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Abstract

We describe a simple construction of a family of permutations with a certain pseudo-random

property. Such a family can be used to derandomize a recent randomized maximum-flow al-

gorithm of Cheriyan and Hagerup for all relatively dense networks. Hence this supplies a de-

terministic maximum-flow algorithm that works, on a network with n vertices and m edges, in

time O(nm) for all m = Ω(n5/3 log n) (and in time O(nmlogn) for all other values of n and m).

This improves the running time of the best known deterministic maximum-flow algorithm, due

to Goldberg and Tarjan, whose running time is O(nmlog(n2/m)).
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1 The main results

Two permutations π = π(1), . . . , π(n) and σ = σ(1), . . . , σ(n) of 1, . . . , n have a common ascending

subsequence of length r if there are i1 < . . . < ir and j1 < . . . < jr such that π(il) = σ(jl) for

all l = 1, . . . , r. Let λ(π, σ) denote the maximum length of a common ascending subsequence of π

and σ. (Equivalently, λ(π, σ) is the maximum length of an ascending subsequence of the sequence

σ−1π(1), . . . , σ−1π(n) ).

Theorem 1 For every two integers k and n, where k ≥ n0.2, one can construct a sequence

π1, . . . , πk of k permutations of 1, . . . , n, such that for every permutation σ of 1, . . . , n the inequality∑k
i=1 λ(σ, πi) = O(kn0.8) holds.

Such a sequence can be constructed (and written) in time O(kn), i.e., in time which is essentially

that needed to write these permutations down.

Theorem 2 For every two integers k and n, where k ≥ n, one can construct a sequence π1, . . . , πk

of k permutations of 1, . . . , n, such that for every permutation σ of 1, . . . , n the inequality∑k
i=1 λ(σ, πi) = O(kn2/3)

holds.

Such a sequence can be constructed (and written) in time O(kn).

We note that the estimate above is not far from being best-possible. In fact for every k and n

and for every sequence π1, . . . , πk of k permutations of 1, . . . , n, there is a permutation σ of 1, . . . , n

such that∑k
i=1 λ(σ, πi) = Ω(kn1/2).

This follows from the simple fact that the expecetd length of the maximum ascending subsequence

of a random permutation is Θ(n1/2), and hence the expected value of the left hand side of the last

inequality, where the permutations πi are fixed and σ is chosen randomly is Θ(kn1/2). We note also

that if the permutations πi are chosen randomly then one can check that with high probability for

every permutation σ∑k
i=1 λ(σ, πi) = O(kn1/2).
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Therfore, our explicitly-constructed permutations have a certain pseudo-random property.

As observed by Cheriyan and Hagerup, the permutations constructed above can be used to

derandomize their randomized maximum-flow algorithm described in [3] for all relatively dense

networks. Hence this supplies a deterministic maximum-flow algorithm that works, on a network

with n vertices and m edges, in time O(nm) for all m ≥ Ω(n5/3 log n) (and in time O(nmlogn)

for all other values of n and m). This improves the running time of the best known deterministic

maximum-flow algorithm, due to Goldberg and Tarjan [5], whose running time is O(nmlog(n2/m)).

It is worth noting that the problem of improving on the O(nmlogn) time bound of the maximum-

flow algorithm in [6] has motivated several recent interesting papers; see [4], [5], [1] and [2]. Yet,

despite these efforts, before the derandomization given in the present note, for real-valued networks

and also for networks with very large integer capacities the algorithm in [6] was still the fastest

deterministic algorithm for m = O(n2−ε), where ε > 0 is fixed.

2 The proofs.

In order to prove the above two theorems we need several simple lemmas.

Lemma 3 Let A1, . . . , As be s subsets of an n-element set X , and suppose that the cardinality of

the intersection of each two distinct sets Ai does not exceed t. Then
∑s
i=1 |Ai| ≤ n+ s(s−1)t

2 .

Proof Clearly n = |X| ≥
∑s
i=1 |Ai| −

∑
1≤i<j≤s |Ai ∩Aj |, implying the desired estimate. 2

Corollary 4 Let π1, . . . , πs be s permutations of 1, . . . , n, and suppose that λ(πi, πj) ≤ t for all

1 ≤ i < j ≤ s. Then , for every permutation σ of 1, . . . , n
∑s
i=1 λ(πi, σ) ≤ n+ s(s−1)t

2 .

Proof Put X = {1, . . . , n}. For each i, 1 ≤ i ≤ s, fix one maximum-length common ascending

subsequence of πi and σ, and let Ai be the subset of X consisting of the numbers in it. Clearly,

|Ai| = λ(πi, σ), and the cardinality of the intersection of any two distinct sets Ai does not exceed

t. The result now follows from Lemma 3. 2.

Lemma 5 Let n+1 = p be a prime and let s ≤ n be an integer. Then one can construct a sequence

π1, . . . , πs of s permutations of 1, . . . , n, such that for all 1 ≤ i < j ≤ s , λ(πi, πj) ≤ 2n1/2s1/2.
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Such a sequence can be constructed (and written) in time O(sn).

Proof The permutations we construct will all be of the form πa with 1 ≤ a ≤ n, where πa is the

permutation a, 2a, . . . , na, in which all numbers are reduced modulo p. The set A of numbers a for

which we will take the permuatation πa will have the following property:

∀a, b ∈ A, a 6= b there are no c, d with 1 ≤ c, d ≤ n1/2/s1/2 such that ac = bd(modulo p). (1)

Such a set A of cardinality s can be easily constructed greedily. After we have already chosen k < s

members we compute all the kn/s < n numbers bd/c (modulo p) where b is such a member and

1 ≤ c, d ≤ n1/2/s1/2 ,and choose a to be different from all those.

Now observe that if j and l are two distinct numbers in {1, . . . , n}, then if j appears after l

in πa then the distance between them in πa is (j − l)/a. Similarly, the distance between them in

πb is (j − l)/b. (All these operations are modulo p, of course). It is impossible that both these

numbers are smaller than n1/2/s1/2 for two distinct a, b in A, since in this case j−l = ac = bd where

1 ≤ c, d ≤ n1/2/s1/2, contradicting (1). Thus, in any common ascending sequence of πa and πb one

of the distances between any two corresponding pairs of adjacent elements in the subsequence is at

least n1/2/s1/2 and hence the size of this sequence cannot exceed 2n
n1/2/s1/2

= 2n1/2s1/2. 2.

Proof of Theorem 1 If n + 1 is a prime then, by Lemma 5 (with s = bn0.2c ) and Corollary

4 there are k = bn0.2c permutations for which the assertion of the theorem holds. If k is bigger,

we repeat this set of permutations as many times as needed. Finally, if n + 1 is not a prime we

choose a prime larger than n+ 1 and smaller than 2n+ 2 (such a prime always exists by Bertrand’s

postulate and can be found quickly), construct our permutations for that prime and then take their

restrictions to 1, . . . , n . This completes the proof. 2

Proof of Theorem 2 Suppose, first, that n + 1 = p is a prime and that k = n. In this case

we simply take all the permutations πa for a ∈ {1, . . . , n}. Let σ be an arbitrary permutation of

1, . . . , n. Define x by x =
∑n
i=1 λ(σ, πi). We must show that x = O(n5/3). For each i, 1 ≤ i ≤ n

let us fix a common ascending subsequence of πi and σ of maximum length λ(πi, σ). Denote this

sequence by Si. For each pair of adjacent elements in Si define their distance to be the distance

between them in πi plus the distance between them in σ. Obviously, the sum of all the distances
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between all the adjacent pairs of all the sequences Si (including the cyclic distance between the

last element of each Si and the first element of it) is precisely 2n2. Therefore, there are at least

x/2 adjacent pairs whose distances are all at most 4n2

x . Note that we may assume that 4n2

x ≤ n,

since otherwise x < 4n and there is nothing to prove. The number of pairs in the permutation σ

whose distance in σ is at most 4n2

x is exactly n4n2

x = 4n3

x . Each such pair appears with all possible

distances between its members in the various πi, and hence there are exactly 4n2/x permutations in

which it appears with distance at most 4n2/x. Therefore, the number of pairs of adjacent elements

of the n subsequences Si whose distances, as defined above, are at most 4n2/x is certainly at most

4n3

x
4n2

x = 16n5

x2 . But this number is at least x/2 and hence x/2 ≤ 16n5

x2 , implying x ≤ 321/3n5/3.

This completes the proof when k = n and n+ 1 is a prime. The general case follows as in the proof

of Theorem 1. 2

3 Discussion

In order to derandomize the maximum-flow algorithm of [3] for sparser networks, a more compli-

cated construction is needed. We say that a permutation σ = σ(1), . . . , σ(n) of 1, . . . , n and a

permutation π = π(1), . . . , π(q) of a subset of cardinality q of {1, . . . , n} have a common ascending

subsequence of length r if there are i1 < . . . < ir and j1 < . . . < jr such that π(il) = σ(jl) for

all l = 1, . . . , r. Let λ(σ, π) denote the maximum length of a common ascending subsequence of σ

and π. (Equivalently, λ(σ, π) is the maximum length of an ascending subsequence of the sequence

σ−1π(1), . . . , σ−1π(q) ). Given a family F = {A1, . . . , An} of n subsets of {1, . . . , n}, such that∑n
i=1 |Ai| = m, we wish to find a family {π1, . . . , πn}, where πi is a permutation of the elements

of Ai, such that for every permutation σ of {1, . . . , n}, the sum
∑n
i=1 λ(σ, πi) does not exceed

O(m/ log n). In [3] it is shown, by a simple probabilistic argument, that if m ≥ n(log n)2 such a set

of permutations πi always exists. Moreover, it follows from the analysis in [3] that if, for some n

and m ≥ n(log n)3, we can generate such a set of permutations in time O(nm) for any given family

of subsets F whose sum of cardinalities is m, then we can obtain a deterministic maximum-flow

algorithm that works in time O(nm) for every network with n vertices and m edges. Theorem 2
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(with k = n) clearly suffices to give the desired permutations in case m ≥ Ω(n5/3 log n). (We simply

let πi be the restriction of the i-th permutation supplied by Theorem 2 to Ai.) This theorem, as well

as the somewhat different Theorem 1 do not suffice for smaller values of m. In fact, it is unlikely

that a similar method would work for m = o(n3/2), since there exist families of n subsets Ai of an n

element set, each having cardinality Ω(n1/2), such that no two of these subsets have an intersection

of size 2 or more. Since our method depends on the existence of common pairs of elements in the

various sets Ai it seems that a new idea is needed for such cases. It is not impossible that some

of the known pseudo-random properties of explicitly constructed expander-graphs can be useful

here. At the moment we do not see how to use these properties, and the problem of constructing

permutations with the desired properties for the cases of small m, as well as the derandomization

of the maximum-flow algorithm of [3] for sparser networks, remains open.
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