph
C(η) and (significantly) less than 2M

2/2 choices for the non-regular pairs.
Thus, the total number of T -free orientations of G is at most

nM+12M
2
22εn2

2H(2η)n2
2nM2k2−βn

2
2tk(n).

Since ε < η and since H(2η) tends to zero with η we have that for η sufficiently small as a function
of β, the number of T -free orientations of G is less than 2tk(n), a contradiction.
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Fix an orientation ~G of G for which C = C(η) has at least tk(m)− βm2 edges. Let V1, . . . , Vm

denote the parts in the ε-regular partition. According to Theorem 2.2, C has a vertex partition
W = W1 ∪ · · · ∪Wk with

∑
i e(Wi) < αm2. Thus, let C∗ be the spanning subgraph of C from

which the edges with both endpoints in Wi have been removed, for i = 1, . . . , k. Notice that C∗

is a k-partite graph with at least tk(m) − (β + α)m2 = tk(m) − γm2 edges where γ = α + β. We
call a pair (Vi, Vj) a one-sided dense pair if it is an ε-regular pair and ij is not an edge of C but
either d(Vi, Vj) > η or d(Vj , Vi) > η. We claim that there are at most (2k+ 1)γm2 one-sided dense
pairs. Assume this is false, adding to C∗ the edges corresponding to one-sided dense pairs we get,
by Lemma 2.3, that there are k + 1 vertices of C (w.l.o.g. assume they are {1, . . . , k + 1}) such
that ij ∈ C for all 1 ≤ i < j ≤ k + 1 except for the edge 1 2 which is not in C but corresponds
to the one-sided dense pair (V1, V2) where d(V1, V2) > η. By Lemma 2.5, ~G has T , yielding the
contradiction.

We now delete from G the following edges:

1. The edges with both endpoints in Vi for i = 1, . . . ,m. We have shown that there are at most
εn2 such edges.

2. The edges belonging to non ε-regular pairs. We have shown that there are at most εn2 such
edges.

3. The edges belonging to non-dense pairs or one-sided dense pairs. There are at most (2η +
(2k + 1)γ)n2 such edges.

4. The edges belonging to pairs (Vi, Vj) such that ij ∈ Ws for s = 1, . . . , k. Since there are at
most αm2 such pairs, there are at most αn2 such edges.

In other words, we keep only edges belonging to pairs (Vi, Vj) such that ij ∈ C∗. Denote this
subgraph of G by G′. Then, G′ is k-partite and, recalling that ε < η < β < α and γ = α + β, the
number of edges deleted from G is at most

(α+ 2η + (2k + 1)γ + 2ε)n2 < (4η + (4k + 3)α)n2 ≤ (4k + 7)αn2 < δn2.

This concludes the proof of Lemma 2.1. 2

3 Proof of Theorem 1.1

In this section we complete the proof of our main theorem. The proof follows along the lines of
[2] with several essential modifications required to deal with directed graphs. We start by recalling
some notation and facts. Tk(n) denotes the Turán graph, which is a complete k-partite graph on n
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vertices with class sizes as equal as possible, and tk(n) is the number of edges in Tk(n). Let δk(n)
denote the minimum degree of Tk(n). The following equalities are well known simple observations.

tk(n) = tk(n− 1) + δk(n), δk(n) = n− dn/ke, k − 1
k

n2/2− k < tk(n) ≤ k − 1
k

n2/2. (2)

We also need one additional easy lemma, before we present the proof of Theorem 1.1.

Lemma 3.1 Let S be a tournament with the vertices {1, . . . , k}. Let G be a directed graph and
let W1, . . . ,Wk be subsets of vertices of G such that for every i 6= j and every pair of subsets
Xi ⊆ Wi, |Xi| ≥ 10−k|Wi| and Xj ⊆ Wj , |Xj | ≥ 10−k|Wj | there are at least 1

10 |Xi||Xj | edges of G
from Xi to Xj if (i, j) ∈ S or at least 1

10 |Xi||Xj | edges of G from Xj to Xi if (j, i) ∈ S. Then G

contains a copy of S where the vertex playing the role of i ∈ S belongs to Wi.

Proof. We use induction on k. For k = 1 and k = 2 the statement is obviously true. Suppose it
is true for k − 1 and let W1, . . . ,Wk be the subsets of vertices of G which satisfy the conditions of
the lemma for the fixed tournament S.

For every 1 ≤ i ≤ k − 1 denote by W i
k the subset of vertices in Wk defined as follows. If

(i, k) ∈ S then v ∈ W i
k if v has less than |Wi|/10 incoming edges from Wi. If (k, i) ∈ S then

v ∈ W i
k if v has less than |Wi|/10 outgoing edges to Wi. By definition, if (i, k) ∈ S, we have

e(Wi,W
i
k) < |W i

k||Wi|/10 and if (k, i) ∈ S, we have e(W i
k,Wi) < |W i

k||Wi|/10 and therefore, in
any case, |W i

k| < 10−k|Wk|. Thus we deduce that
∣∣⋃k−1

i=1 W
i
k

∣∣ < (k − 1)10−k|Wk| < |Wk|/2. So in
particular there exists a vertex v in Wk which does not belong to

⋃k−1
i=1 W

i
k. For every 1 ≤ i ≤ k−1

if (i, k) ∈ S let W ′i be the set of incoming neighbors of v in Wi, and if (k, i) ∈ S let W ′i be the
set of outgoing neighbors of v in Wi. By definition, W ′i has size at least |Wi|/10. Note that for
every pair of subsets Xi ⊆ W ′i and Xj ⊆ W ′j with sizes |Xi| ≥ 10−(k−1)|W ′i | ≥ 10−k|Wi| and
|Xj | ≥ 10−(k−1)|W ′j | ≥ 10−k|Wj |, G contains at least 1

10 |Xi||Xj | edges between Xi and Xj in the
appropriate direction. By the induction hypothesis there exists a copy of S − k with one vertex in
each W ′i , playing the role of i ∈ S in this copy, for 1 ≤ i ≤ k− 1. This copy, induced together with
the vertex v, forms a copy of S where v plays the role of k. 2

Proof of Theorem 1.1. Let n0 be large enough to guarantee that the assertion of Lemma 2.1
holds for δ = 10−8k. Suppose that G is a graph on n > n2

0 vertices with at least 2tk(n)+m distinct
T -free orientations, for some m ≥ 0. Our argument is by induction with an improvement at every
step. More precisely, we will show that if G is not the corresponding Turán graph then it contains a
vertex x such that G−x has at least 2tk(n−1)+m+1 distinct T -free orientations. Iterating, we obtain
a graph on n0 vertices with at least 2tk(n0)+m+n−n0 > 2n

2
0 distinct T -free orientations. But a graph

on n0 vertices has at most n2
0/2 edges and hence at most 2n

2
0/2 orientations. This contradiction will

prove the theorem for n > n2
0.

Recall from (2) that δk(n) denotes the minimum degree of Tk(n), and tk(n) = tk(n−1)+δk(n). If
G contains a vertex x of degree less than δk(n), then the edges incident with x can have, together, at
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most 2δk(n)−1 orientations. Thus G−x should have at least 2tk(n−1)+m+1 distinct T -free orientations
and we are done. Hence we may and will assume that all the vertices of G have degree at least
δk(n).

Consider a partition V1 ∪ · · · ∪ Vk of the vertex set of G which minimizes
∑

i e(Vi). By our
choice of n0 in Lemma 2.1, we have that

∑
i e(Vi) < 10−8kn2. Note that if |Vi| >

(
1/k + 10−6k

)
n,

for some i, then every vertex in Vi has at least δk(n) −
(
k−1
k n− 10−6kn

)
≥ 10−6kn − 1 neighbors

in Vi. Thus
∑

i e(Vi) > (10−6kn − 1)(1/k + 10−6k)n/2 > 10−8kn2, a contradiction. Therefore,
|Vi| − n/k ≤ 10−6kn for every i and also |Vi| = n−

∑
j 6=i |Vj | ≥ n/k − (k − 1)10−6kn. So for every

i we have
∣∣|Vi| − n/k∣∣ < 10−5kn. Let D denote the set of all possible T -free orientations of G.

First consider the case when there is some vertex with many neighbors in its own class of the
partition, say x ∈ V1 with |N(x) ∩ V1| > n/(400k). Our choice of partition guarantees that in this
case |N(x)∩ Vi| > n/(400k) also for all 2 ≤ i ≤ k, or by moving x to another part we could reduce∑

i e(Vi). Consider a permutation σ of {1, . . . , k + 1}. Let Dσ ⊂ D be a subset of orientations
defined as follows: An orientation belongs to Dσ if for all i = 1, . . . , k there exist Wi ⊂ Vi with
|Wi| ≥ n/(900k) such that if (σ(i), σ(k+1)) ∈ T then x has an incoming edge from each v ∈Wi and
if (σ(k + 1), σ(i)) ∈ T then x has an outgoing edge to each v ∈Wi. Let D∗ = D \

(
∪σ∈S(k+1)Dσ

)
.

Consider an orientation of G belonging to Dσ. Since the orientation is T -free we have by Lemma
3.1 that there is some ordered pair (i, j) (corresponding to (σ(i), σ(j)) ∈ T ) and subsets Xi ⊂ Wi,
Xj ⊂Wj with |Xi| ≥ 10−k|Wi| and |Xj | ≥ 10−k|Wj | with at most 1

10 |Xi||Xj | edges from Xi to Xj .
There are at most

(
k
2

)
2|Vi|2|Vj | < 22n ways to choose such an ordered pair (i, j) and to choose Xi

and Xj and at most

1
10
|Xi||Xj |

(
|Xi||Xj |

b|Xi||Xj |/10c

)
<

1
10
|Xi||Xj |2H(0.1)|Xi||Xj | < 2H(0.11)|Xi||Xj |

ways to orient at most 1
10 |Xi||Xj | edges from Xi to Xj . In addition, from the structure of G we

know that there are at most tk(n) + 10−8kn2 − |Xi||Xj | other edges in this graph, so the number
of orientations in Dσ can be bounded as follows

|Dσ| ≤ 2tk(n)+10−8kn2−|Xi||Xj | 22n2H(0.11)|Xi||Xj |

≤ 2tk(n)+10−8kn2
22n (
√

2/2)|Xi||Xj | ≤ 2tk(n)+10−8kn2
22n (
√

2/2)10−2k−6k−2n2

< 2tk(n)+10−8kn2
22n
(

2−0.01
)10−2k−6k−2n2

= 2tk(n) 22n 2−(10−2k−8k−2−10−8k)n2

� 2tk(n)

2(k + 1)!
.

In this estimate we used the facts that H(0.11) < 1/2, |Xi|, |Xj | ≥ n/(k10k+3),
√

2/2 < 2−0.01 and
that 10−2k−8k−2 − 10−8k > 0 for all k ≥ 2.
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By the above discussion, |D∗| contains at least 2tk(n)+m − 2tk(n)/2 ≥ 2tk(n)+m−1 distinct T -free
orientations of G. Let ~G be one of them. Since ~G /∈ Dσ for no σ ∈ S(k + 1) we must have some
i such that there are at most n/(900k) edges from x to Vi or at most n/(900k) edges from Vi to
x. Assume w.l.o.g. that there are at most n/(900k) edges from x to Vi. Thus, there are at least
n/(400k)− n/(900k) > n/(900k) edges from Vi to x. Let σ ∈ S(k+ 1) be a permutation for which
(σ(i), σ(k + 1)) ∈ T . Since ~G /∈ Dσ we must have some j 6= i for which there are at most n/(900k)
edges from x to Vj or at most n/(900k) edges from Vj to x.

We have shown that for every element of D∗ there are (at least) two distinct indices i, j such that
there are at most n/(900k) edges connecting x to Vi in at least one of the two possible directions
and the same hold for Vj (although not necessarily in the same direction). We call the direction
with less than n/(900k) edges the sparse direction.

Since the size of Vi is at most (1/k + 10−5k)n, we obtain that the number of orientations of
edges between x and Vi, given the sparse direction, is bounded by

n

900k

(
b(1/k + 10−5k)nc
bn/(900k)c

)
≤ 2H(0.002)(1/k+10−5k)n ≤ 20.03(1/k+10−5k)n, (3)

since H(0.002) < 0.03. Clearly, this estimate is also valid for the number of orientations of edges
between x and Vj , given the sparse direction between them. Note that in addition x is incident to
at most n − |Vi| − |Vj | ≤ (k−2

k + 2 · 10−5k)n other edges, which can have two possible directions.
Using the above inequalities together with the facts that there are

(
k
2

)
possible pairs i, j and four

possible choices for the sparse directions between x and Vi and between x and Vj we obtain that
the number of orientations of the edges incident with x is at most

4
(
k

2

)(
20.03(1/k+10−5k)n

)22
(
k−2
k

+2·10−5k
)
n < 2

(
k−1
k
− 1

100k

)
n.

But we had that |D∗| ≥ 2tk(n)+m−1. Hence the number of T -free orientations of G− x is at least

2tk(n)+m−1−( k−1
k
− 1

100k
)n � 2tk(n−1)+m+1.

This completes the induction step in the first case.
Now we may assume that every vertex has degree at most n/(400k) in its own class. We may

suppose that G is not k-partite, or else by Turán’s theorem e(G) ≤ tk(n) and therefore |D| ≤ 2tk(n)

with equality only for G = Tk(n). So, without loss of generality, we suppose that G contains an
edge xy with x, y ∈ Vk. For σ ∈ S(k + 1) Let Dσ denote the set of all T -free orientations ~G of G
in which (x, y) ∈ ~G if and only if (σ(k), σ(k + 1)) ∈ T and there are sets Wi ⊂ Vi, |Wi| ≥ n/(900k)
for every 1 ≤ i ≤ k − 1 such that all the edges from x to Wi exist and are oriented from x to
Wi if (σ(k), σ(i)) ∈ T or oriented from Wi to x if (σ(i), σ(k)) ∈ T , and also all the edges from
y to Wi exist and are oriented from y to Wi if (σ(k + 1), σ(i)) ∈ T or oriented from Wi to y if
(σ(i), σ(k + 1)) ∈ T . Let D∗ = D \

(
∪σ∈S(k+1)Dσ

)
denote the remaining orientations.
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Consider an orientation ~G ∈ Dσ. Let Tσ denote the sub-tournament of T obtained by deleting
the vertices σ(k) and σ(k + 1). Since there is no T in ~G, there is also no copy of Tσ in which the
role of vertex σ(i) is played by a vertex from Wi for i = 1, . . . , k− 1. Thus, by Lemma 3.1, there is
a pair (i, j) and subsets Xi ⊂Wi, Xj ⊂Wj with |Xi| ≥ 10−(k−1)|Wi| and |Xj | ≥ 10−(k−1)|Wj | with
at most 1

10 |Xi||Xj | edges from Xi to Xj if (σ(i), σ(j)) ∈ T or at most 1
10 |Xi||Xj | edges from Xj to

Xi if (σ(j), σ(i)) ∈ T . Arguing exactly as before in the first case we can prove that |Dσ| < 2tk(n)

2(k+1)!

and thus |D∗| ≥ 2tk(n)+m−1.
Next consider an orientation ~G of G from D∗ and suppose, without loss of generality, that

(x, y) ∈ ~G. Let σ ∈ S(k+1) be such that (σ(k), σ(k+1)) ∈ T . Since ~G /∈ Dσ there is some class Vi,
i ≤ 1 ≤ k−1, in which x and y have at most n/(900k) “common neighbors” in the sense that x has
an outgoing edge to all these common neighbors in case (σ(k), σ(i)) ∈ T or else x has an incoming
edge from all these common neighbors in case (σ(i), σ(k)) ∈ T and also y has an outgoing edge to
all these common neighbors in case (σ(k + 1), σ(i)) ∈ T or else y has an incoming edge from all
these common neighbors in case (σ(i), σ(k + 1)) ∈ T . Note that for any other vertex z in Vi which
is not such a common neighbor, we can only have at most three possible simultaneous orientations
of the two edges xz and yz of G (assuming they exist). Since there are at most (1/k + 10−5k)n
vertices in Vi we have at most 3(1/k+10−5k)n ways to orient such edges and, as in (3), at most

n

900k

(
b(1/k + 10−5k)nc
bn/(900k)c

)
≤ 2H(0.002)(1/k+10−5k)n ≤ 20.03(1/k+10−5k)n

possibilities to choose a set of common neighbors of x and y in Vi. Thus, there are at most

20.03
(

1/k+10−5k
)
n 3
(

1/k+10−5k
)
n < 21.7

(
1/k+10−5k

)
n

ways to orient edges from x,y to Vi. Note that, since the degree of x and y in Vk is at most n/(400k)
we have that the number of edges from x, y to

⋃
j 6=i Vj is bounded by n(2(k−2

k +2·10−5k)+2/(400k)).
Even if all these edges can be oriented arbitrarily, since we have k − 1 choices for the index i, and
four possible combinations for the direction between x and y to their common neighbors in Vi, we
can bound the number of orientations of the edges incident at x and y by

4(k − 1) 21.7
(

1/k+10−5k
)
n 22
(
k−2
k

+ 1
400k

+2·10−5k
)
n < 22

(
k−1
k
− 1

100k

)
n.

But we know that |D∗| ≥ 2tk(n)+m−1. Thus the number of T -free orientations of G − {x, y} is at
least

2tk(n)+m−1−2( k−1
k
− 1

100k
)n � 2tk(n−2)+m+2.

This completes two induction steps for the second case and proves the theorem. 2
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4 Directed triangles and transitive tournaments

In this section we consider two special cases of Theorem 1.1. We first show an easy proof of
Theorem 1.1 in case T = Tk is the transitive tournament with k vertices. Next, we consider the
smallest non-transitive tournament, namely T = C3 and obtain a proof for C3 that avoids using
the regularity lemma. Indeed, the proof for C3 is more complicated than the proof for T3. The
proof for T3 follows rather easily from a result of the second author in [11] concerning the number
of red-blue edge colorings of a graph that avoid monochromatic triangles and the result for Tk
(k > 3) follows from a recent result of [2] that generalizes the result of [11] to larger cliques. The
proof for C3 does not follow from these coloring results and requires an ad-hoc proof (although
some arguments are similar to those appearing in the proof of [11]). To see the difficulty consider
the following argument. Let F (G) denote the number of red-blue edge colorings of G with no
monochromatic triangle and let D(G) denote the number of orientations of G with no C3. Since
the Ramsey number R(3) = 6, we have F (G) = 0 whenever G has a K6. In particular, F (Kn) = 0
for n ≥ 6. On the other hand, D(Kn) = n!, and D(G) > 0 always. Thus, it is more difficult to
show that dense graphs have a relatively small D(G) than it is to show that dense graphs have a
relatively small F (G). In fact, our proof for T = C3 uses some powerful decomposition results that
are not needed in the coloring case.

4.1 Orientations with no transitive tournaments

Let F (G, k) denote the number of red-blue edge colorings of a graph G that have no monochromatic
Kk. Let F (n, k) denote the maximum possible value of F (G, k) where G has n vertices. The
following result is proved in [11] for k = 3 and in [2] for all k > 3 (the result in [2] also considers
colorings with more than two colors).

Lemma 4.1 Let k ≥ 3. There exists n0 = n0(k) such that for all n ≥ n0, F (n, k) = 2tk−1(n). 2

In fact, in [11] it is shown that n0(3) = 6 (and this is tight) while the n0(k) obtained in [2] is a
huge number already for k = 4, as their proof uses the regularity lemma.
Lemma 4.1 and (1) enable us to prove the following:

Proposition 4.2 Let k ≥ 3. Then, F (n, k) ≥ D(n, Tk). Consequently, D(n, Tk) = 2tk−1(n) for all
n ≥ n0(k) where n0(k) is the constant appearing in Lemma 4.1.

Proof: Consider a graph G on n vertices. Label its vertices with the numbers 1, . . . , n. There is a
bijection between red-blue edge colorings of G and orientations of G as follows: An edge is colored
blue if and only if in the associated orientation the edge is oriented from the smaller vertex to the
larger. Now assume that G has an orientation with no Tk. We show that the associated coloring
has no monochromatic Kk. Consider a Kk of G. It must contain a directed cycle in the orientation.
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In the associated coloring, we cannot have all the edges of such a cycle colored with the same color.
We have shown that F (G, k) ≥ D(G,Tk). Hence, F (n, k) ≥ D(n, Tk). 2.

Notice that although n0(3) = 6 (in fact, F (5, 3) = 82 > 26) it is easy to check that D(n, T3) =
2bn

2/4c for all n ≥ 1 (one needs to check only n = 1, . . . , 5). For k = 4, however, we have
D(4, T4) = 26 − 4! = 40 > 2t3(4) = 32.

4.2 Orientations with no directed triangles: Preliminary lemmas

Let H be a graph, and let H + x denote the graph obtained from H by adding a new vertex x and
connecting it to all vertices of H. For a C3-free orientation ~H of H, let ext( ~H) denote the number
of C3-free orientations of H+x that are extensions of ~H. Let ext(H) denote the maximum possible
value of ext( ~H) taken over all C3-free orientations of H. The following lemma determines ext(H)
for several specific graphs, and gives a general upper bound for ext(H) in terms of a spanning
subgraph of H.

Lemma 4.3

1. ext(Kk) = k + 1.

2. ext(K−4 ) = 6 where K−4 is the graph obtained from K4 by deleting an edge.

3. For all k ≥ 3, ext(Pk) = ext(Pk−1) + ext(Pk−2) where Pk is the path with k vertices. In
particular, for all k ≥ 1, ext(Pk) = zk where zk is the k+2 element of the Fibonacci sequence.

4. ext(Q) = 14 where Q is the unique tree with five vertices which is not a star and not a path.

5. If Sk is the star with k vertices then ext(Sk) = 2k−1 + 1.

6. If H1, . . . , Hk are the components of a spanning subgraph of H then ext(H) ≤
∏k
i=1 ext(Hi).

Proof:

1. ext(Kk) = k+ 1 follows immediately from the fact that every C3-free orientation of Kk must
be an acyclic orientation. There are k + 1 positions to place x in any given order.

2. Assume the vertices of K−4 are {a, b, c, d} where b and c are not connected. Notice that
every C3-free orientation of K−4 must be an acyclic orientation. Any extension of an acyclic
orientation of K−4 must also be an acyclic orientation of K−5 . Consider a topological order of
{a, b, c, d} associated with an acyclic orientation of K−4 . If b and c are not next to each other
in this topological order then there are exactly five ways to extend the orientation. If b and
c are next to each other (that is, they form an antichain), then there are six ways to extend
the orientation.
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3. Consider an orientation of Pk = {v1, . . . , vk}, k ≥ 3. Assume, w.l.o.g. that the last edge is
oriented (vk−1, vk). In this case, for any extension of the Pk−1 subpath {v1, . . . , vk−1} the
orientation (x, vk) does not introduce directed triangles. Thus, there are at most ext(Pk−1)
such extensions. For any extension that orients (vk, x), we must orient (vk−1, x) and hence
there are at most ext(Pk−2) such orientations. Altogether, there are at most ext(Pk−1) +
ext(Pk−2) such extensions. This proves ext(Pk) ≤ ext(Pk−1) + ext(Pk−2). It is easily seen
that the bound is achieved by any orientation of Pk that has no directed subpath of length
two.

4. Assume that the vertices of Q are {a, b, c, d, e} where the edges are ab, bc, cd, ce. Consider
first an orientation where the two edges cd and ce are oriented differently (that is, one of
the edges enters c and the other emanates from c). Any orientation of xc forces either an
orientation of xd or of xe and leaves three possible orientations for xb and xa together. Thus,
there are at most 3 · 4 = 12 possible extensions. Consider next an orientation where the two
edges cd and ce are oriented the same (that is, both of them enter c or both emanate from
c). W.l.o.g. both enter c. As before, any orientation of xd and xe but the one in which
both edges enter x, forces an orientation of xc and hence leaves three possible orientations
for xb and xa together. The orientation of xd and xe in which both edges enter x, allows any
extension of the subpath {a, b, c} and since ext(P3) = 5 this gives, altogether, 3 · 3 + 5 = 14
possible extensions.

5. The cases k = 1, 2 are trivial. For k ≥ 3, Sk has a unique root denoted r. Consider first an
orientation where the root r is either a source or a sink. Assume w.l.o.g, that r is a sink. If
we orient (x, r) we can orient all other edges between x and the leaves arbitrarily. This gives
2k−1 extensions. If we orient (r, x) then we must make x a sink and hence we only have one
legal extension. Altogether, we have 2k−1 + 1 extensions for an orientation of Sk in which
the root is a sink (or a source). It is easily seen that all other orientations of Sk have less
extensions.

6. If H1, . . . , Hk are the components of a spanning subgraph of H then trivially ext(H) ≤∏k
i=1 ext(Hi). 2

The final part of lemma 4.3, applied to spanning subgraphs whose components are any mixture
of paths, cliques, stars, K−4 or Q, enables us, using any of the first five parts of Lemma 4.3, to
obtain upper bounds on ext(H). Hence, our aim is to translate conditions that guarantee that H
has a spanning subgraph whose components are paths, cliques, stars, K−4 or Q into conditions that
force upper bounds upon ext(H). Put |H| = m. Probably the most famous of these conditions is
the following theorem of Dirac (see, e.g. [4])

Lemma 4.4 (Dirac) If δ(H) ≥ bm/2c then H has a Hamiltonian path. 2
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Since the Fibonacci sequence has the property that for 1 ≤ s ≤ k, zk ≤ (zs)k/s we have, using
Lemma 4.3 and Lemma 4.4:

Corollary 4.5 If δ(H) ≥ bm/2c then ext(H) ≤ zm. In particular, if m ≥ s ≥ 1, ext(H) ≤ (zs)m/s.
2

If H has minimum degree that is higher than m/2, we can decompose the vertices of H into
small and dense parts. The following well known theorem of Hajnal and Szemerédi [5] specifies
conditions that guarantee the existence of a vertex decomposition into small cliques.

Lemma 4.6 (Hajnal and Szemerédi) Let k be a positive integer. If δ(H) ≥ m(1 − 1/k) then
H has a spanning subgraph consisting of bm/kc components, each isomorphic to Kk. 2

Lemma 4.3 and Lemma 4.6 together give:

Corollary 4.7 Let k ≥ 2 and assume δ(H) = βm where (k − 2)/(k − 1) < β ≤ (k − 1)/k. Then

ext(H) ≤ (k + 1)m/k
(

k

(k + 1)1−1/k

)(k−1)m−mβk
.

Proof: Let x = (k−1)m−kδ(H). Notice that (x+m) = 0 mod k and x+mβ = (k−1)(x+m)/k.
Consider the graph H ′ obtained from H by adding x new vertices, and connecting them to all the
original vertices of H. The new vertices are not connected to each other. Notice that δ(H ′) =
min{δ(H) + x,m} = δ(H) + x = mβ + x = (k − 1)(x + m)/k. By Lemma 4.6, H ′ has a set of
(x+m)/k vertex disjoint copies of Kk. Deleting the newly added vertices we get that H contains x
vertex-disjoint copies of Kk−1 and (m− (k − 1)x)/k additional vertex-disjoint copies of Kk. Thus,
using Lemma 4.3 we get

ext(H) ≤ kx(k + 1)(m−(k−1)x)/k ≤ (k + 1)m/k
(

k

(k + 1)1−1/k

)x

= (k + 1)m/k
(

k

(k + 1)1−1/k

)(k−1)m−mβk
.

2

The following vertex-decomposition result has been recently proved by Kawarabayashi [6]

Lemma 4.8 (Kawarabayashi) If m is a multiple of 4, and δ(H) ≥ 5m/8 then H has a spanning
subgraph consisting of m/4 components, each isomorphic to K−4 . 2

Lemma 4.3 and Lemma 4.8 together give:

Corollary 4.9 If m ≥ 24, δ(H) > m/2 and β = min{5/8 , δ(H)/m} then

ext(H) ≤ 3 · 55m/3−8mβ/36−m+2mβ.
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Proof: We may assume that δ(H) ≤ d5m/8e since ext(H) is a monotone decreasing parameter
with respect to edge addition. Let x be the minimum integer such that (x + m) = 0 mod 4 and
x+mβ ≥ 5(x+m)/8. Notice that

x ∈ [5m/3− 8mβ/3, 5m/3− 8mβ/3 + 4].

Consider the graph H ′ obtained from H by adding x new vertices, and connecting them to all the
original vertices of H. The new vertices are not connected to each other. Notice that δ(H ′) =
min{δ(H) + x,m} = δ(H) + x (since m ≥ 24, β > 0.5 and either δ(H) = βm or else β = 5/8 and
δ(H) ≤ d5m/8e). Now,

δ(H ′) = δ(H) + x ≥ mβ + x ≥ 5(x+m)/8 = 5|H ′|/8.

By Lemma 4.8, H ′ has a K−4 factor. Let S be a K−4 copy in this factor. If S contains zero new
vertices then S is already inside H. If S contains one new vertex then the subgraph of S inside H
contains a P3. If S contains two new vertices then they must be the two degree-two vertices of the
K−4 , and the subgraph of S inside H is a K2. For t = 0, 1, 2 let ti denote the number of copies in
the K−4 -factor with t new vertices. Then, t1 + 2t2 = x and t0 + t1 + t2 = (m+ x)/4. Furthermore,
by Lemma 4.3,

ext(H) ≤ ext(K−4 )t0ext(P3)t1ext(K2)t2 = 6t05t13t2 .

The last inequality subject to the above constraints is maximized when t1 = x, t2 = 0 and t0 =
(m+ x)/4− x. Thus,

ext(H) ≤ 6(m+x)/4−x5x ≤ 54

63
· 55m/3−8mβ/36−m+2mβ < 3 · 55m/3−8mβ/36−m+2mβ.

2

4.3 Orientations with no directed triangles: The proof

In this section we prove:

Theorem 4.10 For all n ≥ 600000, D(n,C3) = 2bn
2/4c.

The constant 600000 can be improved considerably to less than 10000 at the price of additional case
analysis. We prefer the “cleaner” proof. The proof of Theorem 4.10 is based upon the following
lemma:

Lemma 4.11 If n ≥ 320, and G is a graph with n vertices, then at least one of the following must
hold:

1. D(G) ≤ 2bn
2/4c.
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2. There exists a vertex x of minimum degree such that if H is the subgraph of G induced by the
neighbors of x then ext(H) ≤ 0.94 · 2bn/2c. Thus, D(G) ≤ 0.94 · 2bn/2cD(G− x).

3. δ(G) = bn/2c, there exist two vertices x and y such that D(G) ≤ 2bn/2cD(G− x) and D(G−
x) ≤ 0.94 · 2b(n−1)/2cD(G− {x, y}).

The rest of this section is dedicated to the proof of Lemma 4.11 but we first show how Lemma
4.11 yields Theorem 4.10.
Proof of Theorem 4.10 given Lemma 4.11: Let n ≥ 600000 and let G be a graph with n

vertices. We show that D(G) ≤ 2bn
2/4c. Consider D(320). Trivially, D(320) ≤ 2160·319. Now, let

v1, . . . , vn−318 be a sequence of vertices of G that satisfies the following: If Gi is the subgraph of G
obtained by deleting v1, . . . , vi−1 for i = 1, . . . , n− 317 (G1 = G), then for all i = 1, . . . , n− 319,
either D(Gi) ≤ 2b(n−i+1)2/4c or else D(Gi) ≤ 0.94 · 2b(n−i+1)/2cD(Gi+1) or else D(Gi) ≤ 0.94 ·
2b(n−i+1)/2c+b(n−i)/2cD(Gi+2). According to Lemma 4.11, such a sequence exists.

Assume first that for some i, 1 ≤ i ≤ n − 319, D(Gi) ≤ 2b(n−i+1)2/4c. Let i be minimal with
this property. In this case we have

D(G) ≤
i−1∏
j=1

2b(n−j+1)/2cD(Gi) = 2bn
2/4c−b(n−i+1)2/4cD(Gi) ≤

2bn
2/4c−b(n−i+1)2/4c2b(n−i+1)2/4c ≤ 2bn

2/4c

as required.
Assume next that for each i = 1, . . . , n − 319, either the second or third condition in Lemma

4.11 holds for Gi. In either case we have

D(Gi) ≤ 0.94 · 2b(n−i+1)/2c+b(n−i)/2cD(Gi+2).

Therefore:

D(G) ≤ (0.94)b(n−319)/2c
n−319∏
i=1

2b(n−i+1)/2cD(320) = (0.94)b(n−319)/2c2bn
2/4c−b3192/4cD(320) ≤

2bn
2/4c225600(0.94)b(n−319)/2c ≤ 2bn

2/4c

as required. 2

The proof of Lemma 4.11 is divided into several parts according to the structure of G. From
here onwards we assume, whenever necessary, that G has n ≥ 320 vertices.

Lemma 4.12 If G is a complete bipartite graph then D(G) ≤ 2bn
2/4c. If n ≥ 7 and G has a vertex

v of degree n− 1 and G \ {v} is a complete bipartite graph on n− 1 vertices then D(G) ≤ 2bn
2/4c.

In particular, for both of these graphs, the first condition in Lemma 4.11 holds.
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Proof: The first claim is trivial as the number of edges of a complete bipartite graph is at most
bn2/4c. To see the second claim, assume that the vertex classes of G \ {v} are x1, . . . , xk and
y1, . . . , yl where k + l = n − 1 and 1 ≤ l ≤ k. Consider an orientation ~S of the star S induced by
{v, y1, . . . , yl}. We count the number of C3-free orientations of xi∪S that extend ~S. There are two
cases. If v is either a sink or a source in ~S then there are exactly 2l + 1 extensions. If v is neither
a source nor a sink, then assume l1 edges enter v and l2 = l − l1 edges emanate from v. If we
orient (xi, v) then there are 2l1 possible extensions. If we orient (v, xi) then there are 2l2 possible
extensions. In any case, there are at most 2l1 + 2l2 ≤ 2l−1 + 2 extensions. As there are 2l − 2
orientations of S in which v is neither a source nor a sink we have, for all n ≥ 7 and l+ k = n− 1,
1 ≤ l ≤ k

D(G) ≤ 2(2l + 1)k + (2l − 2)(2l−1 + 2)k ≤ 2bn
2/4c.

2

In the following lemmas x denotes a vertex of minimum degree of G, and H denotes the subgraph
of G induced by the neighbors of x. Hence |H| = δ(G). Notice also that if |H| = bn/2c + t then
the minimality of x shows that δ(H) ≥ 2t− 1.

Lemma 4.13 If δ(G) < bn/2c then the second condition in Lemma 4.11 holds.

Proof:
ext(H) ≤ 2|H| ≤ 2bn/2c−1 = 0.5 · 2bn/2c.

2

Lemma 4.14 If δ(G) = bn/2c and G is not complete bipartite then either the second or third
condition in Lemma 4.11 holds.

Proof: If H has at least one edge then, by Lemma 4.3,

ext(H) ≤ ext(K2)ext(K1)|H|−2 = 3 · 2bn/2c−2 = 0.75 · 2bn/2c.

Otherwise, we may assume that every vertex of minimum degree has an isolated neighborhood.
Let y be a neighbor of x. Then, deg(x) = bn/2c ≤ deg(y) ≤ n − |H| = n − bn/2c. Hence, if n
is even then deg(y) = n/2 so its neighborhood is also isolated. This forces G to be a complete
bipartite graph, contradicting the assumption in the statement of the lemma. If n is odd then
either deg(y) = (n − 1)/2 or else deg(y) = (n + 1)/2. In the first case, y has minimum degree
(n− 3)/2 in G− x so by Lemma 4.13 applied to G− x and y we have

D(G) ≤ 2bn/2cD(G− x) ≤ 0.5 · 2bn/2c · 2b(n−1)/2cD(G− {x, y}).

In the second case, we can assume that every neighbor of x has degree (n + 1)/2. This forces all
the neighbors of x to have the same neighborhood (namely V (G) \ H). Since G is not complete
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bipartite, this common neighborhood is not isolated, and, furthermore, each neighbor of x has
minimum degree (n− 1)/2 in G− x. As in the first part of this lemma, if H ′ is the neighborhood
of a neighbor y of x in G− x then

ext(H ′) ≤ ext(K2)ext(K1)|H
′|−2 = 3 · 2b(n−1)/2c−2 ≤ 0.75 · 2b(n−1)/2c.

Thus,
D(G) ≤ 2bn/2cD(G− x) ≤ 0.75 · 2bn/2c · 2b(n−1)/2cD(G− {x, y}).

2

Lemma 4.15 If δ(G) = bn/2c+ 1 and G is none of the graphs from lemma 4.12 then the second
condition in Lemma 4.11 holds.

Proof: Assume first that H contains a P5. Since ext(P5) = z5 = 13 we have

ext(H) ≤ 13 · ext(K1)|H|−5 = 13 · 2bn/2c−4 =
13
16

2bn/2c.

Next, assume H has no P5 but has a P4. Every vertex of H has at least bn/2c+ 1 neighbors in G,
so we have δ(H) ≥ 1. Since |H| > 4, there exists a vertex v not on the P4. Let vu be an edge. If u
is not a vertex of the P4 then by Lemma 4.3

ext(H) ≤ ext(P4)ext(P2)2|H|−6 = 8 · 3 · 2bn/2c−5 = 0.75 · 2bn/2c.

Otherwise, u must be an inner vertex of the P4, and hence H contains the unique tree on five vertices
that is neither a path nor a star, which we denoted Q in Lemma 4.3. Recall that ext(Q) = 14.
Hence,

ext(H) ≤ ext(Q)2|H|−5 = 14 · 2bn/2c−4 = 0.875 · 2bn/2c.

Next, assume that H has no P3 (we leave the case where H has no P4 and has a P3 to the end). In
this case, since δ(H) ≥ 1 we must have δ(H) = 1 and H must be a perfect matching. By Lemma
4.3 we have, for all n ≥ 14,

ext(H) = ext(K2)|H|/2 = 3(bn/2c+1)/2 ≤ 0.75 · 2bn/2c.

Finally, assume that H has no P4 but has a P3. Assume first that H is not a star. Denote the
vertices of a P3 in H by (a, b, c) where b is the middle vertex. If (a, c) is also an edge then the fact
that H has no P4 and the fact that |H| > 3 show that there exists an edge both of whose endpoints
are not in {a, b, c}. If (a, c) is not an edge, then the fact that H is not a star implies that there is
some edge not incident with b. The fact that H has no P4 shows that such an edge has both of its
endpoints outside {a, b, c}. We have shown the existence of vertex disjoint P3 and K2. By Lemma
4.3,

ext(H) ≤ ext(P3)ext(K2)2|H|−5 = 5 · 3 · 2bn/2c−4 =
15
16

2bn/2c.
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Finally, assume that the neighborhood of every minimum degree vertex induces a star. It is not
difficult to check that this forces G to be the unique graph with n vertices, n odd, having a vertex
of degree n− 1 and the remaining n− 1 vertices induce a complete bipartite graph with (n− 1)/2
vertices in each partite class. Thus, G is one of the graphs from Lemma 4.12, contradicting the
assumption in the current lemma. 2

Lemma 4.16 If δ(G) = bn/2c+ t and 1 < t < (bn/2c+ 2)/3 then the second condition in Lemma
4.11 holds.

Proof: Recall that δ(H) ≥ 2t − 1. Let P be a longest path in H. Notice that |P | ≥ δ(H) + 1 ≥
2t ≥ 4. We consider two cases: t ≥ 3 and t = 2. Assume first that t ≥ 3. If |P | ≥ 4t− 1 then

ext(H) ≤ z4t−12|H|−4t+1 = z4t−12bn/2c−3t+1 ≤ z(4t−1)/11
11 2bn/2c−3t+1 =

(
2334/11

8

)t
·2bn/2c· 2

2331/11
<

(0.91)3 · 2bn/2c · 1.22 < 0.92 · 2bn/2c.

If P has at most 4t− 2 vertices then, as in Dirac’s theorem, there is also a cycle C with the same
set of vertices as that of P , and hence, by the maximality of P , the subgraph of H induced by
this set of vertices is a connected component of H. Since |H| > 4t− 2 this is not the whole graph,
and hence we can find another path in another component whose number of vertices is at least
δ(H) + 1 ≥ 2t. We therefore have two vertex-disjoint paths of length (at least) 2t each and thus

ext(H) ≤ z2
2t2
|H|−4t = z2

2t2
bn/2c−3t ≤ z2t/3

6 2bn/2c−3t = 212t/32bn/2c−3t ≤ (0.96)t2bn/2c ≤ 0.89 · 2bn/2c.

Consider next the case t = 2. If |P | ≥ 8 we have

ext(H) ≤ z82bn/2c−6 =
55
64
· 2bn/2c.

If |P | ≤ 6 we have, as in the case for t ≥ 3, that there is also a cycle C with the same set of vertices
as that of P , and hence, by the maximality of P , the subgraph of H induced by this set of vertices
is a connected component of H. Since |H| > 6 we can find another path in another component
whose number of vertices is at least δ(H) + 1 ≥ 4. We have found two vertex-disjoint paths of
length at least four each. If one of them has length at least five then

ext(H) ≤ z4z52bn/2c−7 =
104
128

2bn/2c.

If both have length four then the maximality of P implies that its vertices induce a K4. Thus,

ext(H) ≤ ext(K4) · z42bn/2c−6 =
40
64

2bn/2c.
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Finally, assume |P | = 7. If there is an edge connecting two vertices outside P then

ext(H) ≤ ext(K2)ext(P7)2bn/2c−7 =
102
128

2bn/2c.

Otherwise, by the maximality of P = (a1, . . . , a7) and the fact that δ(H) ≥ 2t − 1 = 3, every
vertex outside of P is adjacent to at least three vertices among {a2, a3, a4, a5, a6}. If some vertex
b /∈ P is adjacent to a3 then we have two paths of length four, namely, P 1 = (a1, a2, a3, b) and
P 2 = (a4, a5, a6, a7). Let c /∈ P and c 6= b. Since c has three neighbors on these paths and none of
them are from {a1, a7, b} we have that H contains a P4 and a Q. Thus,

ext(H) ≤ ext(Q)z42bn/2c−7 =
112
128

2bn/2c.

A similar argument holds if some vertex b /∈ P is adjacent to a5. We may therefore assume that the
neighborhood of all vertices outside P is precisely {a2, a4, a6}. Let b1, b2, b3 be such vertices. Then,
{b1, a7, a6, a5, a4} induces a subgraph that contains a Q and {a1, a2, a3, b2, b3} induce a subgraph
that contains the star S5 where a2 is the root. We therefore have

ext(H) ≤ ext(Q)ext(S5)2bn/2c−8 = 14 · 17 · 2bn/2c−8 =
238
256

2bn/2c.

2

Lemma 4.17 If δ(G) = bn/2c + t and 0.205n ≥ t ≥ (bn/2c + 2)/3 then the second condition in
Lemma 4.11 holds.

Proof: In this case we have δ(H) ≥ 2t− 1 > b|H|/2c− 1. Hence, H is Hamiltonian. By Corollary
4.5 we have, since n ≥ 320 and |H| > n/2� 21,

ext(H) ≤ (z21)|H|/21 = 28657(bn/2c+t)/21 ≤ 28657n(0.705/21) ≤ 1.41136n ≤ 0.94 · 2bn/2c.

2

Lemma 4.18 If δ(G) = bn/2c + t and 0.205n < t < 0.259n then the second condition in Lemma
4.11 holds.

Proof: Put β = max{5/8, δ(H)/|H|}. Notice that β > 0.5. By Corollary 4.9 we have

ext(H) ≤ 3 · 55|H|/3−8|H|β/36−|H|+2|H|β.

Put t = αn. Notice that |H| ≤ (0.5 + α)n and either β = 5/8 or else β ≥ 0.99(2α/(0.5 + α)). If
β = 5/8 we have

ext(H) ≤ 3 · 6|H|/4 ≤ 3 · 60.759n/4 ≤ 3 · (1.405)n ≤ 0.94 · 2bn/2c.
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If β ≥ 0.99(2α/(0.5 + α)) we have

ext(H) ≤ 3 · 6n(0.5+α)( ln 5
ln 6

( 5
3
− 8β

3
)+2β−1) ≤ 3 · 6n(0.5+α)(0.4971−0.395β) ≤

3 · 6n(0.5+α)(0.4971− 2α
0.5+α

0.391) ≤ 3 · 6n(0.24855−α0.2849) ≤ 3 · 60.19015n < 0.75 · 2bn/2c.

2

Lemma 4.19 If 0.8n > δ(G) ≥ 0.758n then the second condition in Lemma 4.11 holds.

Proof: Put δ(G) = αn. We may assume δ(H) ≤ 0.75|H| since ext(H) is monotone decreasing
with respect to edge addition. Notice that if δ(H) = β|H| then we have 0.75 ≥ β ≥ 2α−1

α > 2/3.
By Corollary 4.7 with k = 4 we have

ext(H) ≤ 5αn/4(1.197)3αn−4βαn ≤ (5α/4(1.197)4−5α)n ≤

(50.1895(1.197)0.21)n ≤ 1.4089n < 0.94 · 2bn/2c.

2

Lemma 4.20 If k+1
k+2n > δ(G) ≥ k

k+1n For k = 4, 5. then the second condition in Lemma 4.11
holds.

Proof: Since |H| = δ(G) we have δ(H) ≥ k−1
k |H|. By Lemma 4.6, H has b|H|/kc vertex-disjoint

copies of Kk In particular H has a spanning subgraphs whose components are b|H|/kc copies of
Kk and at most k − 1 isolated vertices. Thus,

ext(H) ≤ (k + 1)b|H|/kc2k−1 ≤ (k + 1)( k+1
k+2

n)/k2k−1 < 1.3985n · 16 < 0.94 · 2bn/2c

where the last inequality is valid for k = 4, 5 and for all n ≥ 320. 2

Lemma 4.21 If δ(G) ≥ 6
7n then the second condition in Lemma 4.11 holds.

Proof: As in the previous lemma we get δ(H) ≥ 5
6n and

ext(H) ≤ 7n/625 ≤ 0.94 · 2bn/2c

where the last inequality is valid for all n ≥ 320. 2
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5 Concluding remarks and open problems

• Another interesting problem is to determine D(n,m, T ), that is, the maximum possible num-
ber of T -free orientations of a graph with n vertices and m edges. By (1) we trivially have
D(n,m, T ) = 2m whenever m ≤ tk−1(n), where k is the number of vertices of T . The problem
becomes considerably more difficult for m > tk−1(n). Even for T = C3 the exact values for
all (n,m) pairs are unknown. Using the fact that every non-transitive tournament contains
a triangle we trivially have D(n,

(
n
2

)
, C3) = n!. It is also not difficult to prove the following

proposition

Proposition 5.1

1. D(n,
(
n
2

)
− 1, C3) = (n− 1)!(n− 1) for n ≥ 2.

2. D(n,
(
n
2

)
− 2, C3) = n!− 2(n− 1)! + (n− 2)! + 2(n− 3)! for n ≥ 4. 2

• A careful examination of the constants in the proof of Theorem 4.10 shows that the theorem
holds for all n ≥ 10000 (in fact, slightly less). It is of some interest to determine D(n,C3) for
all n. Using a computer program we have D(n,C3) = n! for n = 1, . . . , 7. The same program
yields D(8, C3) = 216. The case n = 9 is too large for a straightforward computer verification.
We conjecture that the following holds for all n ≥ 1

D(n,C3) = max{2bn2/4c, n!}.

In particular, Theorem 4.10 is conjectured to hold for all n ≥ 8.

• It would be interesting to generalize Theorem 1.1 to the situation of finding the number of
H-free orientations, where H is any directed graph, not necessarily a tournament. In fact, it
is not difficult to generalize Lemma 2.1 to apply also for H = T (t), where t is any positive
integer and T (t) is the directed graph obtained from the k-vertex tournament T by replacing
each vertex with an independent set of size t. In particular, this shows that an asymptotic
version of Theorem 1.1 holds for T (t).
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