
The Price of Bounded Preemption

Noga Alon*

Tel-Aviv University
Tel-Aviv, Israel

Princeton University
Princeton, New Jersey, USA

nogaa@post.tau.ac.il

Yossi Azar†

Tel-Aviv University
Tel-Aviv, Israel
azar@tau.ac.il

Mark Berlin
Tel-Aviv University

Tel-Aviv, Israel
markberlin@mail.tau.ac.il

ABSTRACT
In this paper we provide a tight bound for the price of preemption
for scheduling jobs on a single machine (or multiple machines). The
input consists of a set of jobs to be scheduled and of an integer
parameter k ≥ 1. Each job has a release time, deadline, length (also
called processing time) and value associated with it. The goal is
to feasibly schedule a subset of the jobs so that their total value
is maximal; while preemption of a job is permitted, a job may be
preempted no more than k times. The price of preemption is the worst
possible (i.e., largest) ratio of the optimal non-bounded-preemptive
scheduling to the optimal k-bounded-preemptive scheduling.

Our results show that allowing at most k preemptions suffices to
guarantee a Θ(min{logk+1 n, logk+1 P}) fraction of the total value
achieved when the number of preemptions is unrestricted (where n
is the number of the jobs and P the ratio of the maximal length to the
minimal length), giving us an upper bound for the price; a specific
scenario serves to prove the tightness of this bound. We further show
that when no preemptions are permitted at all (i.e., k = 0), the price
is Θ(min{n, log P}).

As part of the proof, we introduce the notion of the Bounded-
Degree Ancestor-Independent Sub-Forest (BAS). We investigate the
problem of computing the maximal-value BAS of a given forest and
give a tight bound for the loss factor, which is Θ(logk+1 n) as well,
where n is the size of the original forest and k is the bound on the
degree of the sub-forest.

KEYWORDS
scheduling jobs; multiple machines; bounded preemptions; bounded-
degree sub-forest

ACM Reference Format:
Noga Alon, Yossi Azar, and Mark Berlin. 2018. The Price of Bounded
Preemption. In Proceedings of 30th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA’18). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3210377.3210407

*Supported by the ISF and the GIF
†Supported by: Israel Science Foundation Award 1506/16, ICRC Blavatnik Fund

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’18, July 16–18, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00
https://doi.org/10.1145/3210377.3210407

1 INTRODUCTION
1.1 Background
We study the bounded preemption real-time scheduling problem in
an off-line setting, modelled as follows. There is a set J of n jobs
available for scheduling, each of the jobs is associated with a triplet
⟨r j ,dj ,pj ⟩, denoting its release time, deadline and length (also called
processing time), respectively, and with a value val(j). In addition,
there is an integer k > 0. The jobs can be scheduled on a single
machine as well as on multiple machines (for which we consider the
migrative and non-migrative cases alike).

A feasible k-bounded-preemptive schedule is a scheduling of the
jobs for execution in a way that at most one job is executed in every
moment, the time constraints are not violated and that no job is
preempted (i.e., its execution is stopped) more than k times. The
objective is to provide a feasible (in the sense defined in the last
sentence) schedule for a subset of the jobs of maximum total value.

We want to investigate the price of bounding preemption to k,
which is defined as PoBP , supJ

OPT∞(J)
OPTk (J)

, i.e. the amount of value
we lose by limiting the preemptions to k with respect to the optimal
∞-preemptive scheduling. Also note that Lawler [21] has already
found an optimal algorithm for the unbounded case on a single
machine, which in turn can be extended to yield a constant factor
approximation for the multiple identical machines setting; therefore,
the price of bounded preemption and the approximation factor for
the problem can be related to each other.

1.2 Motivation
The (NP-hard) problem of unbounded preemptive scheduling on
multiple identical machines (denoted P | pmtn, r j |

∑
j (1 − Uj)Wj ,

using the notation of [17]) was first analyzed by Lawler in [21], who
found for the single-machine case an optimal solution in pseudo-
polynomial time, which becomes polynomial for unit-value jobs.
This (single-machine) solution can be transformed into an FPTAS
using a technique developed by Pruhs and Woeginger [25].

This result can in turn be extended for multiple (identical) ma-
chines in the following way. First, one can use the same FPTAS
iteratively on the residual jobs set [2], thus obtaining a (2 + ϵ)-
approximation for the non-migrative case. Then, this result can be
further extended to the migrative case using the result of [18], thus
obtaining a (6 + ϵ)-approximation.

However, in a real-world setting, preemption comes with a certain
price tag (e.g., the sequence of operations required for a context
switch), and so one would want to somehow limit its usage: hence
the motivation to study the bounded preemption setting.

https://doi.org/10.1145/3210377.3210407
https://doi.org/10.1145/3210377.3210407

The bounded version of the problem was addressed using several
different approaches (e.g., [11, 12, 27]; surveyed in [13]). The ap-
proach consisting of bounding the number of preemptions per job,
which is also the approach studied in this paper, was first addressed
by Albagli-Kim et al. [1], who showed an O(1)-approximation for
the special cases of unit-value and unit-density.

Other approaches to the notion of the power of preemption (albeit
without regard to specific k) were suggested in [26] (defining it in
terms of makespan) and [16] (defining it in terms of cost).

1.3 Our Results
Our paper provides both lower and upper bounds for the price of
k-bounded preemption in terms of n , |J | (i.e., the number of jobs)
and of P ,

maxj pj
minj pj .

• First, we explore the problem of the k-Bounded Degree
Ancestor-Independent Sub-Forest (k-BAS) and find:
– an optimal solution using Dynamic Programming;
– a Θ(logk+1 n) bound for the loss factor yielded by the opti-

mal solution.
• We then proceed to bound the price of bounded preemption

and achieve the following:
– an upper bound of PoBPk = O(logk+1 n), for single and

multiple machines alike;
– an upper bound of PoBPk = O(logk+1 P), for single and

multiple machines alike;
– these above bounds are proven to be tight.
• We also show that for the special case of k = 0, i.e. when no

preemptions are allowed for the machine, but an unbounded
number of preemptions is allowed for a hypothetical competi-
tor. We establish PoBPk = Θ(min{n, log P}) for this case.

1.4 Other Related Work
Recall that Lawler’s solution for the non-bounded preemption prob-
lem on a single machine [21] can be transformed into an FPTAS,
which in turn can be extended to a (2+ϵ)-approximation for multiple
non-migrative machines and to a (6 + ϵ)-approximation for multiple
migrative machines (as described in subsection 1.2). Also, Baptiste
et al. [5, 6] gave a polynomial algorithm for the special case of non-
bounded preemption on a single machine with uniform processing
time.

Recall also that Albagli-Kim et al. [1] established an O(1)-ap-
proximation (and price) for both the unit-value and the unit-density
sub-problems. Their results can be easily extended, by Classify-and-
Select, to yieldO(log ρ) andO(logσ) approximations (and price) for
the general bounded problem, respectively, where ρ ,

maxj val(j)
minj val(j) ,

σ ,
maxj (val(j)/pj)
minj (val(j)/pj) . However, their work gave no result with respect

to either n or P , a gap which our work attends to.
The on-line version of the problem with no bound on the preemp-

tion was analyzed by [14], whose upper bound for the competitive-
ness ratio was later proven to be tight by [3].

The non-preemptive real-time scheduling problem has been posited
and studied already several decades ago, and has various flavours,
several of which have also been solved since. Moore devised an
O(n logn)-time algorithm [24] solving the simplest version of the
problem, maximizing the number of jobs meeting their deadline

(equivalent to minimizing the number of late jobs), where all the
jobs are unit-value and have the same release time. Later, Lawler
[20] extended this technique for special sub-cases of the problem
of weighted jobs with the same release time (known to be NP-hard
in general by [19]), and again [22] – for special sub-cases of the
problem of unit-value jobs with different release times (known to be
NP-hard in general by [21]). Also, Lawler and Moore devised [23]
an O(n

∑
pj)-time (pseudopolynomial) algorithm for maximizing

the value of jobs meeting the deadline with the same release time.
Bar-Noy et al. [7, 8] showed a constant factor approximation for

maximizing the value of jobs meeting their deadline with differ-
ent release times; other approximations in this setting have been
suggested prior to that, particularly [15].

A different approach was used by Bar-Yehuda et al. in [10], who
consider the scheduling of jobs already divided into k intervals which
can be scheduled only at specific points in time. Using the local ratio
technique first presented in [9], they achieve an O(k) approximation
for the problem itself and the APX-hard Max-Weight Independent
Set (MWIS) problem to which it can be reduced.

2 PRELIMINARIES
2.1 Statement of Main Problem
Let J be a set of n jobs that should be scheduled for processing on
a single machine (multiple non-migrating machines), and k > 0 an
integer. Each of the jobs j ∈ J has a value val(j) > 0, a release time
r j , a deadline dj and a length pj .

Definition 2.1.
(a) A feasible schedule of a job on a single machine j ∈ J is

a set G j of pairwise-disjoint segments such that ∀д ∈ G j :
д ⊆ [r j ,dj] and

∑
д∈G j |д | = pj .

(b) A feasible schedule of a job set J on a single machine is
a set of feasible schedules of jobs GJ =

{
G j |j ∈ J

}
, s.t.

∀ j1, j2 ∈ J , j1 , j2 : ∀ д1 ∈ G j1 , д2 ∈ G j2 : д1 ∩ д2 = ∅.
(c) A k-preemptive feasible schedule of a job set J on a single

machine is a feasible schedule GJ s.t. ∀j ∈ J , |G j | ≤ k + 1,
i.e. no job is preempted more than k times.

The above definitions can trivially be extended to multiple non-
migrating machines by making the feasible schedule for multiple
machines a union of feasible schedules on single machine, s.t. no
job is scheduled twice on different machines.

Our objective is, given a set of jobs J , to find J ′ ⊆ J and a
k-preemptive feasible schedule GJ ′ s.t. val(J ′) ,

∑
j ∈J ′ val(j) is

maximal.

2.2 Useful Shorthands
We will denote the i-th segment of a job j as дij = [s

i
j , t

i
j]. Also, we

will define the relation of precedence between any two segments
дi1j1 = [s

i1
j1
, t i1j1],д

i2
j2
= [si2j2 , t

i2
j2
] as follows: дi1j1 ≺ дi2j2 ⇐⇒ t i1j1 ≤ si2j2 .

Note, that since all the segments are disjoint, this relation induces a
total order on the segments.

3 BOUNDED-DEGREE
ANCESTOR-INDEPENDENT SUB-FOREST

3.1 Statement of Problem
In order to solve the k-bounded preemption problem we first reduce
it to the following problem of the k-Bounded Degree Ancestor-
Independent Sub-Forest (k-BAS). In this section, we denote by T (u)
the sub-tree of a tree T which is rooted in the node u ∈ T and by
CT (u) the set of the children nodes of a tree node u. Also, the degree
of a node u in T is defined to be the number of u’s children in T , i.e.
degT (u) , |CT (u)|.

Definition 3.1. An Ancestor-Independent Sub-Forest (AISF) of a
given forest (tree) T (V ,E) is a sub-forest T ′ of T s.t. for any two
different connected componentsC1 , C2 ofT ′, for anyv1 ∈ C1,v2 ∈
C2, v1 is not a descendant of v2 with respect to E.

Definition 3.2. A k-Bounded-Degree Ancestor-Independent Sub-
Forest (k-BAS) of a given forest (tree) T (V ,E) is an Ancestor-
Independent Sub-Forest T ′ of T , s.t. ∀v ∈ V ′, degT ′(v) ≤ k.

Definition 3.3. An optimal k-BAS of a given forest (tree) T (V ,E)
with values val : V → R+ is a k-BAS T ′ of T s.t. val(V ′) ,∑
v ∈V ′

val(v) is maximum.

Naturally, a k-BAS of a tree does not equal the whole tree in the
general case, but has less nodes and hence less total value. We will
formalize this through the notion of the loss factor.

Definition 3.4. The loss factor αALG of an algorithm ALG for the
computation of a k-BAS of a tree (forest) is the ratio αALG ,

sup
T

val(T)
val(ALG(T)) .

Observation 3.5. A max-value k-BAS of a forest T is the union of
the max-value k-BASs of the trees constituting T .

Corollary 3.6. A loss factor α for an algorithm computing a k-BAS
of a tree implies the same loss factor for the same algorithm applied
to a forest.

In the following sub-sections we will present an optimal algorithm
for the computation of a k-BAS of a tree and bound its loss factor.
By the above reasoning, this loss factor will hold for forests as well.

3.2 Dynamic Programming Solution
Trivially, in order to turn a given tree (of arbitrary degree) into a
k-BAS, several of the nodes need to be deleted.

Lemma 3.7. Let T ′(V ′,E ′) be an ancestor-independent sub-forest
of a forest (tree) T (V ,E). Then v ∈ V \V ′ iff all of its ancestors or
all of its descendants are in V \V ′.

Proof. Assume on the contrary that there is a node v ∈ V \V ′ s.t.
both an ancestor of it u and a descendant of it w are V ′. Since T is a
forest, and v is deleted, it follows that u,w belong to two different
connected components ofT ′. But w is a descendant of u, contrary to
the definition of an AISF.

We therefore can divide the nodes of the tree into three groups
as follows: (1) retained nodes, i.e. nodes that are retained in the
k-BAS (however, some of their descendants might be deleted);

(2) pruned-up nodes, i.e. nodes that are deleted with all their an-
cestors up to the root (in order to fulfil Ancestor Independence);
(3) pruned-down nodes, i.e. nodes that are deleted with all their
descendants.

Observation 3.8. For any k-BAS:
(a) A retained node cannot have pruned-up descendants.
(b) A pruned-up node can have descendants of all types.
(c) A pruned-down node has only pruned-down descendants.

For a node v, let us denote its aggregate value (i.e., the maximal
possible value that can be salvaged from T (v) after the pruning) as
t(v) in casev is retained, and asm(v) in case it is pruned-up (there is
no need to introduce a notation for the aggregate value of v in case it
is pruned-down, since in that case it is discarded). Also, let us denote
asCk (v) the nodes inC(v) with k highest t(v). Observation 3.8 leads
us to the following formula:

t(u) = val(u) +
∑

vi ∈Ck (u)

t(vi)

m(u) =
∑

vi ∈C(u)

max(t(vi),m(vi))
(3.1)

In order to compute the k-BAS of a tree rooted in u, we need
to decide for each node in this tree whether it is better for it to be
retained or pruned-up (it may, of course, so happen that a node
is better pruned-down with all its value in order to allow for its
parent node to be retained). This is done by computing ⟨t(u),m(u)⟩
using bottom-up traversal and then deciding which of them is better
and applying the decision in reverse order for all its descendants.
This scheme is, essentially, Dynamic Programming. For simplicity,
the algorithm will be presented for a tree as an input, but it can be
trivially extended to a forest by applying it separately to each of the
trees of which the forest consists.

Procedure TM
Input: A tree T (V ,E) rooted in u.
Output: Two numbers, t(u),m(u), being the maximal values

attained for u being designated retained or removed,
respectively.

1 if u is leaf then
2 t(u) ← val(u) ;
3 m(u) ← 0 ;
4 else
5 foreach vi ∈ C(u) do
6 (t(vi),m(vi)) ← TM(vi) ;
7 end foreach
8 t(u) ← val(u) +

∑
vi ∈Ck (u)

t(vi) ;

9 m(u) ←
∑

vi ∈C(u)
max(t(vi),m(vi)) ;

10 end if
11 return t(u),m(u);

Analysis. The runtime of the algorithm is trivially O(|V |). Since the
algorithm implements exactly the formulae presented in equation 3.1,
it is optimal, i.e. gives the maximal value k-BAS possible for a given
tree (forest).

3.3 Determining the Loss Factor
The analysis of the quality of the loss factor directly from the TM
algorithm is difficult. We will therefore look at a different algorithm,
which is easier to analyze and which we will call the algorithm of
levelled contraction. Using it, we will prove the following theorem:

Theorem 3.9. The loss factor of the algorithm TM is at most logk+1 n.

We will make use of the simple observation, that a sub-tree with
a degree k can be viewed as a single large node, since from the point
of view of the choice which node to retain there is no need to look
at each of them individually, but all of them can be accommodated
en bloc. Formally:

Definition 3.10. A node u of a tree T is k-contractible iff: either
(i) it is a leaf; or (ii) it has no more than k children, all which are
contractible as well.

Definition 3.11. The k-contraction of a k-contractible node u in a
tree T with values val : T → R+ is deleting T (u) from the tree and
setting val(u) ← val(T (u)).

Observation 3.12. Letu be a k-contractible node in a forestT (V ,E)
with values assigned to the nodes. Then the sub-tree T (u) can be
contracted to a single (leaf) job without loss of value.

The contraction itself is done by a bottom-up marking of the
nodes as contractible. The algorithm is described in the procedure
MaxContract, which has the following properties:

Observation 3.13. After the application of MaxContract to a
tree, all non-leaf nodes have more than k descendants; meaning that
the contraction is maximal (i.e., there are no more k-contractible
nodes).

Observation 3.14. A contraction (in particular, the application of
MaxContract) cannot increase the number of leafs.

If a node u is not contractible, the number of leafs ofT (u) remains
the same. If u is contractible, then all the leafs of T (u) are replaced
by u as a new leaf; but T (u) trivially has at least one leaf. Thus, in
either case the number of leafs does not increase.

The algorithm LevelledContraction uses MaxContract
as a primitive in an iterative fashion: in each iteration it performs a
maximal contraction, takes the set of leafs aside and continues to the
next one. In the end, the algorithm returns the set of leafs with the
maximal value. Each of such sets represents a k-BAS of the original
tree, as shown in the following lemma.

Observation 3.15. Let Si be the set of leafs S after the contraction
at the i-th iteration. Then at the beginning of the i-th iteration all the
nodes w j

i ∈ Si are k-contractible.

Lemma 3.16. Let Si =
{
w1
i ,w

2
i , . . .w

|Si |
i

}
be the set of leafs S after

the contraction at the i-th iteration, and let T j
i be the sub-forest of T

rooted in s
j
i in the beginning of that iteration (which is contracted

during it). Then the union Ti =
|Si |⋃
j=1

T
j
i is a k-BAS.

Proof. Ti is trivially a sub-forest of T . Thus, in order to prove it is a
k-BAS of T , we need to prove that its degree is bounded by k and
that it is ancestor-independent.

Algorithm 1: Levelled Contraction

1 Procedure MaxContract()
Input: A tree T .
Output: The tree T after maximal k-contraction.

2 foreach node u of T in bottom-up order do
3 if u is a leaf then mark u as true ;
4 else if deg(u) ≤ k and all children of u are marked

true then
5 contract children of u ;
6 set val(u) ←

∑
vi ∈CN (u)

val(vi) ;

7 mark u as true ;
8 else mark u as false ;
9 end foreach

10 end

11 Procedure LevelledContraction()
Input: A tree T .
Output: A k-BAS S of T .

12 S ← ∅ ;
13 while T , ∅ do
14 MaxContract(T) ;
15 S ← all leafs of T ;
16 S ← S ∪ {S} ;
17 T ← T \ S ;
18 end while
19 return argmax

S ∈S
val(S) ;

20 end

Bounded Degree. From observation 3.15 immediately follows that
the degree of each T j

i is at most k, and therefore the same holds for
their union Ti .
Ancestor Independence. Assume on the contrary that there exist
u1 ∈ T

j1
i ,u2 ∈ T

j2
i s.t. u1 is ancestor of u2 in the original T . It

therefore means that w j1
i is ancestor of u2 as well. However, u2 was

not contracted into w
j1
i ; therefore, on the (single) path from u2 to

w
j1
i there is a node with a degree higher than k + 1. This contradicts

the fact that w j1
i is k-contractible, by observation 3.15.

Lemma 3.17. The value returned by LevelledContraction
is not less than val(T)

L , where L is the number of iterations.

Proof. Let Si be the set of leafs S at the i-th iteration, and S ′i the
set of their parents. Also, let Ti be the k-BAS of T corresponding to
Si , as explained in lemma 3.16. Since the algorithm only performs
contractions, by observation 3.12, no value is lost, i.e., val(T) =∑L
i=1 val(Ti) =

∑L
i=1 val(Si). Therefore, the value returned by the

algorithm is

ALG ≥
val(T)
L

. (3.2)

Lemma 3.18. The number of iterations of LevelledContraction
is less than logk+1 n.

Figure 1: Rearranging a Lawler Schedule

Proof. Due to observation 3.13, |Si | ≥ (k+1)· |S ′i |. After the removal
of Si from the tree in the iteration’s end, S ′i becomes the set of the
tree’s leafs. By observation 3.14, a contraction cannot increase the
number of leafs in a tree, and therefore |Si+1 | ≤ |S ′i |. Combining
these, we get that for every iteration i,

|Si+1 | ≤ |S
′
i | ≤

1
k + 1

· |Si | ⇒ 1 = |SL | ≤
1

(k + 1)L−i
· |Si |

where L is the (maximum) number of iterations. Hence follows:

n ≥
L∑
i=1
|Si | ≥

L∑
i=1
(k + 1)L−i =

(k + 1)L − 1
k

≥ (k + 1)L−1 − 1

which in turn implies
L ≤ logk+1 n

Combining this result with equation 3.2 yields us:

ALG ≥
val(T)
L
≥

val(T)
logk+1 n

Corollary 3.19. The loss factor of LevelledContraction is
not larger than logk+1 n.

Proof of Theorem 3.9. Since algorithm TM is optimal, its loss fac-
tor cannot be worse than the loss factor of LevelledContraction.
Therefore, it is at most logk+1 n, i.e. the algorithm TM (T) yields a
k-BAS T ′ such that val(T ′) ≥ 1

logk+1 n
· val(T).

Remark. The runtime of the LevelledContraction algorithm
is trivially O(|V |).

3.4 Tightness of Bound
Theorem 3.20. The loss factor of the TM algorithm for the k-BAS
problem in the general case is at least logk+1 n, i.e. the loss factor
established previously is tight.

The proof of this lemma is presented in appendix A.

4 THE MAIN PROBLEM
4.1 Reduction to k-BAS
Assume we are given an optimal solution for the case k = ∞. Ob-
serve, that if in a feasible schedule for a single machine segments
of two jobs A and B interleave, i.e. ∃дa1A ,дa2A ∈ GA,д

b1
B ,д

b2
B ∈

GB s.t. дa1A ≺ дb1B ≺ дa2A ≺ дb2B , they can be re-arranged into

дa1A ≺ дa2A ≺ дb1B ≺ дb2B without affecting the feasibility. This of
course can be done independently for each machine in the multiple
machine setting (if the machines are non-migrative). It therefore
follows that any schedule (in particular, an optimal one) can be re-
arranged (with no loss of value) into a form where a segment of B is

between two segments of A iff there are no segments of A between
any two of the segments of B.

Note, that the described re-arrangement makes the preempts rela-
tion laminar. If we now present such a re-arranged schedule GJ as a
graph T (V ,E), where the set of nodes V = J is the set of jobs in the
schedule, and the set of edges E = {(u,v) ∈ V ×V |v preempts u},
the resulting (directed) graph is therefore a forest, which be will
call a Schedule Forest. Let T ′(V ′,E ′) be a max-value k-BAS of T ,
computed using the algorithm TM described in subsection 3.2.

We will now describe the way of obtaining a new schedule G′J ′
from G ′; also, for the sake of simplicity, we will call the child nodes
of a node (job) j in T the sub-jobs of j. The set of jobs J ′ in the new
schedule corresponds directly toV ′. For each retained job j ∈ V ′, its
segments between two consecutive sub-jobs remain as is. If, however,
a sub-job of j is removed (pruned-down – see observation 3.8), the
segments of j surrounding it are merged to the left. This left-merge
may affect several segments at once if several consecutive sub-jobs
are removed.

Lemma 4.1. The schedule G′J ′ obtained as described from an orig-
inal unbounded-preemption schedule GJ is a feasible k-bounded
schedule as defined in definition 2.1.

Proof.
Feasibility of Individual Job Schedules. The feasibility of the indi-
vidual job schedules G ′j ∈ GJ ′ follows from the feasibility of the
originalG j ∈ GJ , as the segments of the jobs are either retained as is
or merged to the left, i.e., earlier than the deadline, but nevertheless
not earlier than the release time. Also, since segments are removed
only as part of the removal of a job as a whole, the length constraint
is kept as well.
Feasibility of the Schedule Overall. The unchanged segments do not
intersect each other by feasibility of the original GJ . The merged
segments replace sub-jobs which are pruned-down, i.e. removed
with all their descendants and therefore occupy a place which would
otherwise be empty.
Preemption Bound. The segments of any job j are scheduled so
that between any two of them there is a sub-job of j (because of the
left-merge). Since by the definition of a k-BAS each j ∈ J ′ has no
more than k sub-jobs, the number of segments of each job j is not
more than k + 1.

Remark. In the multiple non-migrative machines setting the reduc-
tion can be applied to each machine separately. The forests obtained
per machine are simply merged to a single forest. Since migration
can be eliminated by using 6 times more machines [18], if we keep
the number of machines constant, we retain at least the 1

6 -th part of
the optimal solution after this elimination and prior to applying the

reduction. Thus all the prices achieved below using this reduction
stay the same in terms of O notation.

Remark. The described reduction is not bidirectional, i.e. the opti-
mal solution for the k-BAS problem is not necessarily optimal for
the corresponding k-Bounded Preemptive Schedule problem. This
due to the problem of adequately translating a case where a single
job A is preempted by a string of successive jobs. In this case A
is preempted only once, however if each of these other jobs is in
turn preempted, say, k + 1 times, we are forced to represent it in
the tree as if A were preempted more than once (modelling it as an
infinitely small segment of A between each of the jobs preempting
it in succession), which may force us to forgo some of these jobs,
which of course is not necessary in the schedule problem and thus
the reverse reduction might yield a non-optimal solution. However,
the reduction does provide an upper bound for the loss factor.

4.2 The Price of Bounded Preemption as Function
of the Number of the Jobs

Theorem 4.2. The price of limiting preemption to k is at most
logk+1 n.

Proof. Lemma 4.1 describes the transformation of an original opti-
mal unbounded preemptive schedule GJ into a k-bounded preemp-
tion schedule G′J ′ . Trivially, the total value of the new set of jobs
J ′ is equal to the total value of the V ′ of the max-value k-BAS T ′,
which in turn is optimal (see subsection 3.2) and obeys theorem 3.9.
Thus,

PoBPk , sup
J

OPT∞(J)
OPTk (J)

≤
val(J)
val(J ′)

=
val(V)
val(V ′)

≤ logk+1n

The following theorem establishes the tightness of this bound; the
proof is presented in appendix B.

Theorem 4.3. PoBPk = Θ(logk+1 n).

4.3 The Price of Bounded Preemption as Function
of the Length-Ratio

In order to analyze the Price of Bounded Preemption as a function
of the length ratio P , we will first introduce the notion of relative
laxity of jobs.

Definition 4.4. The relative laxity of a job j ∈ J is the ratio λj ,
dj−r j
pj . The maximal relative laxity in an instance of the problem is

denoted λmax.

We will divide the set of jobs J into two by their relative laxity
(i.e., J1 =

{
j ∈ J |λj ≤ k + 1

}
, J2 =

{
j ∈ J |λj > k + 1

}
) and solve

each case separately. We show that in both cases the price bound is
logk+1 P , and therefore it is O(logk+1 P) for the overall problem. In
other words, we prove the following:

Theorem 4.5. The price of limiting preemption to k is O(logk+1 P).

4.3.1 Strict Jobs. Let us define the window of a scheduled job
j ∈ Jin , denoted w(j), as the time difference between its release time
and its deadline. Trivially, ∀j ∈ J ,w(j) = pj · λj .

Note that the window of a job necessarily includes the window
of all its descendants in the original tree. Thus, if we look back at

the proof of lemma 3.18 and defineWi , minj ∈Si w(j), we have, by
observation 3.13, that for every iteration i,

Wi+1 ≥ (k + 1) ·Wi ⇒ pmax · λmax ≥WL ≥ (k + 1)L−i ·Wi

where L is the (maximum) number of iterations. Hence follows:

pmax · λmax ≥ (k + 1)L ·W0 ≥ (k + 1)L · pmin

L ≤ logk+1(P · λmax)

By lemma 3.17, this in turn implies:

Lemma 4.6. For a tree T created from a schedule satisfying
λmax ≤ k + 1, the k-BAS T ′ returned by algorithm Levelled-
Contraction satisfies val(T ′) ≥ 1

logk+1 P
· val(T).

4.3.2 Lax Jobs. The treatment of the lax jobs is slightly differ-
ent and requires a different algorithm. It also requires the establish-
ment of several auxiliary lemmas presented below.

Lemma 4.7. Let S be a set of intervals. There exists a subset S ′ ⊆ S
such that each point in

⋃
I ∈S I is covered by at least one and at most

two different intervals in S .

Proof. Assume WLOG
⋃
I ∈S I is a single segment (otherwise apply

the proof separately for each segment and all intervals contained
in that segment). Let I0 be the interval whose left endpoint is the
leftmost among all intervals in S . We start with S ′ ← I0 and itera-
tively add intervals to S ′. Let Ii be the interval whose right endpoint
is the rightmost among all intervals in S that intersect an interval in
S ′. Add Ii to S ′, that is S ′ ← S ′ ∪ {Ii }. Repeat this procedure until⋃

I ∈S ′ I =
⋃
I ∈S I .

Corollary 4.8. If we number the intervals in S ′ by the order of their
leftmost coordinate and divide them into two disjoint subsets S ′E , S

′
O

by the parity of this numbering, then each of these subsets is a set of
pairwise-disjoint intervals.

Proof. Assume on the contrary WLOG that S ′E does not satisfy the
above. Then ∃k s.t. I2k∩ I2k+2 , ∅. By construction, I2k∩I2k+1 , ∅
and I2k+2 ∩ I2k+1 , ∅. However, since I2k+1 is contiguous, this
necessary implies the existence of a point belonging to all three at
once, in contradiction of the previous lemma.

The following lemma was proven in [4]:

Lemma 4.9. Given a sequence {a1, ...,an }, a non-increasing non-
negative sequence {b1, ...,bn } and two sets X ,Y ⊆ {1, ...,n}, let
X i = X ∩ {1, ..., i} and Y i = Y ∩ {1, ..., i}. Then

∀1≤ i ≤n :
∑
j ∈X i

aj > α
∑
j ∈Y i

aj =⇒
∑
j ∈X

ajbj > α
∑
j ∈Y

ajbj

Let us now return to the main problem. Recall that we assume all
the jobs are lax, specifically ∀j ∈ J , λj > k + 1. We will prove the
following:

Lemma 4.10. For a given set of jobs J exclusively of jobs for which
λj ≥ k + 1, the algorithm LSA_CS yields a feasible k-preemptive
schedule GJin s.t. val(Jin) ≥ 1

6·logk+1 P
· val(J).

In order to prove this theorem, we will present the Leftmost-
Schedule Algorithm (LSA) suggested by [1], with the difference that
the jobs will be sorted by their density σj , val(j)

pj rather than by
value. In the following analysis we will use the same terminology

Algorithm 2: The Leftmost Schedule Algorithm

1 Procedure LSA_CS()
Input: A set of lax jobs J (i.e., satisfying

∀j ∈ J , λj ≥ k + 1).
Output: A feasible schedule for jobs Jin ⊆ J , s.t.

val(Jin) ≥ val(JOPT)
6·logk+1 P

.

2 Separate all jobs in J into classes Jc , 1 ≤ c ≤ loдk+1P by
length, s.t. ∀ 1 ≤ c ≤ loдk+1P ,

3 ∀ j ∈ Jc , (k + 1)c−1 ≤ pj ≤ (k + 1)c ;
4 foreach 1 ≤ c ≤ logk+1 P do
5 ⟨Jc,in ,GJc,in ⟩ ← LSA(Jc) ;
6 end foreach
7 return ⟨Jc∗,in ,GJc∗,in ⟩, s.t. val(Jc∗,in) is maximal

among the Jc,in ;
8 end

9 Procedure LSA()
Input: A set of lax jobs J (satisfying P ≤ k + 1).
Output: A feasible schedule for jobs Jin ⊆ J (s.t.

val(Jin) ≥ 1
6 · val(JOPT)).

10 Sort J in descending order of the jobs density ;
11 foreach j ∈ J do
12 Let S be the set of the leftmost k + 1 idle segments in

[r j ,dj] ;
13 repeat
14 if j fits into the segments in S then
15 Schedule j in members of S in the leftmost

possible way ;
16 break;
17 else
18 Remove shortest segment from S and replace

it with the next idle segment in [r j ,dj] ;
19 end if
20 until all idle segments are exhausted;
21 end foreach
22 end

of busy-segment (a maximal subset д∗ of the timeline s.t. ∃j ∈ J :
∃д ∈ G j : д∗ ∩ д , ∅) and idle-segment (a maximal subset д∗ of the
timeline s.t. ∀ j ∈ J : ∀ д ∈ G j : д∗ ∩ д = ∅). Also, for the sake of
brevity, we introduce the notation Jout , J \ Jin for the set of the
jobs not scheduled.

Lemma 4.11. The length of each busy-segment in the schedule
created by LSA is at least the length of the shortest job.

Proof is omitted and will be presented in the full paper.
Now let j be a discarded job. If it was discarded, it means that

already at the moment of its discarding in the span of time [r j ,dj]
which is at least pj · (k + 1) long there could be found no k + 1 idle
segments of total cumulative length pj .

Let us denote the the number of the idle segments in [r j ,dj]
as f . We will look at two distinct cases. Either (i) f ≤ k + 1; or
(ii) f > k + 1.
In case (i), since the total length of the busy segments and idle

segments in [r j ,dj] is equal to dj − r j ≥ pj · (k + 1), and the total
length of (all) the idle segments is less than pj , it necessarily means
that the total length of the busy segments is more than pj · k , and so
in the worst case we have that val(J ′) ≥ k

k+1 · val(J).
In case (ii), f > k + 1, yet j could not be scheduled; this implies
that the sum of the k + 1 longest idle segments in [r j ,dj] is less than
pj . Therefore, if we denote the total cumulative length of all idle

segments in [r j ,dj] as Lidle , it holds that Lidle ≤
f

k+1 · pj . On the
other hand, the number of busy segments in [r j ,dj] is trivially at
least f −1, making their total length Lbusy ≥ f −1 (by lemma 4.11).
It holds that:

Lidle ≤
f

k + 1
· pj

Lbusy ≥ f − 1

 ⇒
Lidle
Lbusy

≤
f

f − 1
·

pj

k + 1
≤

2P
k + 1

Lbusy

Lbusy + Lidle
=

1

1 + Lidle
Lbusy

≥
1

1 + 2P
k+1
=

k + 1
2P + k + 1

,

meaning that the busy segments constitute at least the k+1
2P+k+1 -th

part of the span [r j ,dj]. We have thus proved the following lemma:

Lemma 4.12. For a given set of jobs J exclusively of jobs for which
λj ≥ k + 1, algorithm LSA yields a feasible k-preemptive schedule
GJin s.t. ∀j ∈ Jout , the timespan [r j ,dj] is at least b0-loaded, where
b0 =

k+1
2P+k+1 .

Remark. Since in LSA we operate under classify and select, in each
class P(Jc) ≤ k + 1, and therefore b0 ≥ 1

3 .

Now let us assume WLOG that all the union of the rejected jobs’
timespans U =

⋃
j ∈Jout [r j ,dj] is a single contiguous time segment.

Applying to U the construction described in lemmas 4.7, 4.8,
we get two disjoint sets of pairwise disjoint timespans U ′E ,U

′
O , in

which in turn correspond to two disjoint sets of jobs J ′E , J
′
O . Let us

denote the timespans set with the larger total length U ∗, and the
corresponding job set J∗. By lemma 4.12, the timespan of every
job in Jout , and in particular of every job j in J∗ ⊆ Jout , is at least
b0-loaded by jobs from Jin . Since the timespans of jobs in J∗ are
disjoint, we can safely claim that∑

j ∈JOPT

pj ≤ |U | ≤ 2 · |U ∗ | = 2 ·
∑
j ∈J ∗

λjpj ≤
2
b0
·
∑
j ∈Jin

pj .

Note that since we made no special assumptions, this inequality
applies to every contiguous subset of U involving at least two times-
pans (and by linearity, to every union of disjoint pairs of timespans)
and to the corresponding subsets of JOPT, Jin . (For subsets of U
consisting of a single timespan the stricter lemma 4.12 holds.) Let
us assume an order on J by the jobs’ densities from the largest to the
smallest; since algorithm LSA considers the jobs in the same order,
and so the corresponding members of Jin are always considered
prior to the corresponding members of JOPT, we can claim that this
inequality applies to all the prefixes of JOPT, Jin by this order. Now
we will utilize lemma 4.9 to achieve:

OPT∞(J) =
∑

j ∈JOPT

σjpj ≤
2
b0
·
∑
j ∈Jin

σjpj =
2
b0
· val(Jin)

Note that since LSA operates on classes of jobs separately, this
inequality holds for every class Jc .

Figure 2: Lower bound for k=0

Proof of Lemma 4.10. Recall that LSA_CS divides the lax jobs
into logk+1 P classes Jc , for each of which the above inequality
holds with b0 ≥

1
3 . Therefore, for each class Jc the application of

the internal function LSA will yield Jc,in s.t. ∀c, val(Jc,in) ≥ 1
6 ·

val(Jc,OPT). Since necessarily ∃c∗ ∈ [logk+1 P] s.t. val(Jc∗,OPT) ≥
1

logk+1 P
· val(JOPT), it follows that val(Jc∗,in) ≥ 1

6 · val(Jc∗,OPT) ≥
1
6 ·

1
logk+1 P

· val(JOPT).
Thus, classifying all the lax jobs as described, running LSA sepa-

rately for each of the classes and taking the best result will yield us
Jin s.t. val(Jin) ≥ 1

6·logk+1 P
· val(JOPT).

4.3.3 Overall Price of Preemption. To conclude the proof, we
combine the results of lemmas 4.6 and 4.10 into a single algorithm.

Algorithm 3: k-PreemptionCombined
Input: A pair ⟨J ,GJ ⟩, where J is a set of jobs, and GJ is a

feasible∞-preemptive schedule for them.
Output: A feasible k-preemptive schedule G′J ′ for J ′ ⊆ J , s.t.

val(J ′) ≥ O(1
logk+1 P

) · val(JOPT).
1 J1,GJ1 ← all jobs j and schedules G j for which λj ≤ k + 1 ;
2 J2,GJ2 ← all jobs j and schedules G j for which λj ≥ k + 1 ;
3 J ′1 ← LevelledContraction(J1) ;
4 J ′2 ← LSA_CS(J2) ;
5 return max(J ′1, J

′
2) ;

Analysis. Since the union of J1, J2 yields back all the jobs J , one
of them has at least half the total value of J ; similarly, the optimal
unbounded preemptive scheduling for one of them is at least half
of the optimal one for the whole. Since both algorithms yield the
O(logk+1 P)-th fraction of the input’s optimal unbounded preemp-
tion’s value, the total value of at least one of J ′1, J

′
2 is aO(logk+1 P)-th

fraction of val(JOPT) itself. Choosing the better result ensures this
factor further.

Remark. Like in subsection 4.1, we can eliminate migration and
retain a least a 1

6 of the optimal job set prior to applying the algorithm
LSA_CS. Thus, the price of the migrative setting is stillO(logk+1 P).

From the above we can conclude the proof of theorem 4.5.
Proof of Theorem 4.5.

PoBPk , sup
J

OPT∞(J)
OPTk (J)

≤
2 ·max (OPT∞(J1),OPT∞(J2))

max
(
val(J ′1), val(J

′
2)
) = O(logk+1 P)

This bound is tight, as we will prove in appendix B:

Theorem 4.13. The Price of Bounded Preemption for k preemptions
is Θ(logk+1 P).

4.3.4 Extending to Multiple Machines. The result for strict
jobs can be trivially extended to multiple non-migrative machines
by applying the reduction from subsection 4.1 and algorithm TM for
each machine separately, which yields the same bound on the price.

As for the lax jobs, the LSA_CS algorithm can be extended to
multiple non-migrative machines in the following way. In each itera-
tion i, the i-th machine is assigned the schedule given by LSA_CS
for the jobs remaining (formally, Ji = J \

⋃i−1
k=1 J

′
k). By a known

result from [2], this adds at most 1 to the price, thus preserving the
O(logk+1 P) ratio (price).

This overall result for non-migrative machines, being constructive,
immediately implies an approximation with the same O(logk+1 P)
factor. This approximation can be further extended to the migrative
machines setting using the results of [18], which adds a multiplica-
tive factor to the quality of the approximation. This approximation
(relative to ≤ J∞,OPT) immediately implies a O(logk+1 P) price for
the migrative setting as well (since necessarily Jk,OPT ≤ J∞,OPT and
therefore the price is smaller than the approximation factor).

5 SPECIAL CASE: k = 0
Note that the expressions logk+1 n, logk+1 P are defined only for
k ≥ 1. To complete our work, let us now look at the special case
where k = 0, i.e. we are not allowed to preempt at all whereas the
optimal algorithm can preempt as much as is required.

Let us look at a specific example of a series of unit-value jobs
as presented in figure 2. Since the jobs’ lengths form a geometrical
progression with q = 2, it is clear that even with one preemption
per job allowed, all of the jobs can be accommodated. On the other
hand, if no preemptions are allowed, one can only accommodate a
single job. Therefore the price of bounding preemption in this case
is n and also, due to the nature of the example, log P ; these are the
lower bounds for the price in case k = 0.

These lower bounds can be trivially extended to multiple ma-
chines by simply multiplying the setting by the number of machines
(along a third axis, so to speak); the bound of log P remains the
same, whereas the bound of n becomes O(n) for any fixed number
of machines.

The n lower bound for the price is trivially tight, since we can
always choose from a set of jobs the one with the maximal value
and thus achieve a feasible schedule; however, the tightness of the
log P approximation ratio should be examined further.
Let us utilize the algorithm LSA_CS, from subsection 4.3, adjusting
it for the case k = 0, i.e. mandating scheduling to be made solely en

Figure 3: k-BAS lower bound

bloc and classifying the jobs s.t. ∀Jc , P(Jc) ≤ 2. Lemma 4.11 still
holds in this setting.
Let us now look at the set Jout , J \ J ′; specifically, let us look at
j ∈ Jout at the moment of its rejection. Again, since the algorithm
schedules the jobs in descending order of density, it suffices to
compare the total lengths of the busy and idle segments. If j is
rejected, this means that the total length of the idle segments in
[r j ,dj] is less than pj , i.e.LI ≤ P . On the other hand, trivially LB ≥ 1,
since if there were no busy segments in the span, it would be possible
to schedule j. Thus

LI ≤ P

LB ≥ 1

}
⇒

LI
LB
≤ P

b0 =
LB

LB + LI
=

1
1 + LI

LB

≥
1

1 + P
.

By the same technique as in subsection 4.3 this yields us val(Jin) ≥
1

1+P ·val(JOPT) for each class. Since (in this case) we classify the jobs
so that P ≤ 2, by the same reasoning as before, taking the maximal-
value Jc,in yields us in the overall val(Jin) ≥ 1

3·log P · val(JOPT).
By the same logic as in 4.3.4, this result remains the same for the
multiple machines setting.

Thus the upper bound for the price in case k = 0 is established to
be O(log P), and in conjunction with the previous, it means that this
bound is tight.

REFERENCES
[1] S. Albagli-Kim, B. Schieber, H. Shachnai, and T. Tamir. Real-time k-bounded

preemptive scheduling. In Proc. of the 18th Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 127–137, 2016.

[2] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén. On-line competitive
algorithms for call admission in optical networks. Algorithmica, 31(1):29–43,
2001.

[3] Y. Azar and O. Gilon. Scheduling with deadlines and buffer management with
processing requirements. Algorithmica, 78(4):1246–1262, 2017.

[4] Y. Azar and O. Regev. Combinatorial algorithms for the unsplittable flow problem.
Algorithmica, 44(1):49–66, 2006.

[5] P. Baptiste. Polynomial time algorithms for minimizing the weighted number of
late jobs on a single machine with equal processing times. Journal of Scheduling,
2:245–252, 1999.

[6] P. Baptiste, M. Chrobak, C. Dürr, W. Jawor, and N. Vakhania. Preemptive schedul-
ing of equal-length jobs to maximize weighted throughput. Operations Research
Letters, 32(3):258–264, 2004.

[7] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified ap-
proach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–
1090, 2001.

[8] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput
of multiple machines in real-time scheduling. SIAM J. Comput., 31(2):331–352,
2001.

[9] R. Bar-Yehuda and S. Even. A local ratio theorem for approximating the weighted
vertex cover problem. Ann. Discrete Math., 25:27–46, 1985.

[10] R. Bar-Yehuda, M. M. Halldórsson, J. S. Naor, H. Shachnai, and I. Shapira.
Scheduling split intervals. SIAM J. Comput., 36(1):1–15, 2006.

[11] S. Baruah. The limited-preemption uniprocessor scheduling of sporadic task
systems. In Proc. 17th Euromicro Conf. Real-Time Syst. (ECRTS), pages 137–144,
2005.

[12] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred preemption revisited.
In Proc. 19th Euromicro Conf. RealTime Syst. (ECRTS), pages 269–279, 2007.

[13] G. C. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive scheduling for real-
time systems. a survey. IEEE Transactions on Industrial Informatics, 9(1):3–15,
2013.

[14] R. Canetti and S. Irani. Bounding the power of preemption in randomized sched-
uling. SIAM J. Comput., 27(4):993–1015, 1998.

[15] S. Dauzère-Pérès. Minimizing late jobs in the general one machine scheduling
problem. European Journal of Operational Research, 81(1):134–142, 1995.

[16] L. Epstein, A. Levin, A. J. Soper, and V. A. Strusevich. Power of preemption for
minimizing total completion time on uniform parallel machines. SIAM J. Discrete
Math., 31(1):101–123, 2017.

[17] R. Graham, E. L. Lawler, J. Lenstra, and A. R. Kan. Optimization and approxi-
mation in deterministic sequencing and scheduling: A survey. Arm. Discr. Math.,
5:75–90, 1979.

[18] B. Kalyanasundaram and K. Pruhs. Eliminating migration in multi-processor
scheduling. J. Algorithms, 38(1):2–24, 2001.

[19] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, New York, 1972.

[20] E. L. Lawler. Sequencing to minimize the weighted number of tardy jobs. Rev.
Française d’Automatique, Informatique, Recherche Opérationnel, 10:27–33, 05
1976.

[21] E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of
a single machine to minimize the number of late jobs. Annals of Operations
Research, 26:125–133, 1990.

[22] E. L. Lawler. Knapsack-like scheduling problems, the moore-hodgson algorithm
and the ’tower of sets’ property. Mathl. Comput. Modelling, 20(2):91–106, 1994.

[23] E. L. Lawler and J. M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16:77–84, 1969.

[24] J. M. Moore. Sequencing n jobs on one machine to minimize the number of tardy
jobs. Management Science, 15:102–109, 1968.

[25] K. Pruhs and G. J. Woeginger. Approximation schemes for a class of subset
selection problems. Theoretical Computer Science, 382:151–156, 2007.

[26] A. J. Soper and V. A. Strusevich. Power of Preemption on Uniform Parallel
Machines. In K. Jansen, J. D. P. Rolim, N. R. Devanur, and C. Moore, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2014), volume 28 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 392–402, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[27] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption thresh-
old. In Proc. 6th IEEE Int. Conf. Real-Time Comput. Syst. Appl. (RTCSA), pages
328–335, 1999.

A LOWER BOUND FOR LOSS FACTOR IN
k-BAS

In this appendix we establish the lower bound for the loss factor of
the k-BAS by providing a specific example, as shown in figure 3. All
the claims in this subsection pertain solely to said example.

The nodes of the tree are arranged in ⌊logK n⌋+1 levels, numbered
from 0 (the topmost) to L , ⌊logK n⌋ (the lowermost). In each level
i, the number of nodes isK i and the value of each of themK−i . Every
node has exactly K children. K is taken to be an arbitrary integer
number strictly larger than k (later, we will assign it a specific value);
in particular, since k ≥ 1, this implies K > 1.

Figure 4: General lower bound: example for K = 3

Observation A.1. The total value of all the nodes in a level of the
tree is 1; thus the total value of all the nodes in the tree is L + 1.

Lemma A.2. For each node v on level i, algorithm TM yields

t(v) = K−i ·
L−i∑
j=0

(
k

K

) j
, m(v) = K−i ·

L−(i+1)∑
j=0

(
k

K

) j
.

Note that this implies that for every node v at level i, t(v) > m(v).

Proof. By induction on the application of the algorithm TM (from
level L up to 0).
Base: For each leaf v (i = L), t(v) = K−L , m(v) = 0.
Hypothesis: For a node (job) v at level i,

t(v) = K−i ·
L−i∑
j=0

(
k

K

) j
, m(v) = K−i ·

L−(i+1)∑
j=0

(
k

K

) j
.

Step: Let u be a job at level i − 1. Then:

t(u) = val(u) +
∑

vi ∈CNk (u)

t(vi) = K1−i + k ·K−i ·
L−i∑
j=0

(
k

K

) j
= K1−i ·

L−i+1∑
j=0

(
k

K

) j
m(u) =

∑
vi ∈CN (u)

max(t(vi),m(vi)) = K · K−i ·
L−i∑
j=0

(
k

K

) j
= K1−i ·

L−i∑
j=0

(
k

K

) j

Corollary A.3. The total value of the k-BAS returned by TM on the
example is less than K

K−k .

Proof. Denote the root node v0. The total value of the k-BAS is

ALG = max{t(v0),m(v0)} = t(v0) =
L∑
j=0

(
k

K

) j
<

1
1 − k

K

=
K

K − k
.

Proof of Theorem 3.20. We have established in subsection 3.2 that
the TM algorithm yields the optimal result. If we take the example
and set K = 2k, we get:

OPT∞ = ⌊logk+1 n⌋ + 1
OPTk < 2k

2k−k = 2

}
⇒

OPT∞
OPTk

= Ω(logk+1 n)

B LOWER BOUND FOR PRICE IN
k-BOUNDED PREEMPTION PROBLEM

In this appendix we establish the lower bound for the price of k-
bounded preemption by providing a specific example, as shown in
figure 4. All the claims in this section pertain solely to said example.

The example is constructed as follows:

• All the jobs are arranged in L + 1 levels numbered from 0 to
L, where L , ⌊log3K 2 P⌋. Level l contains K l jobs, numbered
from 0 to K l − 1. The m-th job at the l-th level is denoted jml .
• The value of a job jml is K−l .
• The length of a job jml is p(l) = P · (3K2)−l .
• The relative laxity of all the jobs is λ = 1 + 1

3K−1 .
• For a job jml , the jobs {jm

′

l+1 |mK ≤ m′ ≤ (m + 1)K − 1} are
called the child jobs of jml . This term can be trivially extended
to introduce the notion of a descendant job.
• The release times are given by the recursive formula r (l+1,m

′) =

r (l,m) + (m′ −mK + 1) · p
(l)

K − p
(l+1), where mK ≤ m′ ≤

(m + 1)K − 1 and r (0,0) = 0.
• The deadline times are given by d(l,m) = r (l,m) + p(l) · λ.

From the above construction one can deduce the following (proofs
are omitted and will be presented in the full version of the paper):

Lemma B.1. For every job jml , a single preemption allows the
scheduling of at most one of jml ’s child jobs. Therefore, in a feasible
solution, a job is scheduled with at most k child jobs.

Lemma B.2.
OPT∞ = L + 1 > log3K 2 P =

logK P
logK (3K 2)

> 1
3 · logK P

OPTk =
L∑
i=0

(
k
K

)i
=

1−
(
k
K

)L+1
1− k

K
< 1

1− k
K
= K

K−k

Proof of Theorem 4.13. Let us choose K = 2k; then:

OPT∞ > 1
3 · log2k P

OPTk < 2k
2k−k = 2

}
⇒ PoBPk > Ω(logk+1 P)

Proof of Theorem 4.3. We use the same example. Then

n =
L∑
l=0

K l =
KL+1 − 1
K − 1

<
K · KL

K − 1
≤

3
2
· KL ⇒ logK n < L ,

and if we, as in the previous paragraph, choose K = 2k, we get

OPT∞ > log2k n
OPTk < 2k

2k−k = 2

}
⇒ PoBPk > Ω(logk+1 n)

Remark. For the multiple machine setting, this example can be
multiplied “along a third axis”, effectively forcing to solve the same
basic example for each machine separately. The Ω(logk+1 P) bound
will hold as is; the Ω(logk+1 n) will hold for any fixed number of
machines.

	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Our Results
	1.4 Other Related Work

	2 Preliminaries
	2.1 Statement of Main Problem
	2.2 Useful Shorthands

	3 Bounded-Degree Ancestor-Independent Sub-Forest
	3.1 Statement of Problem
	3.2 Dynamic Programming Solution
	3.3 Determining the Loss Factor
	3.4 Tightness of Bound

	4 The Main Problem
	4.1 Reduction to k-BAS
	4.2 The Price of Bounded Preemption as Function of the Number of the Jobs
	4.3 The Price of Bounded Preemption as Function of the Length-Ratio

	5 Special case: k=0
	References
	A Lower Bound for Loss Factor in k-BAS
	B Lower Bound for Price in k-Bounded Preemption Problem

