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Abstract. For a binary sequence Sn = {si : i = 1, 2, ..., n} ∈ {±1}n, n > 1,
the peak sidelobe level (PSL) is defined as

M(Sn) = max
k=1,2,...,n−1

|
n−k∑

i=1

sisi+k|.

It is shown that the distribution of M(Sn) is strongly concentrated, and asymp-
totically almost surely,

γ(Sn) =
M(Sn)√

n ln n
∈ [1− o(1),

√
2].

Explicit bounds for the number of sequences outside this range are provided.
This improves on the best earlier known result due to Moon and Moser [19]

claiming that the typical γ(Sn) ∈
[
o

(
1√
ln n

)
, 2

]
, and settles to the affirmative

a conjecture of Dmitriev and Jedwab [4] on the growth rate of the typical peak
sidelobe. Finally, it is shown that modulo some natural conjecture, the typical
γ(Sn) equals

√
2.

1. Introduction and Definitions

Let Sn = {si : i = 1, 2, ..., n} ∈ An, n > 1, where An = Fn, F ≡ {+1,−1}.
Define

Mk(Sn) =
n−k∑

i=1

sisi+k, k = 1, 2, , ..., n− 1.

The peak sidelobe level (PSL) M(Sn) of a sequence Sn, is

M(Sn) = max
k=1,2,...,n−1

|Mk(Sn)|, n > 1.

Let µn stand for the optimal value of the PSL over the set An:

µn = min
Sn∈An

M(Sn).

Binary sequences with low PSL are important for synchronization, commu-
nications and radar pulse design, see e.g. [6, 7, 12, 21, 22]. In theoretical

1991 Mathematics Subject Classification. Primary 94A55; Secondary 94A55.
Key words and phrases. PSL, peak sidelobe level, random binary sequences autocorrelation,

aperiodic autocorrelation, concentration, second moment method.
The first author was supported in part by a BSF and an ISF grant, the second author was

supported in part by ISF Grant #533-03.

1



2 NOGA ALON, SIMON LITSYN, AND ALEXANDER SHPUNT

physics, study of the PSL landscape was introduced by Bernasconi via the so-
called Bernasconi model [3], which is fascinating for the fact of being completely
deterministic, but nevertheless having highly disordered ground states (sequences
with the lowest PSL) and thus possessing similarities to the real glasses, with many
features of a glass transition exhibited [3, 11].

Study of the problem started in 1950’s. A special attention has been given to
estimation of typical PSL. Since this is our central interest in this paper, let us
mention several relevant results. Moon and Moser [19] proved that for almost all
sequences,

κ(n) ≤ M(Sn) ≤ (2 + ε)
√

n ln n,

for any κ(n) = o(
√

n). Mercer [18] showed that

µn ≤ (
√

2 + ε)
√

n ln n.

Apparently the suggested approach also allows proving that this bound is indeed
true for most of the sequences (see comments at the bottom of p.670 in [18]).
Dmitriev and Jedwab [4] conjectured and provided an experimental evidence that
the typical PSL behaves as Θ(

√
n ln n). The same was presumed without proof by

Ein-Dor, Kanter and Kinzel [5].
In this paper we prove that indeed, for almost all binary sequences Sn of length

n, M(Sn) = Θ(
√

n ln n). Moreover, it is shown that asymptotically almost surely

(1.1) γ(Sn) =
M(Sn)√

n ln n
∈ [1− o(1),

√
2].

The results of the paper have an application in another problem related to
estimation of the ”level of randomness” of finite sequences from Fn. Mauduit and
Sárkózy [17] introduced the correlation measure of order r, which is defined for a
sequence Sn as

Cr(Sn) = max
0≤i1<...<ir≤n−1

max
k=1,2,...,n−ir

∣∣∣∣∣
k∑

i=1

si1+isi2+i...sir+i

∣∣∣∣∣ .

In other words, this is just the maximum of the absolute value of the mutual corre-
lation of r continuous runs of vector’s entries. In [1] Alon, Kohayakawa, Mauduit,
Morreira and Rödl showed that asymptotically almost surely

(1.2) σ2(Sn) =
Cr(Sn)√
n ln

(
n
r

) ∈
(

2
5

,
7
4

)
.

Noticing that M(Sn) ≤ C2(Sn), we conclude that any lower bound on the typical
M(Sn) is a lower bound for the typical C2(Sn) as well. Therefore, our results
(slightly) improve the lower bound on σ2 = 2

5

√
2 ≈ 0.57 in (1.2) to 1. The same

improvement can be easily achieved for any r using the method in the paper.
The paper proceeds as follows. In the next short section we sketch a quick proof,

based on the approach in [1], that for almost all sequences Sn, (1− o(1))
√

n ln n ≤
M(Sn) ≤ (

√
2+o(1))

√
n ln n. We then proceed to give a detailed analysis that pro-

vides a somewhat better control of the error terms in the above estimates. In Section
3 we recall a theorem due to Moon and Moser [19] for the number of sequences Sn

such that Mk(Sn) = r for any k = 1, 2, ..., n− 1, and r = −n, ..., n− 1, n. We then
provide estimates for binomial coefficients allowing approximation of the Moon-
Moser formula by tails of the Gaussian distribution with vanishing error. Section 4
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is devoted to proving the upper bound in (1.1). To do so, we relate, via the Moon-
Moser theorem, the number of sequences Sn with M(Sn) >

√
2n(lnn + δ(n)) to

certain binomial sums. Accurate estimates using bounds developed in Section 3
allow establishing the sought inequality. Section 5 derives a lower bound for the
number of sequences Sn with M(Sn) >

√
n(ln n + δ(n)), by looking only at auto-

correlations with shifts≥ n/2. This allows considering Mk(Sn), k = n/2+1, ..., n, as
a collection of linear forms with coefficients s1, ..., sn/2 and variables sn/2+1, ..., sn.
We then apply the Azuma inequality to show concentration of M(Sn), and the re-
sults of Sections 4 and 5 to accurately locate the mean of M(Sn), and thus establish
the lower bound in (1.1). In Section 6 we argue that modulo a plausible conjecture,
and using the Azuma inequality, for most Sn,

γ(Sn) =
√

2(1 + o(1)).

We attempted to make the paper as self-contained as possible. To achieve
this we had included several sketchy proofs of relevant results from other papers
conveying ideas of importance for our presentation.

2. A quick sketch

In this short section we sketch a quick proof that for almost all sequences Sn

(1− o(1))
√

n ln n ≤ M(Sn) ≤ (
√

2 + o(1))
√

n ln n.

The upper bound is simple; for each fixed k, the sum Mk(Sn) is easily seen to be
a sum of n− k independent random variables, each attaining the values −1 and 1
with equal probability. It thus follows by standard estimates (c.f., for example, [2],
Corollary A.1.2) that for a random sequence Sn, the probability that |Mk(Sn)| > a

is at most 2e−a2/2(n−k) < 2e−a2/2n. Thus, for a = (
√

2 + δ)
√

n ln n, where δ > 0
is arbitrarily small, this probability is much smaller than 1/n (for all sufficiently
large n), and it thus follows that with high probability, all n numbers Mk(Sn) are
smaller than (

√
2 + δ)

√
n ln n, providing the required upper bound.

To prove the lower bound, we consider only values of k satisfying k > n/2. It
turns out that for k, ` which are both bigger than n/2, the 2n − (k + `) products
s1s1+k, s2s2+k, . . . , sn−ksn, s1s1+`, s2s2+`, . . . , sn−`sn are random and independent
members of {−1, 1}. A detailed proof of this simple yet somewhat surprising fact
appears in Section 5. For each k, n/2 < k ≤ n/2 + n/ ln n, let Xk denote the
indicator random variable whose value is 1 if the event |Mk(Sn)| ≥ (1− δ)

√
n lnn

(which we denote here by Ek) occurs, and is 0 otherwise. Our objective is to show
that asymptotically almost surely, the sum X =

∑
n/2<k≤n/2+n/ ln n Xk is positive.

By standard estimates, for each fixed k, the probability that Ek occurs is bigger
than, say, ln2 n/n (for every fixed δ > 0 and all sufficiently large n.) This means
that the expectation E(X) of X is at least ln n. The crucial point is that since the
indicator random variables Xk are pariwise independent, the variance Var(X) of X
is the sum of variances of the variables Xk, and is thus smaller than the expectation
of X. Therefore, by Chebyshev’s Inequality, the probability that X is zero is at
most Var(X)/(E(X))2 < 1/E(X) < 1/ ln n, implying that asymptotically almost
surely X is positive, as needed.

The detailed proof, with a more careful treatment of the error terms, is given in
the next sections. The proof of the lower bound we present in Section 5 is slightly
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different than the one indicated above, as it seems interesting to describe an alter-
native approach which derives the bound by combining the pairwise independence
of the random variables described above with Azuma’s Inequality.

3. Auxiliary Results

Let g(n, k, r) denote the number of sequences Sn, such that Mk(Sn) = r.
Throughout we shall adopt the convention that the binomial coefficient

(
m
x

)
equals

0 if x is not an integer and 1 if m = x = −1.

Theorem 3.1 (Moon-Moser [19]). For r = −n, ..., n−1, n, and k = 1, ..., n−1,

g(n, k, r) = 2k

(
n− k

(n− k) ·
(

1
2 + r

2(n−k)

)
)

.

Proof. See a sketch in Appendix. ¤

In the derivation of our bounds, we will need the following estimates for bino-
mial coefficients.

Lemma 3.2. For 0 < ε1 <
√

3/32, and all n, such that n·( 1
2 − ε1

)
is an integer,

(3.1) 2−n ·
(

n

n · (1
2 − ε1)

)
≤ (1 + ς1) ·

√
2

πn
· e−2nε21 , ς1 < 3ε21.

Moreover, for 0 < ε1 < (2n)−1/4 and n ≥ 164, such that n · ( 1
2 − ε1

)
is an

integer,

(3.2) 2−n ·
(

n

n · ( 1
2 − ε1)

)
≥ (1− ς2) ·

√
2

πn
· e−2nε21 , ς2 <

3
2
nε41 +

1
2n

.

Proof. See Appendix. ¤

Corollary 3.3.

g(n, k, r) ≤ 2n ·
(

1 +
3r2

4(n− k)2

)
·
√

2
π(n− k)

· e− r2
2(n−k) ,

g(n, k, r) ≥ 2n ·
(

1− 3r4

32(n− k)3
− 1

2(n− k)

)
·
√

2
π(n− k)

· e− r2
2(n−k) .

Proof. Apply Lemma 3.2 to Theorem 3.1. ¤

The next result addresses the question of how well sums of binomial coefficients
can be approximated by the Gaussian complementary cumulative distribution func-
tion (CCDF). Henceforth, the Gaussian CCDF is defined by

PG(x) ≡ 1√
2π

∫ ∞

x

e−t2/2dt =
1√
π

∫ ∞

x/
√

2

e−t2dt.

Lemma 3.4. Let

S(n, d) =

n
2∑

k= d
2

(
n

n · ( 1
2 − k

n

)
)

.
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Then, for n ≥ 164 and
√

n ln lnn < d < n/2, the following inequalities hold

(3.3) 2−n · S(n, d) ≤ (1 + ς3) · PG

(
d√
n

)
, ς3 <

7d

n
,

and for
√

n ln ln n < d < (2n)3/4,

(3.4) 2−n · S(n, d) ≥ (1− ς4) · PG

(
d√
n

)
− e−

√
n/32, ς4 <

1
2n

+
5d4

n3
.

Proof. See Appendix. ¤

The bounds on S(n, d) in Lemma 3.4 are given in terms of PG

(
d√
n

)
. In certain

cases we would like to provide more explicit bounds, which can be achieved with
the following

Lemma 3.5. For d > 0, n > 0,√
2n√
πd

· e− d2
2n ·

(
1− n

d2

)
≤ PG

(
d√
n

)
≤
√

2n√
πd

· e− d2
2n

Proof. Use, for x > 0,

e−x2

√
πx

(
1− 1

2x2

)
≤ 2√

π

∫ ∞

x

e−t2dt ≤ e−x2

√
πx

.

¤
It will turn out that a specific form of d is of interest. The following explicit

bounds will be useful.

Lemma 3.6. For d =
√

2n(ln n + δ(n)) < n
4 , and k = 1, 2, ..., n− 1,

PG

(
d√

n− k

)
≤ 1

2n
· e−δ(n)

√
π(ln n + δ(n))

· e− ln n+δ(n)
n k,

PG

(
d√

n− k

)
≥ 1

2n
· e−δ(n)

√
π(ln n + δ(n))

· e− ln n+δ(n)
n−k k · (1− kn−1 − (2(ln n + δ(n)))−1

)
.

Proof. See Appendix. ¤

4. An Upper Bound on M(Sn) for Almost all Sn

For d < n−k
4 , the number of sequences Sn such that Mk(Sn) ≥ d, is given by

G(n, k, d) ≡
n−k∑

r=d

g(n, k, r) = 2k

n−k
2∑

r= d
2

(
n− k

(n− k) ·
(

1
2 − r

n−k

)
)

.

We have the following

Lemma 4.1. For any d not exceeding n
4 and growing faster than

√
n− k,

PG

(
d√

n− k

)
·
(
1− ς

(n−k)
4

)
−e−

√
n−k
32 ≤ Pr(Mk ≥ d) ≤ PG

(
d√

n− k

)
·
(
1 + ς

(n−k)
3

)
,

where ς
(n−k)
3 = 5d4

(n−k)3 − 1
2(n−k) and ς

(n−k)
3 = 7d

n−k are as given by Lemma 3.4.
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Proof. The probability that an arbitrary chosen binary sequence Sn has Mk ≥
d equals 2−n ·G(n, k, d). Use Lemma 3.4 with n− k in place of n. ¤

Combining Lemmas 4.1 and 3.6, and using ex > 1 + x for x > 0, we have

2−n
n−1∑

k=1

G(n, k, d) ≤ 1
2n

· e−δ(n)

√
π(lnn + δ(n))

·
n−1∑

k=1

e−
ln n+δ(n)

n k ·
(

1 +
7d

n− k

)

≤ 1
2n

· e−δ(n)

√
π(lnn + δ(n))

· n

ln n + δ(n)
· (1 + o(1)).

Consequently, we have the following

Corollary 4.2. Under the conditions of Lemma 4.1,

(4.1) Pr(M(Sn) ≥
√

2n(lnn + δ(n))) ≤ e−δ(n)

√
π(lnn + δ(n))

3
2
· (1 + o(1)).

Proof. Straightforward

Pr( max
k=1,2,..,n−1

Mk > d) ≤
n−1∑

k=1

Pr(Mk > d) = 2−n
n−1∑

k=1

G(n, k, d)

≤ 1
2
· e−δ(n)

√
π(lnn + δ(n))

3
2
· (1 + o(1)),

and

Pr( max
k=1,2,..,n−1

|Mk| > d) = 2 · Pr( max
k=1,2,..,n−1

Mk > d).

¤

For example, taking δ(n) = −1.5 ln ln n + β ln lnn, we obtain

Corollary 4.3.

(4.2) Pr(M(Sn) ≥
√

2n(lnn− 1.5 ln ln n + β ln ln n)) ≤ O

(
1

lnβ n

)
.

¤
For the sake of comparison, let us derive a lower bound for 2−n ·∑k G(n, k, d).

For notational convenience, in what follows f ¿ g stands for f = o(g).

Lemma 4.4. For d =
√

2n(ln n + δ(n)),
√

n ¿ d ¿ n3/4,

2−n
n−1∑

k=1

G(n, k, d) ≥ 1
2e
· e−δ(n)

√
π(ln n + δ(n))

3
2

(1− o(1))

Proof. Use Lemma 3.4 and note that for
√

n ¿ d ¿ n3/4 and k ≤ 2(n/d)2,

ς
(n−k)
4 +

e−
√

n−k
32

PG

(
d√

n−k

) = o(1).
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Hence,

2−n
n−1∑

k=1

G(n, k, d) ≥ 1
2n

· e−δ(n)

√
π(lnn + δ(n))

·



n
ln n+δ(n)∑

k=1

n− k

n
· e− ln n+δ(n)

(n−k)/k


 · (1− o(1))

≥ 1
2n

· e−δ(n)

√
π(lnn + δ(n))

· e− ln n+δ(n)
ln n+δ(n)−1 ·




n
ln n+δ(n)∑

k=1

n− k

n


 · (1− o(1))

=
1

2en
· e−δ(n)

√
π(lnn + δ(n))

·
(

n

ln n + δ(n)
− n + ln n + δ(n)

2(ln n + δ(n))2

)
· (1− o(1))

=
1
2e
· e−δ(n)

√
π(lnn + δ(n))

3
2
· (1− o(1)) .

¤
We see that the lower and upper bounds for 2−n

∑n−1
k=1 G(n, k, d) differ only by

a multiplicative constant.

5. A Lower Bound on M(Sn) for Almost all Sn

Notice that Mn
2
,Mn

2 +1, ..., Mn−1 are linear in s1, s2..., sn
2

and in sn
2 +1, ..., sn,

and therefore can be written collectively as a linear system


Mn
2

Mn
2 +1

...
Mn−2

Mn−1




=




s1 s2 s3 · · · sn
2−1 sn

2

0 s1 s2 · · · sn
2−2 sn

2−1

...
0 0 0 · · · s1 s2

0 0 0 0 · · · s1







sn
2 +1

sn
2 +2

...
sn−1

sn




.

This linearity allows us to prove independence of Mn
2 +i−1 and Mn

2 +j−1 for
1 ≤ i < j ≤ n

2 , in Lemma 5.1. Using the independence and the inclusion-exclusion
principle, we provide a lower bound for the upper tail on the probability of the
number of sequences Sn with M(Sn) ≥

√
n ln n + δ(n), Theorem 5.2.

Next, we use Azuma’s bound to show that since M(Sn) satisfies a Lipschitz
condition, the distribution of M(Sn) is concentrated, though we cannot indicate
where its expectation lies. However, noticing that the expectation cannot be too
small, since otherwise its upper tail, - an upper bound on the probability that
M(Sn) ≥

√
n ln n + δ(n),- will contradict the earlier derived lower bound on the

probability of the same event, we conclude that the expectation cannot be less than
approximately

√
n ln n.

Lemma 5.1. For any 1 ≤ i < j ≤ n
2 , and d > 0,

Pr(|Mn
2 +i−1| > d ∧ |Mn

2 +j−1| > d) = Pr(|Mn
2 +i−1| > d) · Pr(|Mn

2 +j−1| > d).
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Proof. For 1 ≤ i < j ≤ n
2 , we consider two forms,

Mn
2 +i−1 = s1sn

2 +i + s2sn
2 +i+1 + . . . + sn

2−i+1sn

and
Mn

2 +j−1 = s1sn
2 +j + s2sn

2 +j+1 + . . . + sn
2−j+1sn.

Notice that the number of product terms in the second form, n
2 − j + 1, is

less than the number of product terms in the first one, n
2 − i + 1. Let us form a

vector of length n − 2j + 2, having the first half consisting of the first n
2 − j + 1

product terms from Mn
2 +i−1 and the second half containing the product terms from

Mn
2 +j−1, namely,

x = (x(1),x(2))

= (s1sn
2 +i, s2sn

2 +i+1, . . . , sn
2−j+1sn−j+i|s1sn

2 +j , s2sn
2 +j+1, . . . , sn

2−j+1sn).

Let us show that when

y = (s1, s2, . . . , sn
2−j+1)

assumes all possible values from F
n
2−j+1
2 , and

z = (sn
2 +i, sn

2 +i+1, . . . , sn)

assumes all possible values from F
n
2−i+1
2 , then x assumes all possible values from

Fn−2j+2
2 equal number of times, 2j−i.

Notice that w = (w(1),w(2)) ∈
(
Fn/2−j+1

2

)2

, assumes all possible values from

Fn−2j+2
2 exactly once if and only if the vector (w(1),w(1) ∗ w(2)), where ∗ stands

for the coordinate-wise multiplication of vectors, also assumes all possible values
of Fn−2j+2

2 exactly once. Indeed, for a fixed w(1), w(2) assumes all possible values
exactly once. The same is clearly true for w(1) ∗ w(2) for a fixed w(1) and w(2)

running over all possibilities in F
n
2−j+1
2 . In the opposite direction, the same is

correct since the transform is involution.
Using x(1) and x(2) in place of w(1) and w(2) in the previous, and noticing that

the variables sn
2−j+2, . . . , sn

2−i+1 do not appear in either x(1) or x(2) we conclude
that

(x(1), sn
2−j+2sn−j+i+1, ..., sn

2−i+1sn|x(2))

assumes each of its 2n−i−j+2 possible values exactly 2j−i times.
Consequently, Mn

2 +i−1 and Mn
2 +j−1 are independent for all 1 ≤ i < j ≤ n

2 . ¤

Theorem 5.2. Let

(5.1) d =
√

n(ln n + δ(n)),
√

n ¿ d ¿ n3/4.

Then

Pr (M(Sn) ≥ d) ≥ 2e−δ(n)

ln n ·
√

π(ln n + δ(n))
· (1− o(1)).

Proof. For any subset of sequences Sn from An, and any subset K of indices
k belonging to {1, 2, ..., n− 1},

Pr
(

max
k=1,2,...n−1

|Mk(Sn)| ≥ d

)
≥ Pr

(
max
k∈K

|Mk(Sn)| ≥ d

)
.
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In particular, for m = o(n),

Pr
(

max
k=1,2,...n−1

|Mk(Sn)| ≥ d

)
≥

n
2 +m∑

k= n
2

Pr (|Mk(Sn)| ≥ d)

−
n
2 +m∑

i,j= n
2 ,i6=j

Pr (|Mi(Sn)| ≥ d ∧ |Mj(Sn)| ≥ d) .

Lemma 5.3. For any i < m, m = o(n) and δ(n) > − ln n,

Pr
(
|Mn

2 +i−1(Sn)| ≥
√

n(ln n + δ(n))
)
≥ 2

n
· e−δ(n)

√
π(lnn + δ(n))

· (1− o(1)) .

Proof. By construction,

Mn
2 +i−1(Sn) = s1sn

2 +i + s2sn
2 +i+1 + ... + sn

2−i+1sn,

therefore by Theorem 3.1,

Pr
(
Mn

2 +i−1(Sn) = d
)

= 2−( n
2−i+1) ·

( n
2 − i + 1

n
2−i+1

2 − d
2

)
.

Applying Lemmas 3.4, 3.5 with n → n
2 − i + 1 and d =

√
n(ln n + δ(n)), we have

Pr
(
Mn

2 +i−1(Sn) ≥
√

n(lnn + δ(n))
)

= 2
n
2−i+1 · S

(n

2
− i + 1,

√
n(lnn + δ(n))

)

≥
√

1− 2(i− 1)/n√
π(lnn + δ(n))

· e− ln n+δ(n)
1−2(i−1)/n ·

(
1− 1− 2(i− 1)/n

2(lnn + δ(n))

)
(1− o(1)).

For i = 1, 2, ..., m, m = o(n) we then have

(5.2) Pr
(
Mn

2 +i−1(Sn) ≥
√

n(ln n + δ(n))
)

=
1
n
· e−δ(n)

√
π(lnn + δ(n))

· (1− o(1)) .

¤

Note that by symmetry,

Pr (|Mi(Sn)| ≥ d ∧ |Mj(Sn)| ≥ d) = 4 · Pr (Mi(Sn) ≥ d ∧Mj(Sn) ≥ d) .

Pr
(

max
k=1,2,...n−1

|Mk(Sn)| ≥ d

)
≥ 2m

n
·e
−δ(n) · (1− o(1))√

π(ln n + δ(n))
−2m2

n2
· (1 + o(1)) · e−2δ(n)

π(ln n + δ(n))
.

For m = n/ ln n,

Pr
(

max
k=1,2,...n−1

|Mk(Sn)| ≥ d

)
≥ 2e−δ(n) · (1− o(1))

ln n ·
√

π(lnn + δ(n))
− 2e−2δ(n)(1 + o(1))

(lnn)2 · π(lnn + δ(n))

=
2e−δ(n)

ln n ·
√

π(lnn + δ(n))
· (1− o(1)).

This accomplishes the proof of Theorem 5.2. ¤

Using the lower bound from Theorem 5.2 and the Azuma inequality, we will
provide a lower bound for the mean of M(Sn).
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Lemma 5.4 (Azuma, c.f. e.g. [15, 16]). Let z1, z2, ..., zn be independent random
variables, with zj taking values in a set Λj. Assume that a function f : Λ1 × Λ2 ×
· · ·Λn → R satisfies, for some constants bj , j = 1, 2, 3, ..., n, the following Lipschitz
condition: if two vectors z, z′ differ only in the j’th coordinate, then |f(z)−f(z’)| ≤
bj .

Then, the random variable X = f(z1, z2, ..., zn), λ ≡ E(X), satisfies, for any
t ≥ 0,

Pr(X ≥ λ + t) ≤ exp{−2t2/

N∑
1

b2
j}

Pr(X ≤ λ− t) ≤ exp{−2t2/

N∑
1

b2
j}

¤
For

X ≡ max
k=1,..,n−1

|Mk|,

we note that bj = 2, j = 1, 2, ..., n− 1, and therefore, for t =
√

n ln n− λ,

Pr( max
k=1,..,n−1

|Mk| ≥ λ+t) = Pr( max
k=1,..,n−1

|Mk| ≥
√

n ln n) ≤ exp

(
− (
√

n ln n− λ)2

2n

)
.

On the other hand,

Pr( max
k=1,..,n−1

|Mk| ≥
√

n ln n) ≥ 2√
π(lnn)3

(1− o(1)).

For consistency we require

exp

(
− (
√

n ln n− λ)2

2n

)
≥ 2√

π(ln n)3
(1− o(1)),

and therefore,
(
√

n ln n− λ)2 ≤ 3n ln lnn · (1− o(1)),
and consequently

λ ≥
√

n ln n−
√

3n ln ln n · (1− o(1)) ≥
√

n ln n

(
1−

√
3
ln ln n

ln n

)
(1− o(1)).

Written differently,

λ ≥
√

n(lnn− 2
√

3 ln n ln ln n + 3 ln ln n)(1− o(1)).

We have thus shown that

E

{
max

k=1,..,n−1
|Mk|

}
≥
√

n ln n · (1− o(1)).

¿From here, straightforward application of the Azuma inequality gives us

Corollary 5.5. For almost all Sn, M(Sn) = Θ(
√

n ln n).

Pr( max
k=1,..,n−1

|Mk| ≤
√

n ln n−
√

2βn ln ln n) ≤ exp
(
−2βn ln ln n

2n

)
= (ln n)−β .

¤
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6. The M(Sn) Concentration, Modulo a Conjecture

For notational convenience, let us introduce the following definitions

Ak(d) ≡ {|Mk| ≥ d}, k = 1, .., n− 1;
Ak1k2(d) ≡ Ak1(d) ∧Ak2(d), k1 6= k2;

Ek1k2(d1, d2) ≡ {|Mk1 | = d1} ∧ {|Mk2 | = d2}, k1 6= k2.

The number of sequences in a set S is denoted by #S.
The following was suggested to us by Alex Koreiko.

Conjecture 6.1 (Koreiko [10]). For d1, d2 = θ(
√

n ln n),

#E12(d1, d2) ≥ #Ek1k2(d1, d2), k1, k2 = 1, 2, ..., n− 1, k1 6= k2.

¤
Though we were not able to prove that the previous is correct, we can show

that modulo Conjecture 6.1, the following holds:

Lemma 6.2. Let
d =

√
2n(ln n + δ(n))),

For k1, k2 = 1, 2, ..., n− 1, k1 6= k2, we have (modulo Conjecture 6.1),

Pr (Ak1k2(d)) ≤ 2(ln n + δ(n))
n2

· e−2δ(n) · (1 + o(1)).

Proof. As put forward by Moon and Moser in [19],

#E12(d1, d2) = 2





( (n−1)+d1
2 − 1

1
2

(n−2)−d2
2

)( (n−1)−d1
2 − 1

1
2

(
(n−2)−d2

2 − 1
)
)

+
( (n−1)+d1

2 − 1
1
2

(
(n−2)−d2

2 − 1
)
)( (n−1)−d1

2 − 1
1
2

(n−2)−d2
2

)

 .

For di =
√

2n(lnn + δi(n)) = θ(
√

2n ln n), i = 1, 2, we have

#E12(d1, d2) = 2
( (n−3)+d1

2

(n−3)+d1
2

(
1
2 − d1+d2−1

2((n−3)+d1)

)
)( (n−3)−d1

2

(n−3)−d1
2

(
1
2 + d1−d2−1

2((n−3)−d1)

)
)

+ 2
( (n−3)+d1

2

(n−3)+d1
2

(
1
2 − d1+d2+1

2((n−3)+d1)

)
)( (n−3)−d1

2

(n−3)−d1
2

(
1
2 + d1−d2+1

2((n−3)−d1)

)
)

≤ 2n 1 + o(1)
π
√

(n− 3)2 − d2
1

exp
{
−0.5(n− 3)((d1 − 1)2 + d2

2)− (d1 − 1)d1d2

(n− 3)2 − d2
1

}

+ 2n 1 + o(1)
π
√

(n− 3)2 − d2
1

exp
{
−0.5(n− 3)((d1 + 1)2 + d2

2)− (d1 + 1)d1d2

(n− 3)2 − d2
1

}

≤ 2n · 2e−(δ1(n)+δ2(n))

n3
(1 + o(1)) .

For d =
√

2n(lnn + δ(n)),

#Ak1k2(d) =
n−k1∑

d1=d

n−k2∑

d2=d

#Ek1k2(d1, d2) ≤
2d∑

d1=d

2d∑

d2=d

#E12(d1, d2) + ∆G

≤ d2 ·#E12(d, d) + ∆G ≤ 2n · 2(lnn + δ(n))
n2

· e−2δ(n) · (1 + o(1)),

where ∆G ≡ n · (G(n, k1, 2d) + G(n, k2, 2d)) ¿ #Ak1k2(d).
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¤

Lemma 6.2 along with Lemma 4.4 enable us to derive a tight lower bound for
Pr(maxk=1,2,..,n−1 |Mk| ≥

√
2n(lnn + δ(n))).

Corollary 6.3. For 3 ln ln n ≤ δ(n) ≤ n
64 − ln n,

(6.1) Pr( max
k=1,2,..,n−1

|Mk| ≥
√

2n(ln n + δ(n))) ≥ e−δ(n)

e
√

π(lnn + δ(n))
3
2
(1− o(1)).

Proof. Let d =
√

2n(lnn + δ(n)).

Pr( max
k=1,2,..,n−1

|Mk| > d) = 2 · Pr( max
k=1,2,..,n−1

Mk > d)

≥ 2
n−1∑

k=1

Pr(Mk > d)− 4
n−1∑

k1=1

n−1∑

k2=1

Pr(Mk1 > d, Mk2 > d)

≥
(

e−δ(n)

e
√

π(lnn + δ(n))
3
2
− 8(ln n + δ(n))e−2δ(n)

)
· (1− o(1)).

For δ(n) > 5
2 ln ln n(1 + o(1)), the union bound dominates and we obtain the

claim.
¤

Now we may repeat the steps in the end of Section 5, but this time using
Corollary 6.3, giving

Pr( max
k=1,..,n−1

|Mk| ≥
√

2n(lnn + 3 ln ln n)) ≥ 2
e
√

π(lnn)9
(1− o(1)).

Together with the Azuma inequality, it provides us with a tighter lower bound for
the mean of M(Sn). Indeed, the consistency requirement yields

exp{− (t− λ)2

2n
} ≥ 1

e
√

π(ln n)
9
2
(1− o(1)).

Therefore,

(t− λ)2 ≤ 9
2
n ln ln n(1− o(1)),

and consequently

λ ≥
√

2n(lnn + 3 ln ln n)−3

√
n ln ln n

2
(1−o(1)) ≥

√
2n ln n

(
1− 3

2

√
ln ln n

ln n

)
(1−o(1)).

Written differently it is

λ ≥
√

2n(ln n− 3
√

ln n ln ln n + 2.25 ln ln n)(1− o(1)).

We have thus shown that

E

{
max

k=1,..,n−1
|Mk|

}
≥
√

2n ln n · (1− o(1)).

¿From here, the straightforward application of the Azuma inequality gives

Corollary 6.4. For almost all Sn, M(Sn) ≈
√

2n ln n.

¤
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7. Appendix

7.1. Proof of Theorem 3.1. The original proof appears in [19], here it is
sketched for completeness. If

Mk(Sn) =
∑

sisi+k = r,

there must be an excess of r/2 values of i with sisi+k = +1. Hence, the set
{1, 2, ..., n − k} can be partitioned into two subsets A and B, with (n − k + r)/2
and (n− k − r)/2 respectively, such that

(7.1) si+k = si, if i ∈ A,

and

(7.2) si+k = −si, if i ∈ B.

There are
( n−k

(n−k)·( 1
2+ r

2(n−k) )
)

choices for the subsets A and B and there are 2k choices

for the first k elements of Sn. Once these choices are made, the remaining elements
sm = s(m−k)+k are determined recursively by (7.1) or (7.2). ¤

7.2. Proof of Lemma 3.2. Let us first show the upper bound. For 0 < ε1 <
1/2 and any n > 0, we have

n!(
n · ( 1

2 − ε1
))

!
(
n · ( 1

2 + ε1
))

!
≤ 1√

2πn
(

1
4 − ε21

) ·
1

(
1
2 + ε1

)( 1
2+ε1)n (

1
2 − ε1

)( 1
2−ε1)n

,

where we have used (c.f. e.g. [14])

(7.3)
√

2π · nn+1/2 · e−n+ 1
12n− 1

360n3 < n! <
√

2π · nn+1/2 · e−n+ 1
12n .

Therefore, for 0 < ε1 < 1
2 and any n > 0,

(7.4)
(

n

n · ( 1
2 − ε1

)
)
≤ 1√

2πn
(

1
4 − ε21

) · enHe( 1
2−ε1),

where He(x) ≡ −x ln x− (1− x) ln(1− x) stands for the natural entropy function.
Using also

(7.5) He

(
1
2
− ε1

)
≤ ln 2− 2ε21, for 0 < ε1 <

1
2
,

and
1√

1− x
≤ 1 +

3
4
x, for 0 ≤ x ≤ 3

8
,

we have (ε21 ≤ 3/32)

(7.6)
(

n

n · ( 1
2 − ε1

)
)
≤ 1√

2πn
(

1
4 − ε21

) ·en ln 2−2nε21 ≤ 2n ·(1 + 3ε21
) ·

√
2

πn
·e−2nε21 .

Now to the lower bound. Using (7.3), we have for 0 < ε1 < 1
2 and any n > 0,

n!(
n · ( 1

2 − ε1
))

!
(
n · ( 1

2 + ε1
))

!
≥ 1√

2πn
(

1
4 − ε21

) ·
e
− 1

12( 1
2 +ε1)n

− 1

12( 1
2−ε1)n

(
1
2 + ε1

)( 1
2+ε1)n (

1
2 − ε1

)( 1
2−ε1)n

.
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Therefore, for 0 < ε1 < 1
2 and any n > 0,

(
n

n · ( 1
2 − ε1

)
)
≥ 1√

2πn
(

1
4 − ε21

) · en·He( 1
2−ε1)−1/(n(3−12ε21)).

For 0 ≤ ε1 ≤ (2n)−1/4, and n ≥ 164,

He

(
1
2
− ε1

)
≥ ln 2− 2ε21 −

3
2
ε41, and

1
n (3− 12ε21)

≤ 1
2n

.

Since e−x ≥ 1− x for x > 0, we have

(7.7)
(

n

n · ( 1
2 − ε1

)
)
≥ 2n ·

√
2

πn
· e−2nε21 ·

(
1− 3

2
nε41 −

1
2n

)
.

¤
7.3. Proof of Lemma 3.4. Let us first prove (3.3). Let

k0 =

⌊√
3
32

n

⌋
.

Then,

2−n · S(n, d) =
k0∑

k= d
2

(
n

n · ( 1
2 − k

n

)
)

+

n
2∑

k=k0+1

(
n

n · ( 1
2 − k

n

)
)

= S1(n, d) + S2(n, d).

Taking into account that the terms of S2(n, d) are monotonously decreasing, let
us bound S2(n, d) from above by the product of the first (biggest) term and the
number of terms in the sum, using Lemma 3.2

(7.8) S2(n, d) <
41
64

√
2
π

(
1−

√
3
8

)
· √n · e− 3n

16 <

√
n

4π
· e−3n/16.

As for S1(n, d), we apply the upper bound of Lemma 3.2, to get

S1(n, d) ≤
√

2
πn

·
∞∑

k= d
2

(
1 +

3k2

n2

)
· e−2k2/n.

Bounding the sum with an integral, noting that for d >
√

n ln ln n the integrands
are monotonously decreasing functions of k, and recalling

PG

(
d√
n

)
=

1√
π

∫ ∞

d√
2n

e−z2
dz,

we have √
2

πn
·
∞∑

k= d
2

e−2k2/n <

√
2

πn
· e− d2

2n + PG

(
d√
n

)
,

√
2

πn
· 3
2n

·
∞∑

k= d
2

2k2

n
e−2k2/n <

3d(2d + 1)√
32πn5

· e− d2
2n +

3
4n

· PG

(
d√
n

)
.

By assumption, we have

3d(2d + 1)/
√

32 <
√

2d2, (d/n)2 + 1 <
√

π/2,
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and √
2

πn
+

3d(2d + 1)√
32πn5

<
1√
n

.

Summing up and using (7.8),

(7.9) 2−n · S(n, d) < PG

(
d√
n

)
·
(

1 +
3
4n

)
+

e−
d2
2n√
n

+
√

n

4π
· e−3n/16.

Noting that

(7.10)
√

n

2πd2
· e− d2

2n ·
(
1− n

d2

)
≤ PG

(
d√
n

)
≤

√
n

2πd2
· e− d2

2n ,

under the imposed conditions,

(7.11)
e−

d2
2n√
n
≤
√

2πd

n
·
(

1 +
n

d2 − n

)
· PG

(
d√
n

)
<

6.5d

n
· PG

(
d√
n

)
.

We finally have,
(7.12)

2−n · S(n, d) ≤ PG

(
d√
n

)
·
(

1 +
6.55d

n
+ e−

3n
16 + d2

2n

)
< PG

(
d√
n

)
·
(

1 +
6.6d

n

)
,

where we have bounded 3/4 < d/20, d2/(2n) < n/8 and e−
n
16 < d/(25n).

Now, let us prove (3.4). Starting from the lower bound in Lemma 3.2,

2−n · S(n, d) ≥
(n3/2)

1
4∑

k= d
2

(
1− 3k4

2n3
− 1

2n

)
·
√

2
πn

· e−2k2/n

≥
(

1− 1
2n

)[
PG

(
d√
n

)
− PG

((n

8

) 1
4
)]

−
√

2
πn

·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n.

To complete the proof let us provide an upper bound for

S3(n, d) =

√
2

πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n.

Note that the maximum of k4e−2k2/n is reached for k2 = n. If d > 2
√

n, the
summands in S3(n, d) are monotonously decreasing and the sum can be bounded
from above by an integral as follows:

√
2

πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n <

3
8n

√
1
π

∫ ∞

d−1√
2n

x4e−x2
dx.

On the other hand, if
√

ln lnn < d/
√

n ≤ 2 (which can only happen when ln ln n <
2, i.e. for n < 1619), the summands increase for d/2 < k ≤ √

n and decrease
thereafter. The biggest summand is ≤ 4e−2 ≤ 4e−(d−1)2/2.
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Clearly, S3(n, d) can be bounded from above in both cases as

√
2

πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n ≤ 3

8n

√
2

πn
· 4 · e− (d−1)2

2n +
3
8n

√
1
π

∫ ∞

d−1√
2n

x4e−x2
dx

=
3

32n

[
d− 1√

2πn

(
(d− 1)2

n
+ 3 +

32
d− 1

)
e−

(d−1)2

2n

+ 3PG

(
d− 1√

n

)]
.

Analogously to (7.11), we have

(7.13)
e−

(d−1)2

2n√
n

<
8.26(d− 1)

n
· PG

(
d− 1√

n

)
<

8.26d

n
· PG

(
d− 1√

n

)
.

Lumping the contributions,

(7.14)
(d− 1)2

n
+ 3 +

32
d− 1

< 4.55
(d− 1)2

n
< 4.55

d2

n
,

we get

√
2

πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n <

3
8n

√
1
π

[
37.6d4

4
√

2n2
+

3
√

π

4

]
PG

(
d− 1√

n

)

<
45d4

16
√

πn3
PG

(
d− 1√

n

)
<

5d4

n3
PG

(
d√
n

)
,

where in the last inequality we used

PG

(
d− 1√

n

)
≤ e(2d−1)/2n · d− 1

d
· d2/n

d2/n− 1
· PG

(
d√
n

)
< 3.04 · PG

(
d√
n

)
.

Finally, noting that

PG

((n

8

) 1
4
)
≤

√√
8

π
· n−1/4 · e−

√
n/32 < e−

√
n/32,

we have

(7.15) 2−n · S(n, d) ≥
(

1− 1
2n

− 5d4

n3

)
· PG

(
d√
n

)
− e−

√
n/32.

¤

7.4. Proof of Lemma 3.6. For x > 0, we have

e−x2

√
πx

(
1− 1

2x2

)
≤ 2√

π

∫ ∞

x

e−t2dt ≤ e−x2

√
πx

.

Noting that

PG

(
d√

n− k

)
=

1√
π

∫ ∞

d√
2(n−k)

e−t2dt,

we have

x =

√
n(lnn + δ(n))

n− k
=

√
(lnn + δ(n)) +

k(lnn + δ(n))
n− k

,
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PG

(
d√

n− k

)
≤ 1

2n
· e−δ(n)

√
π(ln n + δ(n))

√
1− k

n

(
neδ(n)

)− k
n

1
1−k/n

,

PG

(
d√

n− k

)
≥ 1

2n
· e−δ(n)

√
π(ln n + δ(n))

√
1− k

n

(
neδ(n)

)− k
n

1
1−k/n

(
1− 1

2(lnn + δ(n))

)
.

Further, using

1− x ≤ √
1− x ≤ 1, 1 + x ≤ 1

1− x
, for 0 ≤ x < 1,

PG

(
d√

n− k

)
≤ 1

2n
· e−δ(n)

√
π(ln n + δ(n))

(
eln n+δ(n)

)− k
n (1+k/n)

,

≤ 1
2n

· e−δ(n)

√
π(ln n + δ(n))

e−
ln n+δ(n)

n k,

PG

(
d√

n− k

)
≥ 1

2n
· e−δ(n)

√
π(ln n + δ(n))

(1− k

n
)
(
neδ(n)

)− k
n

1
1−k/n

(
1− 1

2(lnn + δ(n))

)
.

¤
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