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Abstract

A sequence of subsets F1, F2, . . . , Fm of a finite set X satisfies the Running Intersection

Property (RIP ) if for every k > 1 the intersection of Fk with the union of all previous Fj is

contained in one of these previous subsets. A family of subsets F of X satisfies RIP ∗ if there is an

ordering of its members that satisfies RIP .

A sequence of subsets F1, F2, . . . , Fm of a finite set X is expansive if for every k > 1, the

cardinality of the intersection of Fk with the union of all previous sets is at least as large as the

cardinality of the intersection of any subset that appears after Fk with this union. In this note we

prove that if a family of subsets of a finite set satisfies RIP ∗, then any expansive ordering of its

members satisfies RIP . This settles a question of Spiegler.

1 The main result

A sequence of subsets F1, F2, . . . , Fm of a finite set X satisfies the Running Intersection Property

(RIP ) if for every k > 1 the intersection of Fk with the union of all previous Fj is contained in one of

these previous subsets, that is,

For every k > 1 there is an i < k so that Fk ∩ (∪j<kFj) ⊂ Fi. (1)

A family of subsets F of X satisfies RIP ∗ if there is an ordering of its members that satisfies RIP .

For more on the Running Intersection Property see, e.g., [1], [2] and the references therein.

A sequence of subsets F1, F2, . . . , Fm of a finite set X is expansive if for every k > 1, the cardinality

of the intersection of Fk with the union of all previous sets is at least as large as the cardinality of the

intersection of any subset that appears after Fk with this union, that is,

For every k > 1, |Fk ∩ (∪j<kFj)| ≥ |Fi ∩ (∪j<kFj)| for all i > k. (2)

R. Spiegler [3] conjectured that if a family of subsets satisfies RIP ∗, then any expansive ordering

of its members satisfies RIP . This is proved in the following theorem.
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Theorem 1.1 Let F be a family of subsets of a finite set X. If F satisfies RIP ∗, then any expansive

ordering of its members satisfies RIP .

Note that the above theorem supplies a simple efficient algorithm for checking if a given family F
satisfies RIP ∗: we simply produce an expansive ordering of it and check if it satisfies (1).

2 The proof

A family of subsets F = {F1, F2, . . . , Fm} of a finite set satisfies the Tree Decomposition Property

(TDP ) if there is a tree T on the set of vertices F so that for any Fi, Fj , Fk ∈ F where Fi is on the

unique path in T from Fk to Fj , Fk ∩ Fj ⊂ Fi. If this is the case we say that T , with an arbitrary

vertex of it designated as a root, is a realization for F . Note that there can be many trees realizing

the same family F .

An ordering of the vertices of a rooted tree is called admissible if the root appears first, and

any other vertex appears after its unique parent in the tree. The following simple lemma appears, in

various forms, in the literature, see, e.g., [1], Chapter 2. For completeness we include a short proof.

Lemma 2.1 Let F be a family of subsets of a finite set X. Then F satisfies RIP ∗ if and only if it

satisfies TDP . Moreover, if F satisfies TDP and T is a rooted tree realizing F , then any admissible

ordering of its members satisfies RIP .

Proof: Assume first that F satisfies RIP ∗. Then there is a sequence F1, F2, . . . , Fm of the members

of F such that (1) holds. Let T be a rooted tree on the set of vertices F , where F1 is the root, and

for each k > 1 the unique parent of Fk in the tree is an arbitrarily chosen Fi so that i < k and

Fk ∩ (∪j<kFj) ⊂ Fi.

We claim that T is a realization for F . Indeed, suppose Fi, Fj , Fk ∈ F , with Fi being on the unique

path between Fj and Fk. We have to show that Fk ∩ Fj ⊂ Fi. This is proved by induction on the

distance in T between Fk and Fj . If the distance is 0 or 1 there is nothing to prove as in this case

Fi is either Fj or Fk. Assuming the assertion holds for distance smaller than d, suppose the distance

between Fj and Fk is d ≥ 2. Without loss of generality suppose that j < k. Let Fs be the unique

parent of Fk in T . By the construction of T , Fk ∩ Fj ⊂ Fs. It is also clear that Fs is on the unique

path in T from Fk to Fj (since Fj is not a descendent of Fk). Thus either s = i, and then the desired

result Fk ∩ Fj ⊂ Fi holds, or Fi is on the unique path in T between Fs and Fj . In the latter case, as

the distance between Fs and Fj is d − 1 it follows, by the induction hypothesis, that Fs ∩ Fj ⊂ Fi,

completing the proof of the claim, as Fk ∩ Fj ⊂ Fs ∩ Fj ⊂ Fi.

Conversely, suppose that F satisfies TDP , and let T be a rooted tree which forms a realization

for F . Let F1 be the root, and let F1, F2, . . . , Fm be an admissible order of the members of F . We

complete the proof of the lemma by showing that this ordering satisfies RIP . For k > 1, let Fi be the

unique parent of Fk in T . Since the order is admissible i < k. In addition, Fi lies on the unique path
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between Fk and Fj for any j < k, as no such Fj is a descendent of Fk in T . As T satisfies TDP it

follows that Fk ∩ Fj ⊂ Fi for each j < k, and hence Fk ∩ (∪j<kFj) ⊂ Fi, as needed. 2

Proof of Theorem 1.1: Let F be a family of subsets of a finite set X and suppose it satisfies RIP ∗.

Let F1, F2, . . . , Fm be an expansive order of the members of F . We have to show that this ordering

satisfies RIP . To do so we prove the following:

Claim: For every k ≥ 1 there is a tree that forms a realization for F so that F1, F2, . . . , Fk is an

initial segment in an admissible ordering of the vertices of the tree.

Note that the case k = m of the above lemma implies the assertion of the theorem, as it provides a

realization for F in which the sequence F1, F2, . . . , Fm is admissible, and hence, by Lemma 2.1, this

sequence satisfies RIP , as needed.

It remains to prove the claim. This is done by induction on k. The case k = 1 follows from Lemma

2.1. Assuming the assertion of the claim for k − 1, we prove it for k, k ≥ 2.

By the induction hypothesis there is a tree T on the set of vertices F so that F1, F2, . . . , Fk−1 is

an initial segment in an admissible ordering of the vertices of the tree. Therefore, each Fj for j ≥ k

is a descendent in T of at least one of the vertices in the set {F1, F2, . . . , Fk−1}. In particular, this

holds for Fk, let Fi be the first vertex in the path from Fk to the root F1 in T so that i ≤ k − 1. If

Fi is the parent of Fk in T , then the tree T satisfies the assertion of the claim for k, establishing the

required induction step. We thus assume that this is not the case and the path in T from Fi to Fk is

the following: Fi, G1, G2, . . . , Gs, Fk, where Gj ∈ {Fk+1, Fk+2, . . . , Fm} for all j, 1 ≤ j ≤ s.

Our objective is to transform T into another tree T ′ that satisfies the assertion of the claim for k.

To this end we define several pieces of the tree T , as follows. Let T0 be the subtree of T rooted at

F1 and consisting of all vertices of T besides G1 and its descendents. Let T1 denote the subtree of T

rooted at G1, besides G2 and its descendents. Similarly, for each q < s, let Tq denote the subtree of

T rooted at Gq besides Gs+1 and its descendents. Let Ts be the subtree of T rooted at Gs besides Fk

and its descendents. Finally, let T∞ denote the subtree of T rooted at Fk.

Note that the tree T0 contains all the vertices F1, F2, . . . , Fk−1. This is because these vertices

form an initial segment in an admissible ordering of the vertices of T , hence none of them can be a

descendent of G1, which is not in this initial segment.

Recall that F1, F2, . . . , Fm is an expansive ordering of the members of F . Therefore,

|Fk ∩ (∪j<kFj)| ≥ |Gq ∩ (∪j<kFj)| (3)

for all 1 ≤ q ≤ s. On the other hand, T is a realization for F which satisfies TDP , and as all vertices

Fj for j < k lie in T0, it follows that for each such Fj , Fk ∩ Fj ⊂ Fi and also Fk ∩ Fi ⊂ Gq for all

1 ≤ q ≤ s. We conclude that Fk ∩ (∪j<kFj) = Fk ∩ Fi is contained in Fi ∩ Gq for all 1 ≤ q ≤ s, and

by (3) we have

Fk ∩ (∪j<kFj) = Fk ∩ Fi = Fi ∩G1 = Fi ∩G2 = . . . = Fi ∩Gs.

We can now construct the tree T ′. It is obtained from T by reversing the path between G1 and Fk

as follows: starting with the subtree T0, connect to it the subtree T∞ by making Fi the parent of
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Fk. Next, connect the subtree Ts by making Fk the parent of Gs, the subtree Ts−1 by making Gs

the parent of Gs−1 and so on until the tree T1 which is connected by letting G2 be the parent of G1.

Clearly F1, F2, . . . , Fk is an initial segment in an admissible ordering of T ′, and hence it only remains

to check that the tree T ′ is indeed a realization of F , namely, that for every three vertices along a

path in the tree, the subset corresponding to the middle vertex is contained in the intersection of those

corresponding to the other two subsets. This is obvious if all three vertices belong to T0 or if none

of them belongs to T0. The only remaining cases are when the path is between a vertex in T0 and a

vertex not in T0. In this case, the intersection of the corresponding sets is contained in the common

value of Fk ∩ Fi = G1 ∩ Fi = G2 ∩ Fi = . . . = Gs ∩ Fi and the desired inclusion in T ′ follows from

the corresponding one in T . This completes the proof of the claim, establishing the assertion of the

theorem. 2
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