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Abstract

Let r ≥ 2, n and k be integers satisfying k ≤ r−1
r n. We conjecture that the family

of all k-subsets of an n-set cannot be partitioned into fewer than dn− r
r−1 (k−1)e r-wise

intersecting families. If true this is tight for all values of the parameters. The case

r = 2 is Kneser’s conjecture, proved by Lovász. Here we observe that the assertion

also holds provided r is either a prime number or a power of 2.

1 Introduction

One of the earliest and possibly the best known application of topological methods in

extremal combinatorics is the Kneser conjecture, now Lovász’ Theorem [5]. This theorem

asserts that for every n ≥ 2k it is impossible to split the family of all k-subsets of an n-set

into fewer than n − 2k + 2 intersecting families. The main purpose of this brief note is

to suggest the following conjecture, extending this result. Call a family of subsets r-wise

intersecting if any collection of at most r subsets in it has a common point.

Conjecture 1.1. Let r ≥ 2, n and k be integers, and suppose k ≤ r−1
r n. Then the family

of all k-subsets of [n] = {1, 2, . . . , n} cannot be partitioned into fewer than dn− r
r−1(k−1)e

r-wise intersecting families. This is tight for all admissible values of the parameters.

The case r = 2 is Kneser’s Conjecture proved by Lovász.

In this note we observe that the assertion of this conjecture holds for every prime r and

for every r which is a power of 2. This is stated in the next theorem. It will be interesting

to prove (or disprove) the statement for all the remaining values of r.

Theorem 1.2. Let r be a prime or a power of 2, suppose k ≤ r−1
r n and let F1,F2, . . . ,Fm

be a partition of all k-subsets of the set [n] = {1, 2, . . . , n} into m families, where each Fi
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is r-wise intersecting. Then m ≥ dn− r
r−1(k − 1)e. This is tight for all admissible values

of the parameters.

2 Proof

One can prove Theorem 1.2 using tools from equivariant topology. It is much simpler,

however, to deduce it from known results about the chromatic numbers of stable Kneser

hypergraphs. We start by describing these results.

For n ≥ rk let KGr(k, n) denote the Kneser hypergraph whose vertex set is the set

of all
(
n
k

)
subsets of cardinality k of an n-set [n] = {1, 2, . . . , n} and whose edges are all

r-tuples of k-sets which are pairwise disjoint. For r = 2 this is the Kneser graph. Lovász

proved that the chromatic number of KG2(k, n) is n− 2k + 2 for all n ≥ 2k, and in [3] it

is proved that the chromatic number of KGr(k, n) is dn−r(k−1)
r−1 e for all n ≥ rk.

Call a subset F of [n] s-stable if any two elements of F are at distance at least s in the

cyclic order on [n]. Let KGr(k, n)s−stab be the induced sub-hypergraph of KGr(k, n) on

the set of vertices which are s-stable. Ziegler [8], and Drewnowski,  Luczak and the present

author [2] conjectured that the chromatic number of KGr(k, n)r−stab is also dn−r(k−1)
r−1 e,

just as that of the full hypergraph KGr(k, n). We need the following known result regard-

ing this conjecture.

Theorem 2.1 ([7], [2]). If r is any power of 2 then the chromatic number of KGr(k, n)r−stab

is dn−r(k−1)
r−1 e for all admissible values of k, n.

The case r = 2 was proved by Schrijver in [7], and in [2] it is shown that if the result

holds for r1 and r2 then it also holds for r1r2, implying the assertion for all powers of 2.

Improving results of Meunier [6] and of Alishahi and Hajiabolhassan [1], Frick proved

in [4] that the chromatic number of KGr(k, n)2−stab is dn−r(k−1)
r−1 e. Another result proved

in [4] is (a slightly stronger version of) the following.

Theorem 2.2 ([4], Theorem 3.10). For any prime r and for any partition of [n] into

subsets Ci, each of size at most r − 1, the induced subhypergraph of KGr(k, n) on the

set of all vertices F that contain at most 1 element of each Ci has chromatic number

dn−r(k−1)
r−1 e.

Proof of Theorem 1.2: The upper bound showing that the result is tight (for all values

of r, if true) is simple. Put s = b rk−1
r−1 c. Then every collection of r subsets of cardinality

k of the subset S = {n− s+ 1, n− s+ 2, . . . , n} has a common point. For every i ≤ n− s

let Fi be the collection of all k-subsets of [n] whose minimum element is i. Let Fn−s+1
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be the remaining k-subsets, that is, all those contained in S. This shows that there is a

construction with

m = n− s + 1 = n− brk − 1

r − 1
c+ 1 = dn− r

r − 1
(k − 1)e,

as needed.

To prove the lower bound let n, k, r and F1, . . .Fm be as in the statement of the

theorem. Assume, first, that r is a prime. Let C1, C2, . . . , Cn be n pairwise disjoint sets,

each of size r−1, and let C = ∪ni=1Ci be their union. For each of the families Fi, let Gi be

the family of all k-subsets of C obtained as follows. For each member F = {i1, i2, . . . , ik}
of Fi, let C(F ) denote the family of all (r−1)k subsets of C containing exactly one element

of each Cij for 1 ≤ j ≤ k. The family Gi is the union of all families C(F ) for F ∈ Fi.

We claim that no set Gi contains r pairwise disjoint sets. Indeed, every collection of r

(not necessarily distinct) members G1, G2, . . . , Gr of Gi consists of subsets that belong to

C(F1), C(F2), . . . , C(Fr), respectively, for some (not necessarily distinct) members Fj ∈
Fi. Since Fi is r-wise intersecting there is a common point, say `, in all sets Fj . Thus

each Gj contains a point of C` and as |C`| = r − 1 some pair of sets Gj intersect inside

C`, by the pigeonhole principle. This proves the claim.

Note that the union of all families Gi is exactly the collection of all the k-subsets of C

that contain at most 1 element from each Ci. Therefore the families Gi provide a proper

coloring of the hypergraph described in Theorem 2.2 with parameters (r − 1)n, r and k.

The chromatic number of this hypergraph is d (r−1)n−r(k−1)
r−1 e, providing the required lower

bound for m.

The proof for r which is a power of 2 is similar, using the result in Theorem 2.1. We

apply the same construction with sets Ci and families Gi as before, and place the sets Ci

along a cycle of length (r − 1)n, where each set Ci appears contiguously along the cycle.

It is then easy to see that the union of the families Gi contains a copy of the hypergraph

KGr((r − 1)n, k)r−stab on the set of vertices C = ∪ni=1Ci of the cycle (as well as some

additional hyperedges). As before, here too each family Gi contains no r pairwise disjoint

members. The lower bound thus follows from Theorem 2.1. This completes the proof.

Note that the proof shows that if the conjecture of [8] and [2] holds for all r then so does

Conjecture 1.1. �
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