
Permutations resilient to deletions

Noga Alon∗ Steve Butler† Ron Graham‡ Utkrisht C. Rajkumar§

May 21, 2017

Abstract

Let σ be a permutation on [n] = {1, 2, . . . , n} which can be written in two-line
notation, and let ϕ : [n] → S be a bijection. Construct τ (resp. β) by replacing the
elements in σ as dictated by ϕ and then deleting up to d elements in the top (resp.
bottom) line and contracting the result, making sure no symbol is deleted in both
lines. The permutation σ is d-resilient if τ and β always uniquely determine ϕ (or
equivalently, determine where the deletions in the top and bottom lines occurred).

Necessary and sufficient conditions for a permutation to be d-resilient are estab-
lished in terms of whether a family of auxiliary graphs are acyclic. Also, constructions
are given for d-resilient permutations which have size n exponential in d, this is best
possible. It is further shown that for every fixed d and sufficiently large n a positive
portion of all permutations of n elements are d-resilient.

1 Introduction

Let σ be a permutation on [n] = {1, 2, . . . , n} written in two-line notation. We consider the
problem of whether a bijection ϕ : [n] → S, where S is an arbitrary set of n elements, can
be uniquely determined if we are given partial information about the permutation expressed
using symbols from S.

More precisely we replace the entries in σ by the corresponding elements of S as dictated
by ϕ, then for each of the top and bottom rows we delete up to d symbols (with no symbol
being deleted in both rows), and contract the result (to remove indications of where the
deletions occurred). This produces two lists: τ and β (for the top and bottom respectively).
Given σ, τ , and β, can we uniquely determine ϕ? Equivalently, given σ, τ , and β, can we
uniquely determine the location of the deletions in σ that produced τ and β?
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Example 1. Let S = {A,B,C, . . . , I} and consider

σ =

(
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

)
,

τ = BDEFGHI, β = GDAHBFC. Then there is a unique ϕ, and we have

σS =

(
A B C D E F G H I

G D A H E B I F C

)
,

where σS is the permutation σ using elements from S and the location of the deletions are
boxed. Note that either line of σS can be used to give ϕ.

Example 2. Let S = {A,B,C, . . . , I} and consider

σ =

(
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

)
,

τ = ABCEGHI, and β = DAHEBIF . Then there are two possible ϕ, and we have

σS =

(
A B C D E F GH I

G DA H E B I F C

)
, or σS =

(
A B F C E G D H I

D C A H E B I G F

)
.

Definition 1. We say a permutation σ is d-resilient if for any choice of up to d deletions in
both the top and bottom rows with no symbol being deleted in both rows, then τ and β are
enough to uniquely determine ϕ.

Note that the permutation used in Examples 1 and 2 is not 2-resilient as there exists a
τ and β which does not uniquely determine ϕ.

The goal of this paper is to give a necessary and sufficient condition for a permutation σ to
be d-resilient expressed in terms of a family of auxiliary graphs being acyclic (see Section 2).
We also give a construction of d-resilient permutations which have size n exponential in d,
and show that this is best possible. Moreover we show that for every fixed d and large n a
positive portion of the permutations of n elements are d-resilient (see Section 3).

Comment. This problem can also be phrased in terms of a deletion channel where sent
messages have portions deleted and then contracted before delivery (see [4]). A d-resilient
permutation can be used to help detect and correct errors in the case when a message M
of distinct symbols and σ(M) (the message M with entries permuted as dictated by σ) are
sent through a deletion channel and at most d deletions occur in each of M and σ(M) before
delivery and each entry occurs in at least one of M and σ(M) (after the deletion). Due to the
size of d-resilient permutations they are unlikely to find direct applications in the deletion
channel problem.

Comment. This solution was inspired in part by the oral transmission protocols for Sanskrit
literature in the Vedic period. This relied on interleaving patterns of words to combat
transpositions, substitutions, insertions, and deletions of words.
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2 A necessary and sufficient condition to be d-resilient

We will find it informative to work through the details for Example 2. We see that the
symbols C, D, F , and G each only occur once and so were deleted when either τ or β was
produced. The symbols A, B, E, H, and I are doubly-occurring, i.e., are both in τ and
β. It is an easy exercise to show that for this permutation the identification of the doubly-
occurring symbols can be determined (i.e., ϕ is known for the subset restricted to the doubly
occurring symbols).

Given that we know the doubly occurring symbols, we have the situation illustrated in
Figure 1 where we have marked with a line how σ connects the entries involved in a deletion.( )

A B � � E � � H I

� � A H E B I � �

Figure 1: Intermediate step in working to recover σS.

The entries marked as � in Figure 1 indicate that this is a location of a symbol that
occurs only once. Examining the location of these we see that there are four blocks of
contiguous �’s (two in the top line and two in the bottom line). By examining τ and β we
can conclude that each one of these blocks has one entry which was deleted and the other
was kept.

If we could uniquely determine which entries in all blocks were deleted and which were
kept we could recover our message (i.e., we simply use the connections between the two lines
to fill any gaps). However, it might be that there is more than one possibility to which
entries in the blocks were deleted and which were kept.

We are in the latter case in that there are two ways in which entries could be deleted
or kept, as shown in Figure 2. Here we have oriented the edges from where a symbol was
deleted (marked with a “∗”) in one of the top or bottom lines to where it was kept in one of
the bottom or top lines. This allows us to quickly determine the two possible σS.( )

A B C ∗ E ∗ G H I

∗ D A H E B I F ∗

( )
A B ∗ C E G ∗ H I

D ∗ A H E B I ∗ F

Figure 2: Ambiguity found in working to recover σS.

This example highlights the key idea in why we might be unable to uniquely recover ϕ.
Namely there is ambiguity in large blocks of �’s as to which specific entries were deleted
and which were kept. When there is an ambiguity we might be able to propagate a change
in σS through the blocks in a consistent manner to produce multiple possible σS.
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To generalize what happens, we introduce an auxiliary (multi-)graph to the problem.
Given a permutation σ on [n] = {1, 2, . . . , n} and D ⊆ [n] (representing the location of
indices involved in deletions), let G(σ,D) be a bipartite (multi-)graph defined in the following
way. Let t1, t2, . . . , ti be the maximal contiguous blocks of elements of D in the top line of σ
and let b1, b2, . . . , bj be the maximal contiguous blocks of elements of D in the bottom line
of σ. We now let

V
(
G(σ,D)

)
= {t1, t2, . . . , ti, b1, b2, . . . , bj}

and we add |tk ∩ b`| edges joining tk and b` for all k and `. Note that G(σ,D) will have |D|
edges (i.e., one edge for each element in D).1

Since every edge in G(σ,D) can be identified with an element of D, we can indicate
whether a symbol is deleted in the top or bottom line by orienting the edge away from
where the deletion occurs.

Returning to our example shown in Figure 1 we have D = {3, 4, 6, 7}, t1 = (3, 4), t2 =
(6, 7), b1 = (7, 4), b2 = (6, 3), and G(σ,D) is a (simple) 4-cycle. We can interpret the
situation shown in Figure 2 as coming from two different cyclic orientations of the 4-cycle.

Theorem 1. If |D| ≤ 2d and G(σ,D) has a cycle, then σ is not d-resilient.

Proof. To show σ is not d-resilient we only need to find a τ and β that can produce more
than one valid σS. Start by fixing a cycle in G(σ,D) and orient the edges G(σ,D) in the
following manner.

• First orient the edges of the cycle to produce in-degree and out-degree one at each
vertex of the cycle.

• Orient the remaining edges so that there are at most d edges directed into the {tk}
collectively and at most d edges directed into the {b`} collectively. (This can be done,
for example, by always orienting towards the {tk} until there are d edges directed into
them, and then orienting all the remaining edges towards the {b`}.)

Call this orientation H1. Let H2 be the orientation found by starting with H1 and reversing
all the edges of the cycle. The orientations will indicate how to delete entries in forming the
τ and β, i.e., we delete the entries which correspond to the tails of the directed arcs (here
remembering that each arc is associated with a unique entry in the top row and unique entry
in the bottom row). By our assumptions on the size of D and the choice of orientations, we
will delete at most d symbols in each of the rows.

By construction we note that H1 and H2 have the same in- and out-degree at each vertex,
i.e., we will consistently delete/keep the same number of symbols in each block. However
for any vertex where the cycle passed through the location of the deletions will be slightly
different between H1 and H2 (this is what leads to the ambiguity!).

Let ϕ be a bijection and σS the permutation according to ϕ. We now construct a second
valid way to write σS by doing the following.

1This process is similar to what is done to construct random graphs with prescribed degrees, namely we
have a matching (the connections joining indices in the top and bottom lines), and then we group a cluster
of endpoints together to form a vertex. Here our clusters are defined by the contiguous blocks.
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1. Place the edges of the orientation of H1 between the two lines and for any element that
has an edge oriented out replace the symbol with a ∗.

2. Replace the orientation H1 with the orientation H2.

3. For each block tk and b`, move the non-∗ entries to correspond to the vertices with an
edge directed in; while preserving the relative order of the entries. The entries with
edges directed out will now obtain a ∗.

4. Replace any symbol with a ∗ by using the edges of the orientation, i.e., with what it
connects with.

The key step is the third step, because we have guaranteed two things to happen. First we
have changed the orientation of at least one edge (from the cycle) and thus the location of
at least one entry has changed (i.e., this is a different bijection, ϕ′). Second if we delete the
original representation by H1 and the new representation by H2 then they will produce the
same τ and β, giving us more than one valid σS for the same τ and β.

So the existence of a cycle in G(σ,D) with |D| ≤ 2d can lead to ambiguity. We next
show that this is essentially the only possible way to have an ambiguity.

Theorem 2. If for all |D| ≤ 2d the graph G(σ,D) is acyclic, then σ is d-resilient.

Proof. First we demonstrate that from τ and β we can determine the location of all doubly
occurring symbols in σ.

Suppose that the symbol x occurs in τ in position q. Then x must be in one of positions
q, q+ 1, . . . , q+d in the top line of σS (i.e., it could move down by at most d entries); which
in turn gives that the location of x is in one of d + 1 possible positions in the bottom line
of σS. It now suffices to show that these positions are pairwise distance more than d apart,
since then the positions are associated with non-overlapping portions of β from which we
can determine the location of x.

So suppose that some pair of positions are pairwise distance d or less apart. Then there
are a pair of symbols y and z so that the distance between them in both the top and bottom
lines is at most distance d. Now form the set D by taking y, z, and all elements between y
and z in both the top and bottom lines. This has size |D| ≤ 2d and the vertices y and z are
both in the same block on the top and bottom and thus G(σ,D) would have a two-cycle,
which contradicts our assumption.

Since we now know the locations of all the doubly occurring symbols, we also know the
locations of entries involved in deletion, i.e., there is a unique D associated with τ and β.
We also know that G(σ,D) does not contain a cycle. We now observe that if there were two
(or more) possible σS, then they would have to correspond to two distinct orientations, say
H1 and H2, of the edges of G(σ,D), and moreover that the orientations would have the same
in- and out-degrees at each vertex. (This last statement follows from noting that we know
how many symbols were in these blocks from τ and β and also the length of the blocks.)

So suppose there were two possible σS and let e1 be any edge of H2 which has a different
orientation from H1. Now going into the vertex it is oriented towards there must be some
other edge that initially was oriented into the vertex in H1 but is now oriented out, call that
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edge e2. Now we can repeat this procedure finding e1, e2, e3, . . . , until we eventually come
across an edge which goes into a previously seen vertex by this procedure. But at such a
point we have a directed cycle in H2, and more importantly a cycle in G(σ,D), which is
impossible. So there can only be one σS. Since this is true for any τ and β we have σ is
d-resilient.

3 Construction of d-resilient permutations

By Theorems 1 and 2 it is easy to show that σ is 1-resilient if and only if the permutation
does not map adjacent entries to adjacent entries. This first happens with n = 4, for example(

1 2 3 4
2 4 1 3

)
.

The smallest possible 2-resilient permutations have length 18, for example(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
6 16 9 1 5 11 15 2 7 12 17 4 8 14 18 10 3 13

)
. (1)

It is not immediately obvious that d-resilient permutations exist for larger d, however the
following result shows that not only do they exist, there is also an efficient procedure to
produce a d-resilient permutation.

Theorem 3. For any n and d satisfying n > 32d there is a d-resilient permutation σ of [n].
Such a σ can be found by a polynomial time algorithm (in n).

Call a graph H an (n, d)-double path graph if it has n vertices, its edge set is a union
of two Hamiltonian paths, and its girth is at least 2d + 1. Given such a graph, number its
vertices by the integers 1, 2, 3, . . . , n according to the order of the first Hamiltonian path
(corresponding to the top row of the two-line representation of σ), and the ordering of
the second Hamiltonian path will then correspond with the bottom row of the two-line
representation of σ. As an example the permutation in (1) produces the graph shown in
Figure 3.

Lemma 4. For any (n, d)-double path graph H the corresponding permutation is d-resilient.

Proof. If there is a D ⊂ [n] so that G(σ,D) contains a cycle, then so does the induced
subgraph of H on D. Since H has girth 2d+ 1 then G(σ,D) is acyclic for all |D| ≤ 2d and
so by Theorem 2 we have σ is d-resilient.

Lemma 5. If n > 32d then there is an (n, d)-double path graph H.

Proof. We apply a variant of the method of Erdős and Sachs [2]. Starting with a graph H on
the set of vertices [n] with the edge set being the union of the Hamiltonian path 1, 2, . . . , n
(in this order) and another Hamiltonian path P , we keep modifying P as long as there is a
cycle of length at most 2d in H. We show how to perform these modifications in order to
get rid of all cycles of length at most 2d keeping the first Hamiltonian path and maintaining
the property that the second one, P , also stays a Hamiltonian path. In each modification

6



Figure 3: A graph corresponding to the permutation in (1); the dashed line being the top
row and the solid line being the bottom row. Note the graph has girth 5.

we switch some pair of edges of P which are far from each other, that is, omit them and
connect their endpoints by new edges in the unique way ensuring that the modified P will
stay a Hamiltonian path. Here are the details.

As long as H contains a cycle of length at most 2d, let C be a shortest cycle in H, and
let e be an arbitrary edge of P that belongs to C (there must be such an edge, as the other
Hamiltonian path contains no cycle at all). By assumption

n− 1 > 1 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32d−1

implying that P contains an edge e′ whose distance (in H) from e is at least 2d. We now
switch at e, e′ (that is, delete them and add the required edges to keep P a Hamiltonian
path). This way we get rid of the cycle C. Any new cycle created this way either contains
only one of the new edges, and then its length is at least 2d+ 1, or contains both and then
its length is at least twice the length of the shortest cycle deleted. Proceeding in this way we
increase the length of the shortest cycle after a finite number of steps, and when the process
terminates we get the required graph. Note that since the number of cycles of length t in a
graph of maximum degree 4 and n vertices is smaller than n · 3t the process terminates after
at most

O(n(33 + · · ·+ 32d)) = O(n2)

steps, and each step is efficient as finding a shortest cycle in a graph is efficient.

The assertions of Theorem 3 follow from the two preceding lemmas. This shows that we
can find d-resilient permutations which have size n exponential in d, we now note that this
is best possible.

Theorem 6. If there is a permutation σ of [n] that is d-resilient, then d ≤ O(log n).

Proof. By the known results about cycles in graphs with n vertices and 2n − 2 edges (see
[1]), the graph constructed from the permutation σ as in the discussion above contains a
short cycle on a set of vertices S, |S| ≤ 2 log3 n + O(1). This in turn implies that G(σ,D)
has a cycle of length 2 log3 n+O(1) and hence we have that d ≤ 2 log3 n+O(1).
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Finally we note that asymptotically a positive portion of permutations are d-resilient.

Proposition 7. For any fixed d there is a positive real ε(d) and n0 = n0(d) so that the
probability that a random permutation σ of [n] is d-resilient is at least ε(d).

Proof. It is known that for every fixed integer d a random 4-regular graph on n vertices,
for large n, has girth bigger than 2d with probability at least some δ(d) > 0. By the
known results about contiguity (see [3]) this random graph is the edge disjoint union of two
Hamiltonian cycles with probability that tends to 1 as n tends to infinity. This implies the
required assertion, by Lemma 4.
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