
On the maximum quartet distance between phylogenetic trees

Noga Alon ∗ Humberto Naves † Benny Sudakov ‡

Abstract
A conjecture of Bandelt and Dress states that the
maximum quartet distance between any two phylo-
genetic trees on n leaves is at most (23 + o(1))

(
n
4

)
.

Using the machinery of flag algebras we improve
the currently known bounds regarding this conjec-
ture, in particular we show that the maximum is at
most (0.69 + o(1))

(
n
4

)
. We also give further evidence

that the conjecture is true by proving that the max-
imum distance between caterpillar trees is at most
(23 + o(1))

(
n
4

)
.

1 Introduction
The practice of phylogenetic tree reconstruction to
hypothesize various aspects of evolutionary relation-
ships among different species of organisms has be-
come a central problem in molecular biology. For
instance, the “Tree of Life” project [15] aims, among
other things, to accurately construct a tree represent-
ing the evolutionary history of the organismal lin-
eages as they change through time.

A phylogeny (the evolutionary history of a set of
species) is usually represented by a tree where the
species under study are mapped to the leaves of the
tree and the tree-structure represents the different
evolutionary relationships among them. Here we
focus solely on undirected (or unrooted) phylogenetic
trees. In this setting, the underlying tree is not
directed and each non-leaf node is incident to exactly
three edges. The basic unit of information for
phylogenetic classification is the quartet, which is
an undirected phylogenetic tree having exactly four

∗Sackler School of Mathematics and Blavatnik School of
Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
and School of Mathematics, Institute for Advanced Study,
Princeton, NJ 08540. Email: nogaa@tau.ac.il. Research
supported in part by a USA-Israeli BSF grant, by an ISF
grant, by the Israeli I-Core program and by the Fund for
Mathematics.
†Institute for Mathematics and its Applications, Univer-

sity of Minnesota, Minneapolis, MN 55455, USA. Email:
hnaves@ima.umn.edu. This research was supported in part by
the Institute for Mathematics and its Applications with funds
provided by the National Science Foundation.
‡Department of Mathematics, ETH, 8092 Zurich. Email:

benjamin.sudakov@math.ethz.ch. Research supported in part
by SNSF grant 200021-149111 and by a USA-Israeli BSF grant.

leaves. We denote a quartet over the leaves {a, b, c, d}
as [ab|cd] whenever there is an edge in the underlying
tree separating the pair {a, b} from the pair {c, d},
as Figure 1 shows. Note that a phylogenetic tree
defined over a taxa (species) set of size n contains
the information of exactly

(
n
4

)
quartets.

a

b

c

d

Figure 1: A quartet.

Studying quartets is of prime importance not
only because they are the smallest informational units
induced by a phylogeny, but also because they play a
major role in many reconstruction methods. Among
them, the quartet-based reconstruction is perhaps
the most basic and most studied approach (see e.g.
[5, 6, 12, 13, 22, 23, 25]). The task of the quartet-
based reconstruction is to find a tree over the full
set of species that satisfies most of the given input
quartets. In its full generality this problem is very
difficult as Steel [24] has shown that even deciding if
there is a tree that satisfies all the input quartets is
NP-complete. To aggravate matters, even the ideal
case in which all quartets agree on a single tree is very
rare. Thus a natural problem arises, namely, finding a
tree maximizing the number of compatible quartets
— maximum quartet compatibility (MQC) [21]. As
MQC is obviously NP-hard, several approximation
algorithms have been sugested. However, the best
known approximation to the general problem is still
obtained by a naive “random labelling of the leaves
of a tree” with expected approximation ratio of 1/3.

Related to the problem of compatibility is the
concept of quartet distance [9]. This notion is used to
measure similarity of two different phylogenetic trees
by means of counting how many quartets are compat-
ible to both of them. More specifically, if T1 and T2
are two phylogenetic trees on n leaves, let qd(T1, T2)
denote the difference between

(
n
4

)
and the number of

quartets compatible to both T1 and T2. With this
definition in mind, a natural question emerges: what

is the maximum quartet distance between two phy-
logenetic trees on n leaves? Somewhat surprisingly
the answer is strictly smaller than

(
n
4

)
. Bandelt and

Dress [4] showed that the maximum is always strictly
smaller than 14

15

(
n
4

)
for n ≥ 6. They also conjectured

that the ratio between the maximum quartet distance
and

(
n
4

)
converges to 2

3 as n tends to infinity.

Conjecture 1.1. (Bandelt and Dress) The
maximum quartet distance between two phylogenetic
trees on n leaves is

(
2
3 + o(1)

) (
n
4

)
.

Alon, Snir, and Yuster [1] further improved the
bounds on the maximum quartet distance. Namely,
they proved that the maximum is strictly larger than
2
3

(
n
4

)
for every n but asymptotically smaller than

9
10

(
n
4

)
. The lower bound of 2

3

(
n
4

)
can be again ob-

tained by the same “random labelling of the leaves”
argument, thus Conjecture 1.1 implies that the aver-
age distance between two random trees is asymptot-
ically the same as the maximum distance. We also
remark that the problem of maximizing the quartet-
distance between trees can be rephrased as how much
a compatible set of quartets can be violated, which is
the opposite of MQC.

The main contribution of this paper is the follow-
ing statement, which we obtain using the machinery
of flag algebras developed by Razborov in [18].

Theorem 1.1. The maximum quartet distance be-
tween two phylogenetic trees on n leaves is at most
(0.69 + o(1))

(
n
4

)
.

As further evidence that 2
3

(
n
4

)
is the correct an-

swer, we prove the following statement which estab-
lishes Conjecture 1.1 when restricted to caterpillar
trees. By caterpillar we mean a phylogenetic tree
having at most two vertices which are each adjacent
to two leaves, as in Figure 2.

α

x1 x2 xn. . .

β

Figure 2: A caterpillar with n+ 2 leaves.

Theorem 1.2. The maximum quartet distance be-
tween two phylogenetic caterpillar trees on n leaves
is at most

(
2
3 + o(1)

) (
n
4

)
.

The set of all caterpillar trees is a simple yet
very important subclass of phylogenetic trees. For
instance, the proof of NP-hardness of MQC by
Steel [24] heavily relies on this particular subclass.
Namely, deciding if there exists a tree T that satisfies

all the quartets in a given input set is NP-complete
even if we further assume that T is caterpillar.

In Section 5, we show that the problem of com-
puting the maximum quartet distance between two
caterpillar trees can be essentially reduced to the
problem of computing the density of the following
induced sub-permutations in a permutation π ∈ Sn:

1234, 1243, 2134, 2143, 3412, 4312, 3421, 4321.

The rest of this paper is organized as follows.
In Section 2, we formally define all the relevant
notions in phylogenetics that were briefly mentioned
in this introduction. In Section 3, we provide an
informal explanation of our main tool, flag algebras.
In Section 4, we discuss some of the details of the
proof of Theorem 1.1 and provide a link to the
program establishing the proof. In addition, we give
the proof of Theorem 1.2 in Section 5. Lastly, the
final section contains some concluding remarks and
open problems.

2 Preliminaries
A trivalent tree is a tree in which all internal ver-
tices (the non-leaves) have exactly three neighbors.
Whenever the leaves of such trees are labeled bijec-
tively by a taxa (species) set X of size n, we shall
call them phylogenetic trees. Throughout this paper,
unless stated otherwise, all trees are assumed to be
phylogenetic trees. For a tree T = (V,E), the set of
leaves of T is denoted by L(T).

The removal of an edge e in a phylogenetic tree
splits it into two subtrees, and thus induces a split
among the leaves of the tree. We identify an edge e
by the split (U,L(T) \ U) it generates on the set of
leaves, and denote this split by Ue. As external edges
(the ones adjacent to the leaves) induce trivial splits,
we consider only the ones induced by internal edges.

Let T be a tree and A ⊆ L(T) a subset of
the leaves of T . We denote by T |A, the topological
subtree of T induced by A were all leaves in L(T)\A
and paths leading exclusively to them are removed,
and subsequently internal vertices with degree two
are contracted.

For two trees T and T ′, we say that T satisfies
T ′ (or , equivalently, that T ′ is satisfied by T), if
L(T ′) ⊆ L(T) and T |L(T ′) ' T ′, that is, the subgtree
of T induced by L(T ′) is isomorphic to T ′. Otherwise,
T ′ is violated by T . Let T = {T1, . . . , Tk} be a
set of trees with possibly overlapping leaves, and
denote by L(T) =

⋃
i L(Ti), the union of the set

of leaves of all trees Ti ∈ T . Then for a tree T
with L(T) = L(T), we denote by Ts(T) the set of
trees in T that are satisfied by T . We say that T
is compatible if there exists a tree T ∗ over the set

of leaves L(T) that satisfies every tree Ti ∈ T , i.e.
Ts(T ∗) = T (see Figure 3). We denote by co(T)
the set of trees that satisfy T (up to isomorphisms),
co(T) = {T : Ts(T) = T }.

1

2 3 4

5

1

2 3

4

1

3 4

5

Figure 3: A tree on five leaves and two quartets
compatible with it.

Further, we say that T ∗ is defined by T if co(T) is
the singleton {T ∗}. If there is no such compatible tree
T ∗, we say that T is incompatible (i.e., co(T) = ∅).

A quartet tree (or just a quartet for short), is
a phylogenetic tree over four leaves {a, b, c, d}. We
denote a quartet over {a, b, c, d} as [ab|cd] if there
exists an edge e whose corresponding split Ue satisfies
a, b ∈ U and c, d 6∈ U . Quartets are the most
elementary informational unit in a phylogenetic tree,
as a pair corresponds to a path in a tree and a triplet
to a vertex (the unique vertex in the intersection of
all the pairwise paths connecting the three leaves).
Every phylogenetic tree T with n leaves defines

(
n
4

)
quartets, one for each set of four leaves. Let Q(T)
denote this full quartet set of T . It is well-known
that Q(T) uniquely defines T . In fact Colonius and
Schulze [7] showed that the following proposition
holds.

Proposition 2.1. (Colonius and Schulze) Let
Q be a full quartet set over n species. If every subset
of three quartets (a quartet triplet) is compatible,
then Q is compatible and there exists a unique
tree defined by Q. In fact, if for every five taxa
{a, b, c, d, e} the following holds:

• if {[ae|bc], [ae|cd]} ∩ Q 6= ∅ and [ab|cd] ∈ Q then
[be|cd] ∈ Q,

then Q is compatible.

Lastly, we would like to briefly sketch the “ran-
dom labelling of the leaves” argument. Let T be any
tree with n leaves labeled by a taxa set X . Consider
a random bijection π between X and the leaves of
T . The corresponding labeled tree is denoted by Tπ.
As each of the n! possible bijections is equally likely,
we notice that a quartet [ab|cd] with labels from X is
satisfied by Tπ with probability exactly 1/3. Thus,
by linearity of expectation, we have:

Proposition 2.2. Let Q be an arbitrary set of quar-
tets over a taxa set X of size n, and let Tπ be a ran-
dom bijection between the leaves of a tree T and X .
The expected number of elements in Q satisfied by T
is |Q|/3.

As a consequence, we have the next statement.

Proposition 2.3. Let T1 and T2 be two random
phylogenetic trees over the same taxa set X of size
n, sampled independently and uniformly at random.
The expected value of the quartet distance qd(T1, T2)
is 2

3

(
n
4

)
.

3 Flag algebra calculus
In this section we provide a brief introduction to
the technique of flag algebras. First introduced by
Razborov in [18], it has been applied with great
success to a wide variety of problems in extremal
combinatorics (see, for example, [2, 3, 8, 10, 11, 16,
17, 19, 20] and many others).

We begin with a brief explanation on how to
map the problem of finding the maximum quartet
distance into a problem in extremal combinatorics.
We then proceed with a general overview of the
flag algebra calculus in the second subsection, by
introducing some key definitions and providing some
intuition behind the machinery. The third subsection
will show how we express extremal problems in the
language of flag algebras. It is neither our goal to be
rigorous nor thorough, but rather to emphasize that
the combinatorial arguments behind the flag algebra
calculus are as old as extremal combinatorics itself.
Indeed, the main tools available to us are double-
counting and the Cauchy-Schwarz inequality.

The flag algebra calculus is powerful because it
provides a formalism through which the combinato-
rial problem can be reduced to a semi-definite pro-
gramming (SDP) problem. This in turn enables
the use of computers to find solutions, with rigorous
proofs, to problems in extremal combinatorics. For a
more complete survey of the technique, we refer the
reader to the excellent expositions in [14] and [17],
while for a technical specification of flag algebras, we
suggest the original paper of Razborov [18].

3.1 The model In this section, the main object of
interest is the tree-pair. From two phylogenetic trees
T1 and T2 labelled by the same taxa set, we would
like to create a simple object that “represents” the
pair (T1, T2) in such a way that we can still compute
the quartet distance qd(T1, T2) from it. Note that the
actual set of labels (the taxa set) is irrelevant in the
computation of this distance, so this object shall have
no labels at all. A natural and amenable definition

comes to mind. A tree-pair D is a pair of trivalent
trees D = (T 1, T 2) (i.e., unlabelled phylogenetic
trees) having the same set of leaves but having no
other vertex in common. In that case we write
L(D) := L(T 1) = L(T 2). From two phylogenetic
trees T1 and T2 over the same taxa set, one can
construct a tree-pair D in the following way. We
first identify leaves from T1 and T2 having the same
label and we subsequently remove labels from T1 and
T2 altogether to obtain T 1 and T 2, respectively. We
often represent a tree-pair D = (T 1, T 2) by the graph
T 1 ∪ T 2 which is the union of T 1 and T 2, that is,
V (T 1 ∪ T 2) = V (T 1) ∪ V (T 2) and E(T 1 ∪ T 2) =
E(T 1) ∪ E(T 2), with T 1 positioned “on top” of T 2.
(see Figure 4).

1

2 3 4

5

T1:

1

3 2 5

4

T2:

Figure 4: Two trees over the same taxa set and the
tree-pair formed by their union.

Two tree-pairs D = (T 1, T 2) and D′ = (T
′
1, T

′
2)

are isomorphic if there exists an isomorphism be-
tween the graphs T 1 ∪ T 2 and T

′
1 ∪ T

′
2 that maps

vertices of T i to vertices of T
′
i for i = 1, 2, i.e., it

respects the component trees. To indicate that two
tree-pairs are isomorphic we write D ' D′. For a
tree-pair D = (T ′1, T

′
2) and a subset A ⊆ L(D), we

write D|A to denote the sub-tree-pair induced by A,
that is, D|A := (T ′1|A, T ′2|A). Recall that to obtain
T ′1|A and T ′2|A we keep the smallest subtrees of T ′1
and T ′2 (respectivelly) containing the leaves in A. We
subsequently delete one by one all vertices of degree
two by replacing the corresponding path of length 2
by an edge until all the vertices not in A have degree
3. For two tree-pairs D and D′, if there exists a set
A ⊆ L(D) such that D|A ' D′, then we say that D
contains an induced copy of D′.

There are only 2 non-isomorphic tree-pairs hav-
ing exactly four leaves, namely id4 and cr4 (see Fig-
ure 5).

id4: cr4:

Figure 5: The two non-isomorphic tree-pairs on four
leaves.

A moments thought reveals that the quartet
distance qd(T1, T2) can be computed as follows. Let
D = (T 1, T 2) be the tree-pair obtained by joining
T1 and T2. Then qd(T1, T2) is simply the number
of induced copies of cr4 in D. Hence to prove
Theorem 1.1, it suffices to show that the following
is true.

Theorem 3.1. Let D be any tree-pair on n leaves.
The number of induced copies of cr4 in D is at most
(0.69 + o(1))

(
n
4

)
.

3.2 Definitions and notation in the calculus
The flag algebra calculus is typically used to find the
extremal density of some fixed structure in a given
family of combinatorial objects. In our case (see
Theorem 3.1), it will be used to maximize the density
of cr4 among all tree-pairs of size n, for n sufficiently
large. While the theory of flag algebras is very
general and can be applied to several different types
of problems, we will explain it using only examples
related to our particular setting.

A type σ is a labeled tree-pair using labels from
[k], where k = |L(σ)|. That is, each leaf in L(σ)
is associated with a label from [k], where k is a
nonnegative integer. The size of σ is the integer k,
and is denoted by |σ|. Figure 6 shows some examples
of types.

1dot: 1 2diamond:

1 2 3star:

Figure 6: Examples of types.

In what follows, an isomorphism between tree-
pairs must preserve any labels that are present. Given
a type σ, a σ-flag is a tree-pair F on a partially
labeled set of leaves, such that the sub-tree-pair
induced by the labeled leaves is isomorphic to σ. The
underlying tree-pair of the flag F is the tree-pair F
with all labels removed. The size of a flag is the

number of leaves, that is, |L(F)|. Note that when
σ is the trivial type of size 0 (denoted by σ = 0), a
σ-flag is just a usual unlabeled tree-pair. We shall
write Fσl for the collection of all σ-flags of size l (up
to isomorphism). In Figure 7 we list all flags in Fdot4 .
Let Fσ =

⋃
l≥|σ| Fσl . When the type σ is trivial, we

shall omit the superscript from our notation.

1id14: 1cr14:

Figure 7: Family Fdot4 .

Let us now define two fundamental concepts in
our calculus, namely those of flag densities in larger
flags and tree-pairs. Let σ be a type of size k, let
m ≥ 1 be an integer and let {Fi}mi=1 be a collection
of σ-flags of sizes li = |Fi| ≥ k. Given a σ-flag F of
order at least l = k +

∑m
i=1(li − k), let A ⊆ L(F)

be the set of labeled leaves of F . Now select disjoint
subsets Xi ⊆ L(F)\A of sizes |Xi| = li−k, uniformly
at random. This is possible because F has at least∑
i(li − k) unlabeled leaves. Denote by Ei the event

that the σ-flag induced by A ∪ Xi is isomorphic to
Fi, for i ∈ [m]. We define pσ(F1, F2, . . . , Fm;F) :=
P [∩mi=1Ei] to be the probability that all these events
occur simultaneously.

If D is just a tree-pair of order at least l, and
not a σ-flag, then there is no pre-labeled set of leaves
A that induces the type σ. Instead, we uniformly at
random select a partial labeling L : [k]→ L(D). This
random labeling turns D into a σ′-flag FL, where the
type σ′ is the labeled sub-tree-pair induced by the
set of vertices L([k]). If σ′ = σ, we can then proceed
as above, otherwise we say the events Ei have prob-
ability 0. Finally, we average over all possible ran-
dom labellings. Formally, let Y be the random vari-
able defined by Y = 1[σ′=σ] · pσ(F1, F2, . . . , Fm;FL),
where 1[σ′=σ] is the indicator of the event σ′ = σ.
Define dσ(F1, . . . , Fm;D) = E[Y] as the expected
value of the random variable Y . The quantities
pσ(F1, F2, . . . , Fm;F) and dσ(F1, F2, . . . , Fm;D) are
called flag densities of {Fi}i∈[m] in F and in D, re-
spectively. Clearly these flag densities are the same
whenever σ = 0, in which case we omit the subscript
from both notations.

To better illustrate these definitions, we give
some examples. These flags are shown in Figure 8.

1Z: W :

Figure 8: Example flags.

We turn to compute the flag densities of id14
and cr14 in the flag Z. For example, to compute
pdot(id

1
4;Z), note that to induce a copy of id14 we

must choose exactly 3 other unlabeled leaves which
together with the labeled leaf 1 induce a copy of id14.
There are

(
6
3

)
= 20 ways to make the choice of 3

unlabeled leaves, and out of the 20 exactly 15 induce
a copy of id14, thus pdot(id14;Z) = 3

4 . Similarly we
obtain pdot(cr

1
4;Z) = 1

4 . We can also compute the
joint flag densities of multiple flags. For instance,
let us consider pdot(id

1
4, id

1
4;Z). In this case, we

first choose a set X1 of 3 unlabeled leaves uniformly
at random and we subsequently choose a set X2 of
3 other unlabeled leaves also uniformly at random.
Since the choice of X2 is uniquely determined given
the choice ofX1, there are exactly

(
6
3

)
possible choices

for the pair (X1, X2). Out of these 20 choices,
one can count that exactly 10 of them will be such
that both X1 and X2 will induce a copy of id14
when we add the labeled leaf. The order matters
here: when computing p(F1, F2;F), the set X1 must
induce a copy of F1 while X2 must induce a copy
of F2. Thus pdot(id14, id14;Z) = 1

2 . Similarly, we
have pdot(id

1
4, cr

1
4;Z) = pdot(cr

1
4, id

1
4;Z) = 1

4 and
pdot(cr

1
4, cr

1
4;Z) = 0.

The computation of flag densities ddot for unla-
beled tree-pairs is a little more involved. To see how
to compute it, we consider W depicted in Figure 8 as
an example. There are two non-isomorphic dot-flags
whose underlying tree-pair isW , namelyW 1

1 andW 1
2

as shown in Figure 9.

1W 1
1 : 1W 1

2 :

Figure 9: dot-flags for W .

If we randomly label a leaf from W , then with
probability 2

3 it will becomeW 1
1 and with probability

1
3 it will becomeW 1

2 . Moreover, since p(id14;W 1
1) =

4
5

and pdot(id
1
4;W

1
2) = 3

5 , we have ddot(id
1
4;W) =

2
3pdot(id

1
4;W

1
1) +

1
3pdot(id

1
4;W

1
2) = 11

15 . Similarly we
have pdot(cr14;W 1

1) =
1
5 and pdot(cr14;W 1

2) =
2
5 , hence

ddot(cr
1
4;W) = 4

15 .
The reader might notice that there is an alter-

native way to compute, say, ddot(cr14;W): we simply
compute the product of ddot(cr14; cr4) · p(cr4;W) =

1 · 4
15 = 4

15 . In general, suppose as before that we
have a type σ of size k, a σ-flag F of size l ≥ k,
and an unlabeled tree-pair D. To compute dσ(F ;D),
we averaged over all random partial labelings of D
the probability of finding a flag isomorphic to F . A
simple double-counting argument shows that we can
do the “averaging” before the random labeling, which
is the idea behind Razborov’s averaging operator, as
defined in Section 2.2 of [18]. Let F |0 denote the
unlabeled underlying model of F . We can compute
dσ(F ;D) by first computing d(F |0;D), the probabil-
ity that l randomly chosen vertices in D form an in-
duced copy of F |0 as a sub-model. Given this copy
of F |0, we then randomly label k of the l vertices,
and compute the probability that these k vertices
are label-isomorphic to σ. This amounts to multi-
plying d(F |0;D) by a normalizing factor qσ(F), that
is, dσ(F ;D) = qσ(F)d(F |0;D) = qσ(F)p(F |0;D).
We can interpret the normalizing factor as qσ(F) =
dσ(F ;F |0).

There are more relations involving dσ and pσ
than the one mentioned previously. We will now
state, without proof, a basic fact about flag densities
that can be proved easily by double-counting.

Proposition 3.1. (Chain rule) If σ is a type of
size k, m ≥ 1 is an integer, and {Fi}mi=1 is a family
of σ-flags of sizes |Fi| = li, and l ≥ k +

∑m
i=1(li − k)

is an integer parameter, then

1. For any σ-flag F of order at least l, we have
pσ(F1, . . . , Fm;F) equals to

∑
F ′∈Fσl

pσ(F1, . . . , Fm;F ′)pσ(F
′;F).

2. For any tree-pair D of size at least l, we have
dσ(F1, . . . , Fm;D) equals to

∑
H∈Fl

dσ(F1, . . . , Fm;H)d(H;D),

which is also equal to

∑
F∈Fσl

pσ(F1, . . . , Fm;F)dσ(F ;D).

To illustrate the chain rule for m = 1 and
σ = 0, we consider the “expansion” of id4 in F5 (see
Figure 10).

id5: crA5 :

crB5 : crC5 :

Figure 10: Family F5.

The chain rule gives

p(id4;F) = p(id4; id5)p(id5;F)

+ p(id4; cr
A
5)p(cr

A
5 ;F)

+ p(id4; cr
B
5)p(crB5 ;F)

+ p(id5; cr
C
5)p(cr

C
5 ;F)

= p(id5;F) +
3

5
p(crA5 ;F) +

1

5
p(crB5 ;F).

Similarly, we can expand p(cr4;F) =
2
5p(cr

A
5 ;F) + 4

5p(cr
B
5 ;F) + p(crC5 ;F). For the

ease of notation, we can express these two identities
using the syntax of flag algebras:

id4 = id5 +
3

5
crA5 +

1

5
crB5

cr4 =
2

5
crA5 +

4

5
crB5 + crC5 .

In this syntax, the equation
∑
i∈I αiFi = 0 means

that for all sufficiently large σ-flags F , we have∑
i∈I αipσ(Fi;F) = 0, where αi ∈ R for all i ∈ I.

We use Aσ to denote the set of linear combinations
of flags of type σ. It is convenient to define a product
of flags in the following way:

F1 · F2 :=
∑
F∈Fσl

pσ(F1, F2;F)F,

where F1 ∈ Fσ, F2 ∈ Fσ, l ≥ |F1|+ |F2| − |σ|. (Note
that because of the chain rule, it does not matter
which l we choose.)

To further simplify the notation, we can extend
the definitions of pσ and dσ to Aσ by making them
linear in each coordinate. The product notation
simplifies these extended definitions, because pσ(f1 ·
f2; f) = pσ(f1, f2; f) and dσ(f1 ·f2; g) = dσ(f1, f2; g),
for any f1, f2, f ∈ Aσ and for any g ∈ A0.

The last piece of notation we introduce is that
of the averaging operator. Recall that for any σ-
flag F , we had the normalizing factors qσ(F) such
that dσ(F ;G) = qσ(F)p(F |0;G). In the syntax of
flag algebra, this averaging operation is denoted by
[[F]]σ := qσ(F) · F |0. We extend this linearly to all
elements of Aσ. For example

[[id14]]dot = id4, [[cr14]]dot = cr4,

[[id14 + cr14]]dot = id4 + cr4, and [[W 1
1]]dot =

2

3
W.

This notation is useful, because dσ(f ; g) = p([[f]]σ; g)
for any f ∈ Aσ and for any g ∈ A0, and hence we have
a unified notation for both types of flag densities.

3.3 Extremal problems in the flag algebra
calculus Recall that our optimization problem is
to maximize the density of cr4 amongst all possible
tree-pairs. We will show how flag algebras can be
applied to this problem to reduce it to a semi-definite
programming (SDP) problem, which can then be
solved numerically.

We may use the chain rule to obtain d(cr4;D) =∑
H∈Ft d(cr4;H)d(H;D) for t ≥ 4. Since∑
H∈Ft d(H;D) = 1, we have d(cr4;D) ≤

maxH∈Ft d(cr4;H), which is a bound that clearly
does not depend on D. For instance, when we choose
t = 6 we already obtain d(cr4;D) ≤ 14

15 .
Inequalities obtained this way are often very

weak, since we only use very local considerations
about the sub-tree-pairs H ∈ Ft, and we do not take
into account how the tree-pairs fit together in the
larger tree-pair D; that is, how they intersect.

One might hope to find inequalities of the form∑
H∈Ft αHd(H;D) ≥ 0, such that when we combine

them with the initial identity, we get

d(cr4;D) ≤ d(cr4;D) +
∑
H∈Ft

αHd(H;D)

=
∑
H∈Ft

(d(cr4;H) + αH)d(H;D)

≤ max
H∈Ft

{d(cr4;H) + αH}.

Since αH can be negative for some models H, the
hope is that this will improve the low coefficients by
transferring weight from high coefficients. In order
to find such inequalities, we need another property of
the flag densities.

Proposition 3.2. If σ is a fixed type of size k,
m ≥ 1 is an integer, {Fi}mi=1 is a fixed family of σ-
flags of sizes |Fi| = li, and l ≥ k+

∑m
i=1(li−k) is an

integer, then for any flag F of order n ≥ l, we have

pσ(F1, . . . , Fm;F) =

[
m∏
i=1

pσ(Fi;F)

]
+O(1/n),

where the constant in the big-O notation might depend
on the family {Fi}mi=1.

One can prove Proposition 3.2 by noting that, if
we drop the requirement that the sets Xi are disjoint
in the definition of pσ(F1, . . . , Fm;F), the events

Ei will become independent, and thus P [∩mi=1Ei] =∏m
i=1 P[Ei] =

∏m
i=1 pσ(Fi;F). The error introduced

is the probability that these sets Xi will intersect in
F , which is O(1/n). It is tempting to claim a similar
product formula for the unlabeled flag densities dσ,
but we cannot do so. In the above equation, it is
essential that all the σ-flags Fi share the same labeled
type σ, and hence we require F to be a σ-flag.

We are now ready to establish some inequalities.
Let’s first fix a type σ of size k. If Q is any
positive semi-definite |Fσl | × |Fσl | matrix with rows
and columns indexed by the same set Fσl , where
l ≥ k, define the “quadratic form” on flags by
Q{Fσl } :=

∑
F1,F2∈Fσl

QF1,F2
F1 · F2. Note that

Q{Fσl } ∈ Aσ. Proposition 3.2 yields that, for a σ-
flag F of sufficiently large size, pσ(Q{Fσl };F) can be
approximated as

(3.1)
∑

F1,F2∈Fσl

QF1,F2
pσ(F1;F)pσ(F2;F).

Note that because Q is positive semi-definite, the
summation in (3.1) is always non-negative. Even
after averaging we obtain:

[[Q]]σ(D) := p([[Q{Fσl }]]σ;D)

=
∑

F1,F2∈Fσl

QF1,F2dσ(F1, F2;D)

=
∑

F1,F2∈Fσl

QF1,F2
·

 ∑
F∈Fσt

pσ(F1, F2;F)dσ(F ;D)

= O(1/n) +

∑
F∈Fσt

[
dσ(F ;D)·

·

 ∑
F1,F2∈Fσl

QF1,F2
pσ(F1;F)pσ(F2;F)

]
≥ on→∞(1),

where n is the size of the tree-pairD and 2l−|σ| ≤ t ≤
n is some fixed integer. Therefore, when n is large, we
have that [[Q]]σ(D) is asymptotically non-negative.
For each admissible model H of size exactly t, let
αH = [[Q]]σ(H) =

∑
F1,F2∈Fσt

QF1,F2dσ(F1, F2;H).
We then have

[[Q]]σ(D) =
∑
H∈Ft

αHd(H;D) ≥ on→∞(1).

The expression in the middle of the above equation
is called the expansion of [[Q]]σ(D) in tree-pairs of
size t, with αH the coefficients of the expansion. For
the sake of conciseness, we often omit the parameter
D and express this asymptotic inequality (combined

with the expansion in size t) in the syntax of flag
algebras

(3.2)

[[Qσ]] := [[Q{Fσl }]]σ
=

[[∑
F1,F2∈Fσl

QF1,F2
F1 · F2

]]
σ

=
∑
H∈Ft αHH ≥ 0.

(Note that all inequalities between flags stated in the
language of flag algebras are asymptotic.)

In general, if we have more than one inequality
available, we can combine them together, provided
they are all expanded in the same size t. Suppose we
have r inequalities given by the positive semi-definite
matrices Qi of the σi-flags of size li. Adding them
together, we obtain

∑r
i=1[[Qi]]σi =

∑
H∈Ft αHH ≥

0, where

αH =

r∑
i=1

 ∑
F1,F2∈F

σi
li

(Qi)F1,F2
dσi(F1, F2;H)

 ,

and we want to minimizemaxH∈Ft {d(cr4;H) + αH}.
Thus we have transformed the original problem

of finding a minimum upper bound for d(cr4;G) into
a linear system involving the variables (Qi)Fk,Fl . As
we have the constraint that the matrices Qi should
be positive semi-definite, this is a semi-definite pro-
gramming problem. To take the maximum coefficient
in the expansion, we introduce an artificial variable
y, and require it to be bounded below by all the co-
efficients. Hence we have the following SDP problem
in the variables y and (Qi)F1,F2

:
Minimize y, subject to the constraints:

• We have sH ≥ 0 for all H ∈ Ft, where
(3.3)

sH := y − d(cr4;H)

−
r∑
i=1

 ∑
F1,F2∈F

σi
li

(Qi)F1,F2
dσi(F1, F2;H)

 .

The variables sH are called surplus variables.

• Qi is positive semi-definite for i ∈ [r]. (The
matrices Qi are often called the block variables
of the SDP problem. We can assume without
loss of generality that each Qi is symmetric, as
otherwise we could replace Qi by (Qi +QTi)/2.)

A computer can solve this SDP problem numer-
ically, allowing for an efficient determination of the
inequalities required to prove the extremal problem.
We note at this point, that the solution to the SDP
problem need not only give the asymptotic bound,
but can also provide some structural information
about the extremal tree-pair.

4 Bounds on the SDP problem
In this section we discuss how we obtained the bounds
for the main theorem and some other practical con-
siderations relative to the main SDP problem. For a
square matrix A, let tr(A) denote its trace. The orig-
inal formulation of the SDP problem can be rewritten
in concise matrix notation as follows:
(4.4)

minimize tr(C ·Q)
subject to tr(Aj ·Q) = bj , for j = 1, . . . ,m,

and Q � 0

where m = |Ft| represents the number of constraints
in the problem, C is the cost matrix (we have tr(C ·
X) = y, where y is as in Section 3.3, see e.g., (3.3)),
Q � 0 is positive semi-definite matrix consisting of
all the block-variable matrices Qi, and each equation
tr(Aj · Q) = bj corresponds to one of the equations
(3.3) from the original formulation. In particular,
if Ft = {H1, . . . ,Hm}, we have bj = d(cr4;Hj).
Finally, we let ` denote the number of rows/columns
of Q.

A computer usually cannot solve (4.4) exactly,
but only approximately. In other words, the output
of the SDP solver will be a matrix Q′ that satisfies
the constraints approximately. Namely, we have
(4.5)∣∣tr(Aj ·Q′)− bj∣∣ ≤ ε, for j = 1, . . .m, and

Q′ + εI` � 0,

for some small ε > 0 (usually ε < 10−9), where I`
denotes the ` × ` identity matrix. In what follows
we describe how to obtain a matrix Q that satisfies
all the constraints of (4.4) and is not “too far” from
the approximate solution Q′. That way tr(C · Q) ≈
tr(C ·Q′).

A natural first step towards this goal is to slightly
change Q′ so that it satisfies all the linear constraints
in (4.4). For that purpose, we will project Q′ to the
affine subspace of all ` × ` symmetric real matrices
Q that satisfy tr(Aj · Q) = bj for all j = 1, . . . ,m.
Let Q′′ denote this projection. How much did we
change the approximate solution? Namely, how large
is ||Q′ − Q′′||∞? We recall that for a matrix A, we
denote ||A||∞ := maxij |Aij | and ||A||1 :=

∑
ij |Aij |.

To estimate ||Q′ − Q′′||∞ we often use some
inequalities from the following proposition.

Proposition 4.1. The following statements are
true:

(i) If A ∈ Rm×n and B ∈ Rn×l are two real
matrices, then ||A ·B||∞ ≤ n · ||A||∞ · ||B||∞.

(ii) If A ∈ Rm×n and v ∈ Rn, then ||A · v||∞ ≤
||A||∞ · ||v||1.

(iii) Let A ∈ Rn×n be any n × n symmetric matrix.
Then A+n · ||A||∞ · In is positive semi-definite.

Proof. (i) Let C = A · B. We have Cij =∑n
k=1AikBkj , thus

|Cij | ≤
n∑
k=1

|Aik||Bkj | ≤
n∑
k=1

||A||∞||B||∞

= n · ||A||∞ · ||B||∞,

hence ||C||∞ ≤ n · ||A||∞ · ||B||∞.

(ii) Let w = A · v. We have wi =
∑n
j=1Aijvj , thus

|wi| ≤
n∑
j=1

|Aij ||vj | ≤
n∑
j=1

||A||∞|vj |

= ||A||∞ · ||v||1,

therefore ||w||∞ ≤ ||A||∞ · ||v||1.

(iii) Let B = A + n · ||A||∞ · In. It suffices to show
that for all v ∈ Rn, we have vT · B · v ≥ 0. Let
a = vT · A · v. Using the definition of B, we
obtain

b := vT ·B · v = vT ·A · v + n · ||A||∞ · ||v||22
= a+ n · ||A||∞ · ||v||22.

By (ii) applied twice, we infer

|a| = ||vT ·A · v||∞ ≤ ||vT ||1 · ||A · v||∞
≤ ||A||∞ · ||v||21

So by Cauchy-Schwarz inequality, we obtain
|a| ≤ ||A||∞ · ||v||21 ≤ n · ||A||∞ · ||v||22, therefore
b ≥ 0, finishing the proof.

In what follows, we introduce further notation in
order to expressQ′′ in terms ofQ′ and the parameters
of the problem (4.4). Let S be the linear space of all
`× ` real symmetric matrices, and let A be the linear
map A : S → Rm defined by A(Q)j = tr(Aj · Q).
In addition, let b ∈ Rm be vector with coordinates bj
for j = 1, . . . ,m, and let H be the affine subspace of
all ` × ` real symmetric matrices Q that satisfy the
linear constraints of (4.4), namely tr(Aj ·Q) = bj for
j = 1, . . . ,m. Note that H is the pre-image of b by
A. Let P be the orthogonal projection from the set
S to the affine subspace H. One can compute this
projection by a solution to a least squares problem as
follows:

P(Q) = Q+AT · (A ·AT)−1(b−A(Q)),

for all Q ∈ S, where AT : Rm → S denotes the
transpose of A. We have Q′′ = P(Q′), thus by
Proposition 4.1 (i), we have

||Q′′ −Q′||∞ ≤ m · ||AT · (A ·AT)−1||∞
· ||b−A(Q′)||∞

≤ εm · ||AT · (A ·AT)−1||∞.

For all the instances of (4.4) that we consider, one
can verify that ||AT · (A · AT)−1||∞ ≤ 1, thus
ε′ := ||Q′′ − Q′||∞ < εm. This inequality together
with Proposition 4.1 (ii) implies that

tr(C ·Q′′) = tr(C ·Q′) + tr(C · (Q′′ −Q′))
≤ tr(C ·Q′) + εm · ||C||1.

We know that Q′′ satisfies all the linear con-
straints of (4.4), but Q′′ might not be positive semi-
definite. An application of Proposition 4.1 (iii) yields
that

(Q′′ −Q′) + ` · ||Q′′ −Q′||∞ · I` � 0,

which, together with the inequality Q′+εI` � 0 from
(4.5), implies that Q′′ + (ε + `ε′) · I` � 0. To make
Q′′ positive semi-definite, we hope to find a matrix
Q̃ that satisfies tr(Aj · Q̃) = 0 for j = 1, . . . ,m and
such that all the eigenvalues of Q̃ are large. If such
Q̃ exists then Q′′ + δQ̃ will be positive semi-definite
for some small δ > 0 and will also satisfy the linear
constraints in (4.4). For this reason, we consider the
following problem:

(4.6)
minimize tr(0 · Q̃)

subject to tr(Aj · Q̃) = 0, for all j = 1, . . . ,m,

and Q̃ � 0,

where Q̃ � 0 is strictly positive-definite.
Note that the function being minimized is the

constant zero function, so (4.6) is a pure feasibility
problem. We again use computers to obtain an
approximate solution Q̃′ to (4.6). Surprisingly, it
turns out that the obtained solution Q̃′ not only
satisfies

∣∣tr(Aj · Q̃′)| < ε for all j = 1, . . . ,m, but
also has a large smallest eigenvalue (much larger than
ε + `ε′), even though |tr(C · Q̃′)| is relatively small.
We will later exploit these properties to adjust Q′′ to
an exact solution of (4.4).

Using similar ideas as before, we obtain a matrix
Q̃′′ that satisfies tr(Aj · Q̃′′) = 0 for all j = 1, . . . ,m

by means of orthogonal projection of Q̃′ to the
appropriate subspace. As we have already seen, this
operation only slightly changes the eigenvalues of Q̃′.

Finally we let Q := Q′′ + δQ̃′′, where δ = ε+`ε′

λ

and λ is the smallest eigenvalue of Q̃′′ (in all of our
instances we have δ < 10−4). Clearly Q satisfy all
the constraints of (4.4), including Q � 0. Moreover,
we have

tr(C ·Q) = tr(C ·Q′′) + δ · tr(C · Q̃′′)
≤ tr(C ·Q′) + εm · ||C||1 + δ · tr(C · Q̃′′),

and since both εm and δ are typically small, we
will not change the objective value much from the
original approximate solution Q′ to the exact solution
Q. Therefore Q is the desired exact solution which is
“close” to Q′.

In what follows we have a compiled table display-
ing the several bounds obtained for different instances
of the SDP problem. he first column represents the
parameter t, which is the size of the tree-pairs used
in the expansion of the problem (see Section 3.3 for
more details). The second column counts the number
of tree-pairs of size t. The third column indicates how
many types where used, that is, the types σ for the
inequalities of the form (3.2). The used types are all
those having size with the same parity as and strictly
smaller than t. The fourth column contains the to-
tal number of variables in the SDP instance including
the surpluses. Finally, the last column tells the bound
obtained from the SDP solver. The program used to
generate the SDP instances and verify these calcu-
lations can be downloaded at http://www.ima.umn.
edu/~hnaves/papers/quartet.zip.

t m = |Ft| # of types ` Bound
5 4 1 50 0.884766
6 31 3 697 0.760257
7 243 6 12050 0.707633
8 3532 35 506171 0.688397

Table 1: Several instances of the main SDP problem.

5 On caterpillar trees
In this section, we prove Theorem 1.2 — a restricted
version of Conjecture 1.1 to caterpillar trees. One
possible approach to this problem is to use the same
machinery of flag algebras for the theory of tree-pairs
restricted to caterpillar trees, and try to obtain a
bound in the same way as we did for Theorem 1.1.
However, this approach does not immediately yield
the bound of 2

3 , and so it is necessary (and worth-
while) to think about this problem from a different
perspective. In the next few paragraphs we will ex-
plain how to map the problem of computing the in-
duced density of cr4 in a tree-pair of caterpillar trees

into a problem of counting induced sub-permutations
of size 4.

SupposeD = {T 1, T 2} is a tree-pair composed by
two caterpillar trees on n + 2 leaves (as exemplified
in Figure 2). One can think of D as a permutation
of {α, x1, . . . , xn, β} — a permutation that tells us
exactly how the leaves of T1 are “attached” to the
leaves of T2. For instance, the tree-pair crA5 in
Figure 10 could be represented by the permutation
α → α, x1 → x1, x2 → x3, x3 → x2, β → β. In
fact, multiple permutations might give rise to the
same tree-pair. Regarding this matter, our first
observation is that any caterpillar tree on four or
more leaves has exactly 8 distinct automorphisms.
To illustrate this observation, consider the caterpillar
tree on n + 2 leaves labelled by α, x1, . . . , xn, β as
depicted in Figure 11. One of the automorphisms of
this tree is σ1, which is the unique automorphism that
maps α to β and β back to α, such as in a “reflection”.
Similarly, σ2 is the automorphism that only swaps
α with x1 and leaves all the remaining vertices in
place. Finally, σ3 is the automorphism that swaps β
and xn. The group of automorphisms can be then
written as {σi11 σ

i2
2 σ

i3
3 : 0 ≤ i1, i2, i3 ≤ 1}. Our

second observation is that given a permutation π, and
two automorphisms σ, σ′ of the caterpillar tree with
leaves labelled {α, x1, . . . , xn, β}, the permutation
σπσ′ represents the same tree-pair as π itself. Here
we think of σ and σ′ as only acting solely on the leaves
of the caterpillar trees.

α

x1 x2 xn. . .

β

σ2 σ3

σ1

Figure 11: The automorphisms of a caterpillar tree.

Given a permutation π of L := {α, x1, . . . , xn, β},
how do we count the number of induced copies of cr4
in the corresponding tree-pair D represented by π?
Suppose S ⊆ L is a subset of size 4 such that α, β 6∈ S
and α, β 6∈ π(S), say S = {xi1 , xi2 , xi3 , xi4} with
π(xit) = xjt for t = 1, . . . , 4 and i1 < i2 < i3 < i4.
Here it is helpful to think of S as a subset of the leaves
of T1 before the identification with the leaves of T2.
The corresponding leaves selected by S will induce a
copy of id4 in D if either max{j1, j2} < min{j3, j4},
or max{j3, j4} < min{j1, j2}. Otherwise S induces a
copy of cr4. Since there are only O(n3) subsets S that
do not satisfy the condition {α, β} ∩ (S ∪ π(S)) = ∅,
the problem of computing the density of id4 in D
essentially becomes the problem of computing the

http://www.ima.umn.edu/~hnaves/papers/quartet.zip
http://www.ima.umn.edu/~hnaves/papers/quartet.zip

density of the following induced sub-permutations in
a permutation π ∈ Sn:

(5.7) 1234, 1243, 2134, 2143, 3412, 4312, 3421, 4321.

The machinery of flag algebras is very general
and thus can also be applied to the theory of permu-
tations. In fact, we have the following theorem which
implies Theorem 1.2.

Theorem 5.1. The sum of the densities of the per-
mutations listed in (5.7) inside a permutation π ∈ Sn
is at least 1

3 + o(1) for n large.

Proof. Using the notation from flag algebras, let φ
denote the sum of the densities of the permutations
in (5.7), that is,

φ = 1234 + 1243 + 2134 + 2143

+ 3412 + 4312 + 3421 + 4321.

In this notation, a flag is just a permutation with
some entries labeled by the set [k] for some k ≥ 0. For
instance 1 6 242 3 15 denotes a flag whose underlying
permutation is 164235 for which the fifth entry is
labeled 1 and the second entry is labeled 2. In
this case, the type of the flag is 2 2 1 1, since the
sub-permutation induced by the labeled entries is
isomorphic to 21 (corresponding to the entries 63).
Another example is the flag 5 317 2 13 6 24 — its
underlying permutation is 5172364 and its type is
2 3 1 1 3 2. With this definitions in mind, we remark
that a type is just a permutation of [k] with all entries
labeled by elements of the set [k]. Thus, for an
integer k ≥ 0, types on k entries are in one-to-one
correspondence with pairs of permutations of [k].

Consider the following 4 types of size 2

ρ1 = 1 1 2 2, ρ2 = 2 1 1 2,
ρ3 = 1 2 2 1, ρ4 = 2 2 1 1.

We have

(5.8) φ =
1

3
+

4∑
i=1

3·[[(Xi−Yi)2]]ρi+6·[[(Xi−Zi)2]]ρi

where

X1 = −1 2 1 3 24− 1 2 1 4 23 + 4 2 1 3 21 + 3 2 1 4 21,

Y1 = +1 2 13 4 2 + 1 2 14 3 2 − 4 2 11 3 2 − 3 2 11 4 2,

Z1 = + 2 11 3 24 + 2 11 4 23− 2 14 3 21− 2 13 4 21,

X2 = −4 3 1 2 21− 4 3 1 1 22 + 1 3 1 2 24 + 2 3 1 1 24,

Y2 = +4 3 12 1 2 + 4 3 11 2 2 − 1 3 14 2 2 − 2 3 14 1 2,

Z2 = + 3 14 2 21 + 3 14 1 22− 3 11 2 24− 3 12 1 24,

X3 = −1 2 2 3 14− 2 1 2 3 14 + 4 2 2 3 11 + 4 1 2 3 12,

Y3 = + 1 22 3 14 + 2 21 3 14− 2 24 3 11− 1 24 3 12,

Z3 = +1 2 24 3 1 + 2 1 24 3 1 − 4 2 21 3 1 − 4 1 22 3 1,

X4 = −4 3 2 2 11− 3 4 2 2 11 + 1 3 2 2 14 + 1 4 2 2 13,

Y4 = + 4 23 2 11 + 3 24 2 11− 3 21 2 14− 4 21 2 13,

Z4 = +4 3 21 2 1 + 3 4 21 2 1 − 1 3 24 2 1 − 1 4 23 2 1,

therefore φ ≥ 1
3 , thereby proving the theorem. Note

that in order to attest the correctness of (5.8), it
suffices to evaluate the left- and the right-hand side
of the equation for all permutations of size 6.

6 Concluding remarks
In Theorem 1.1 we showed that the maximum quartet
distance between two arbitrary phylogenetic trees on
n leaves is at most (0.69 + o(1))

(
n
4

)
. It would be

interesting to know if the techniques of this paper
can be pushed even further to obtain the (23+o(1))

(
n
4

)
thereby establishing Conjecture 1.1.

Another approach to Conjecture 1.1 is to solve
an extremal problem in the theory of 4-uniform
hypergraphs. In [1], Alon et al proved the asymptotic
upper bound of 9

10

(
n
4

)
by mapping a tree-pair into

a 4-uniform hypergraph in the following way. The
vertices of the hypergraph are the leaves of the
tree-pair and a subset S of 4 leaves is an edge of
the hypergraph if the sub-tree-pair induced by S is
isomorphic to cr4. They showed that the resulting
hypergraph H does not contain a copy of K4

6 — the
complete 4-uniform hypergraph on 6 vertices. One
remark is that not only K4

6 but also several other
forbidden hypergraphs do not appear as induced
subgraphs of H. A natural question emerges: can
one characterize this family of forbidden subgraphs?
In particular, is it finite?

Acknowledgement We thank Sagi Snir and
Raphy Yuster for helpful discussions.

References

[1] N. Alon, S. Snir, and R. Yuster, On the compatibil-
ity of quartet trees, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA (2014), 535–545.

[2] R. Baber, and J. Talbot, Hypergraphs do jump,
Combinatorics, Probability and Computing 20 2
(2011), 161–171.

[3] J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Ud-
vari, and J. Volec, Minimum Number of Monotone
Subsequences of Length 4 in Permutations, Combi-
natorics, Probability and Computing, to appear.

[4] H. Bandelt, and A. Dress, Reconstructing the shape
of a tree from observed dissimilarity data, Advances
in Applied Mathematics 7 (1986), 309–343.

[5] V. Berry, and O. Gascuel, Inferring evolutionary
trees with strong combinatorial evidence, Theoreti-
cal Computer Science 240 (2001), 271–298.

[6] V. Berry, T. Jiang, P. Kearney, M. Li, and T. Ware-
ham, Quartet cleaning: improved algorithms and
simulations, European Symposium on Algorithms
(1999).

[7] H. Colonius, and H. Schulze, Tree structures for
proximity data, British Journal of Mathematical
and Statistical Psycology 34(2) (1981), 167–180.

[8] S. Das, H. Huang, J. Ma, H. Naves, and B. Sudakov,
A problem of Erdős on the minimum number of k-
cliques, Journal of Combinatorial Theory Series B
103 (2013), 344–373.

[9] G. Estabrook, F. McMorris, and C. Meacham, Com-
parison of undirected phylogenetic trees based on sub-
trees of four evolutionary units, Systematic Biology
34(2) (1985), 193–200.

[10] R. Glebov, D. Král, J. Volec, An application of flag
algebras to a problem of Erdős and Sós, Electronic
Notes in Discrete Mathematics 43 (2013), 171–177.

[11] H. Hatami, J. Hladký, D. Král’, S. Norine, and
A. Razborov, On the number of pentagons in
triangle-free graphs, Journal of Combinatorial The-
ory Series A 120 (2013), 722–732.

[12] T. Jiang, P. Kearney, and M. Li, Orchestrat-
ing quartets: approximation and data correlation,
IEEE Symposium Foundation of Computer Sci-
ence (FOCS), pages 416–425, Palo Alto, California,
November 1998.

[13] K. St. John, T. Warnow, B. Moret, and L. Vawter,
Performance study of phylogenetic methods: (un-
weighted quartet methods and neighbor-joining , Pro-
ceedings of the Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (2001).

[14] P. Keevash, Hypergraph Turán Problems, Surveys
in combinatorics, Cambridge (2011).

[15] D. R. Maddison, and K.-S. Schulz (eds.) 2007. The
Tree of Life Web Project . Internet address: http:
//tolweb.org.

[16] O. Pikhurko, and E. R. Vaughan, Minimum Number
of k-Cliques in Graphs with Bounded Independence

Number , Combinatorics Probability and Comput-
ing 22 (2013), 910–934.

[17] V. Falgas-Ravry, and E. R. Vaughan, Applications
of the semi-definite method to the Turán density
problem for 3-graphs, Combinatorics Probability
and Computing 22 (2013), 21–54.

[18] A. Razborov, Flag algebras, Journal of Symbolic
Logic 72(4) (2007), 1239–1282.

[19] A. Razborov, On 3-hypergraphs with forbidden 4-
vertex configurations, SIAM Journal of Discrete
Mathematics 24 (2010), 946–963.

[20] A. Razborov, On the minimum density of triangles
in graphs, Combinatorics Probability and Comput-
ing 17(4) (2008), 603–618.

[21] C. Semple, and M. A. Steel, Phylogenetics,
Oxford University Press (2003).

[22] S. Snir, and S. Rao, Quartets maxcut: A divide
and conquer quartets algorithm, Transactions on
Computational Biology and Bioinformatics (TCBB)
7(4) (2010), 714–718.

[23] S. Snir, and R. Yuster, Reconstructing approximate
phylogenetic trees from quartet samples, SIAM
Journal on Computing 41(6) (2012), 1466–1480.

[24] M. Steel, The complexity of reconstructing trees
from qualitative characters and subtrees, Journal
of Classification 9(1) (1992), 91–116.

[25] K. Strimmer, and A. von Haeseler, Quartet puz-
zling: A quartet maximum-likelihood method for
reconstructing tree topologies, Molecular Biology
and Evolution 13(7) (1996), 964–969. Software
available at ftp://ftp.ebi.ac.uk/pub/software/
unix/puzzle/.

http://tolweb.org
http://tolweb.org
ftp://ftp.ebi.ac.uk/pub/software/unix/puzzle/
ftp://ftp.ebi.ac.uk/pub/software/unix/puzzle/

	Introduction
	Preliminaries
	Flag algebra calculus
	The model
	Definitions and notation in the calculus
	Extremal problems in the flag algebra calculus

	Bounds on the SDP problem
	On caterpillar trees
	Concluding remarks

