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Abstract

A family of sets has the (p, q) property if among any p members of the family some q have

a nonempty intersection. It is shown that for every p ≥ q ≥ d + 1 there is a c = c(p, q, d) < ∞

such that for every family F of compact, convex sets in Rd which has the (p, q) property there

is a set of at most c points in Rd that intersects each member of F . This settles an old problem

of Hadwiger and Debrunner.
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1 Introduction

For two integers p ≥ q, a family of sets H has the (p, q) property if among any p members of the

family some q have a nonempty intersection. H is k-pierceable if it can be split into k or fewer

subsets, each having a nonempty intersection. The piercing number of H, denoted by P (H), is the

minimum value of k such that H is k-pierceable. (If no such finite k exists, then P (H) =∞.)

The classical theorem of Helly [15] states that any family of compact convex sets in Rd which

satisfies the (d + 1, d + 1)-property is 1-pierceable. Hadwiger and Debrunner considered the more

general problem of studying the piercing numbers of families F of compact, convex sets in Rd that

satisfy the (p, q) property. By considering the intersections of hyperplanes in general position in

Rd with an appropriate box one easily checks that for q ≤ d the piercing number can be infinite,

even if p = q. Thus we may assume that p ≥ q ≥ d+ 1.

Let M(p, q; d) denote the maximum possible piercing number (which is possibly infinity) of a

family of compact convex sets in Rd with the (p, q)-property. By Helly’s Theorem,

M(d+ 1, d+ 1; d) = 1

for all d, and trivially M(p, q; d) ≥ p − q + 1. Hadwiger and Debrunner [13] proved that for

p ≥ q ≥ d+ 1 that satisfy

p(d− 1) < (q − 1)d (1)

this is tight, i.e., M(p, q; d) = p − q + 1. In all other cases, it is not even known if M(p, q; d) is

finite, and the question of deciding if this function is finite, raised by Hadwiger and Debrunner

in 1957 in [13] remained open. This question, which is usually referred to as the (p, q)-problem,

is considered in various survey articles and books, including [14], [6] and [9]. The smallest case

in which finiteness is unknown, which is pointed out in all the above mentioned articles, is the

special case p = 4, q = 3, d = 2. We note that in all the cases where finiteness is known, in fact

M(p, q; d) = p − q + 1 and that there are examples of Danzer and Grünbaum (cf. [14]) that show

that M(4, 3; 2) ≥ 3 > 4− 3 + 1.

The (p, q)-problem received a considerable amount of attention, and finiteness have been proved

for various restricted classes of convex sets, including the family of parallelotopes with edges parallel

to the coordinate axes in Rd ([14],[20], [7]), families of homothetes of a convex set ([20]), and, using

a similar approach, families of convex sets with a certain ”squareness” property ([10], see also [22]).
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Despite these efforts, the problem of deciding if M(p, q; d) is finite remained open for all values

of p ≥ q ≥ d+ 1 which do not satisfy (1).

In the present paper we solve this problem and prove the following theorem.

Theorem 1.1 For every p ≥ q ≥ d+ 1 there is a c = c(p, q, d) <∞ such that M(p, q; d) ≤ c. I.e.,

for every family F of compact, convex sets in Rd which has the (p, q) property there is a set of at

most c points in Rd that intersects each member of F .

The proof is not long, and applies three tools; a fractional version of Helly’s Theorem, first proved in

[16], Farkas’ Lemma (or Linear Programming Duality) and a recent result proved in [1]. Although

the proof supplies finite upper bounds for M(p, q; d) the bounds obtained are very large and the

problem of determining this function precisely remains wide open.

The rest of the paper is organized as follows. In the next section we describe the proof of the

the above theorem, without making any effort to optimize the contants c(p, q, d). For completeness

we describe a short proof of one of the result in [1], which we need here. In Section 3 we comment

on the possibilities to improve the estimate for c(p, q, d), focusing on obtaining a relatively small

bound for M(4, 3; 2). The final Section 4 contains some concluding remarks.

2 The proof of the main result

In this section we prove Theorem 1.1. Since we do not try to optimize the constants here, and since

obviously M(p, q; d) ≤ M(p, d + 1; d) for all p ≥ q ≥ d + 1 it suffices to prove an upper bound for

M(p, d+ 1; d). Another simple observation is that by compactness we can restrict our attention to

finite families of convex sets.

Let F be a family of n convex sets in Rd, and suppose that F has the (p, d+ 1) property. Our

objective is to find an upper bound for the piercing number P (F) of F , where the bound depends

only on p and d. For convenience, we split the proof into three subsections.

2.1 A fractional version of Helly’s Theorem

Katchalski and Liu [16] proved the following result which can be viewd as a fractional version of

Helly’s Theorem.
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Theorem 2.1 ([16]) For every 0 < α ≤ 1 and for every d there is a δ = δ(α, d) > 0 such that for

every n ≥ d + 1, every family of n convex sets in Rd which contains at least α
( n
d+1

)
intersecting

subfamilies of cardinality d+ 1 contains an intersecting subfamily of at least δn of the sets.

Notice that Helly’s Theorem is equivalent to the statement that in the above theorem δ(1, d) = 1.

A sharp quantitative version of this theorem was proved by Kalai [17] and, independently, by

Eckhoff [8]. See also [2] for a very short proof. All these proofs rely on Wegner’s Theorem [21] that

assrerts that the nerve of a family of convex sets in Rd is d-collapsible. This sharp quantitative

result implies that for all l ≥ d + 1, the minimum possible number of intersecting subfamilies of

cardinality l in a family of n convex sets in Rd no s + 1 of which have a common intersection

is obtained by a family consisting of s − d copies of Rd together with n − s + d hyperplanes in

general position. In particular, it implies that the best possible value of δ(α, d) in Theorem 2.1 is

δ(α, d) = 1− (1− α)1/(d+1) ≥ α
d+1 .

Here we apply the above Theorem to prove the following lemma.

Lemma 2.2 For every p ≥ d+1 there is a positive constant β = β(p, d) with the following property.

Let F = {A1, . . . , An} be a family of n convex sets in Rd which has the (p, d+ 1) property. Let ai

be nonnegative integers, define m =
∑n
i=1 ai and let G be the family of cardinality m consisting of

ai copies of Ai, for 1 ≤ i ≤ n. Then there is a point x in Rd that belongs to at least βm members

of G.

Proof We prove the lemma with

β = MIN { 1
2p2

,
1

2(d+ 1)
( p
d+1

)}. (2)

This estimate can be easily improved, but we make no attempt here and in what follows to optimize

the constants. If there exists an i such that ai ≥ βm than simply choose an arbitrary point x that

belongs to Ai to complete the proof. Thus we may assume that ai ≤ βm for all i. Denote the

members of G by Bi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ ai, where for each fixed i, the sets Bi,j are the ai copies

of Ai. Let T be the family of all subsets

{Bi1,j1 , . . . , Bip,jp}
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of cardinality p of G in which iu 6= iv for all 1 ≤ u < v ≤ p. Since ai ≤ βm for all i we conclude

that

|T | ≥ 1
p!
m(m− βm)(m− 2βm) . . . (m− (p− 1)βm) ≥ 1

p!
mp(1− pβ)p.

Since F has the (p, d+ 1)-property, for each member T = {Bi1,j1 , . . . , Bip,jp} of T there is a subset

S ⊂ T of cardinlity d + 1 which is intersecting. Moreover, the same subset S is contained in at

most
(m−d−1
p−d−1

)
members of T . It thus follows that the number of intersecting subsets of cardinality

d+ 1 of G is at least
|T |(m−d−1

p−d−1

) ≥ (p− d− 1)!
p!

(1− pβ)pmd+1

≥ 1( p
d+1

)(1− pβ)p
(

m

d+ 1

)
.

By Theorem 2.1 (with the estimate for δ(α, d) stated after it), this implies that there is a point x

that belongs to at least

1
(d+ 1)

( p
d+1

)(1− pβ)pm ≥ 1
(d+ 1)

( p
d+1

)(1− p2β)m ≥ 1
2(d+ 1)

( p
d+1

)m ≥ βm
of the members of G, where here we used equation (2). This completes the proof of the lemma. 2

2.2 Farkas’ Lemma and a Lemma on Hypergraphs

The following is a known variant of the well known lemma of Farkas (cf. [18], page 90).

Lemma 2.3 Let A be a real matrix and b a real (column) vector. Then the system Ax ≤ b has

a solution x ≥ 0 if and only if for every (row) vector y ≥ 0 which satisfies yA ≥ 0 the inequality

yb ≥ 0 holds.

Corollary 2.4 Let H = (V,E) be a hypergraph and let 0 ≤ γ ≤ 1 be a real. Then the following

two conditions are equivalent.

(i) There exists a weight function f : V 7→ R+ satisfying
∑
v∈V f(v) = 1 and

∑
v∈e f(v) ≥ γ for all

e ∈ E.

(ii) For every function g : E 7→ R+ there is a vertex v ∈ V such that
∑
e; v∈e g(e) ≥ γ

∑
e∈E g(e).

Proof Let A be the (|E| + 1) by |V | matrix whose first |E| rows are indexed by the edges of H

and whose columns are indexed by the vertices of H defined as follows. All the entries in the last
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row of A are 1, and for an edge e ∈ E and a vertex v ∈ V , Ae,v is −1 if v ∈ e and is 0 otherwise.

Let b be a (column) vector of length |E|+ 1 in which each of the first |E| coordinates is −γ and the

last coordinate is 1. One can easily check that the matrix Ax ≤ b has a solution x ≥ 0 iff condition

(i) holds. Similarly, the inequality yb ≥ 0 holds for all (row) vectors y ≥ 0 satisfying yA ≥ 0 iff

condition (ii) holds. The result thus follows from Lemma 2.3. 2

Corollary 2.5 Suppose p ≥ d + 1 and let β = β(p, d) be the constant from Lemma 2.2. Then for

every family F = {A1, . . . , An} of n convex sets in Rd with the (p, d+ 1) property there is a finite

(multi)-set Y ⊂ Rd such that |Y ∩Ai| ≥ β|Y | for all 1 ≤ i ≤ n.

Proof Let V be a finite subset of Rd containing at least one point in each nonempty intersection

of members of F . Let H = (V,E) be the hypergraph on the set of vertices V whose set of edges is

{V ∩ Ai : 1 ≤ i ≤ n}. By Lemma 2.2 for every function g : E 7→ R+ for which g(e) is rational for

all e there is a vertex v ∈ V such that
∑
e;v∈e g(e) ≥ β

∑
e∈E g(e). By continuity this holds without

the rationality assumption. Therefore, by Corollary 2.4 there is a weight function f : V 7→ R+

satisfying
∑
v∈V f(v) = 1 and

∑
v∈e f(v) ≥ β for all e ∈ E. Since such a function is a solution of a

Linear Program with rational constraints there is such a function f for which f(v) is rational for

all v. Let l be an integer so that lf(v) is an integer for all v, and let Y consist of lf(v) copies of v

for all v ∈ V . The multiset Y clearly satisfies the conclusion of the corollary. 2

2.3 Weak ε-nets for convex sets

The follwing result is proved in [1].

Theorem 2.6 ([1]) For every real 0 < ε < 1 and for every integer d there exists a constant

b = b(ε, d) such that the following holds.

For every m and for every multiset Y of m points in Rd, there is a subset X of at most b points in

Rd such that the convex hull of any subset of εm members of Y contains at least one point of X.

Several arguments that supply various upper bounds for b(ε, d) are given in [1]. For completenss

we present here the simplest one, which is based on the following Theorem of Bárány [3] (see also

[4] for a more exact statement for the special case d = 2).
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Theorem 2.7 ([3]) For every integer d ≥ 1 there exists a constant c(d) > 0 such that for every

multiset Y of s points in Rd there is a point in Rd which lies in at least c(d)
( s
d+1

)
of the simplices

determined by subsets of cardinality d+ 1 of Y .

The proof of this theorem, which is based on a deep result of Tverberg [19] shows that for large

values of s the above statement holds with c(d) = 1
(d+1)d+1 .

Proof of Theorem 2.6 We construct the set X as follows. Starting with X = ∅, we keep adding

to X points as long as there is a point x ∈ Rd which lies in at least c(d)
( εs
d+1

)
simplices determined

by subsets of cardinality d+ 1 of Y which contain no previously chosen point of X. Observe that

by Theorem 2.7 this process does not terminate as long as there is a subset of εs members of Y

whose convex hull contains no point of X. On the other hand, the above process must terminate

after at most ( s
d+1

)
c(d)

( εs
d+1

)
steps, since the total number of simplices determined by points of Y is

( s
d+1

)
. Since the last quantity

can be bounded by a function of d and ε, this completes the proof. 2

Proof of Theorem 1.1

Let F = {A1, . . . , An} be a family of n convex sets in Rd with the (p, d + 1) property , where

p ≥ d + 1. By Corollary 2.5 there is a finite (multi)-set Y ⊂ Rd such that |Y ∩ Ai| ≥ β|Y | for all

1 ≤ i ≤ n, where β = β(p, d) is as in Lemma 2.2. By Theorem 2.6 there is a set X of at most

b(β, d) points in Rd such that the convex hull of any set of β|Y | members of Y contains at least

one point of X. Since each member of F contains at least β|Y | points in Y it must contain at least

one point of X. Therefore, P (F) ≤ |X| ≤ b(β(p, d), d), completing the proof. 2

3 Improved estimates

By Theorem 1.1, proved in the previous section, M(p, q; d) ≤ c(p, q, d) for all p ≥ q ≥ d+ 1, where

c(p, q, d) is some (finite but huge) number depending on p, q and d. The estimates for c(p, q, d) can

be improved in several ways. In this section we describe briefly some of these ways by obtaining

a relatively small upper bound for M(4, 3; 2)-the smallest case for which finiteness was not known

before. Some of the arguments here apply only for this special case (or only for the case d = 2) and

some can be used for the general case as well. Our objective is mainly to present the arguments,
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without trying to optimize the constants obtained in this manner, since it seems clear that these

arguments do not suffice for determining the correct value of M(4, 3; 2) (which is probably close to

3-the known lower bound for it).

Let F be a finite family of convex sets in R2 which satisfies the (4, 3) property. Our objective is

to bound the piercing number P (F). We first observe that if A and B are two non-intersecting sets

in F then any two members of F \ {A,B} must intersect. Therefore, M(4, 3; 2) ≤ 2 + m(4, 3; 2),

where here m(4, 3; 2) denotes the maximum possible piercing number of a finite family of planar

convex sets in which each pair intersects, and which has the (4, 3) property.

It thus suffices to bound m(4, 3; 2). The advantage in assuming that every pair of subsets of F

intersect is that with this assumption, if G is obtained from F by duplicating some of the members of

F (as in Lemma 2.2), then G also has the (4, 3)-property. This immediately implies that if |G| = m

then at least 1
4

(m
3

)
of the subsets of cardinality 3 of G are intersecting. However, this can be

improved by applying the known bounds for Turán’s problem for hypergraphs. This problem deals

with the determination or estimation of the numbers T (m, k, l)- the minimum possible number of

edges in an l-uniform hypergraph on m vertices in which each set of k vertices contains at least one

edge. In our case, the number of intersecting subfamilies of size 3 is clearly at least T (m, 4, 3), and

it is known that this number is at least 7−
√

21
6

(m
3

)
for all sufficiently large m, as proved by Giraud

(cf., e.g., [5]). (In fact, it may be possible to improve this bound for the special case of hypergraphs

obtained from planar convex sets in the above manner). We can now apply the Fractional Helly

Theorem, as in the proof of Lemma 2.2, and conclude that here the assertion of the lemma holds

with β = 1 − (−1+
√

21
6 )1/3 > 1/7. (Note that we can always assume that m is as large as we wish

by duplicating each set as many times as needed).

Repeating the proof as in Section 2, we can now improve the estimate by applying another

result of [1] which asserts that b(ε, 2) ≤ 7/ε2. This gives that m(4, 3; 2) ≤ 343 and hence that

M(4, 3; 2) ≤ 345. As mentioned above we suspect that the correct value of M(4, 3; 2) is much

smaller.
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4 Concluding remarks

1). It may seem that there are almost no interesting families of compact convex sets in Rd which

satisfy the (p, q)-property, for some p ≥ q ≥ d + 1. A large class of examples can be constructed

as follows. Let µ be an arbitrary probability distribution on Rd, and let F be the family of all

compact convex sets F in Rd satisfying µ(F ) ≥ ε. Since the sum of the measures of any set of more

than d/ε such sets is greater than d it follows that if p is the smallest integer strictly larger than

d/ε then F has the (p, d + 1) property. It follows that P (F) ≤ M(p, d + 1; d + 1), i.e., there is a

set X of at most M(p, d+ 1; d+ 1) points such that any compact convex set in Rd whose measure

exceeds ε intersects X. This result is, in fact, equivalent to Theorem 2.6, and our proof of Theorem

1.1 can be viewed as a reduction of the general case to a case of this form, by applying the methods

in Subsections 2.1 and 2.2.

2). The following Theorem is an immediate consequence of Theorem 1.1.

Theorem 4.1 Let F be a family of compact convex sets in Rd, and suppose that for every subfamily

F ′ of cardinality x of F the inequality P (F ′) < dx/de holds; i.e., F ′ can be pierced by less than x/d

points. Then P (F) ≤M(x, d+ 1; d+ 1).

Proof By the assumption F has the (x, d+ 1) property. 2

Observe that in order to deduce a finite upper bound for the piercing number of F , the as-

sumption that P (F ′) < dx/de cannot be replaced by P (F ′) ≤ dx/de as shown by an infinite family

of hyperplanes in general position (intersected with an appropriate box), whose piercing number is

infinite.

3). It would be interesting to estimate the numbers M(p, q; d) more precisely.
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