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Abstract

There are many known applications of the Probabilistic Method in Extremal Finite Set

Theory. In this paper we describe several examples, demonstrating some of the techniques used

and illustrating some of the typical results obtained. This is partly a survey paper, but it also

contains various new results.
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The Probabilistic Method is a powerful tool in tackling many problems in Combinatorics.

Roughly speaking, the method works as follows: Trying to prove that a combinatorial structure

(or a substructure of a given one) with certain desired properties exists, one defines an appropriate

probability space of structures and then shows that the desired properties hold in this space with

positive probability.

Extremal Finite Set Theory is one of the most rapidly developing areas in Combinatorics, which

has applications in various other branches of Mathematics and Computer Science including Discrete

Geometry, Functional Analysis, Probability Theory and Circuit Complexity. There are numerous

known applications of probabilistic arguments in Extremal Finite Set Theory. These include many

examples of probabilistic proofs of existence of families of sets with certain properties, as well as

proofs of results whose statement often does not seem to suggest any connection to probability. In

this paper we describe examples of both types.

It is worth mentioning that our choice of the examples described here is limited by the length

of this paper and obviously reflects a personal choice as well. It is impossible to even mention

all the beautiful known probabilistic proofs in the area. Many additional interesting examples

and important techniques can be found in the excellent survey [16], as well as in the nice books

[7] and [24]. Here we first present simple known probabilistic proofs of three basic results, and

then describe several examples of random constructions supplying proofs of existence of certain set

systems. Afterwards we describe a few more recent results, and conclude with a section containing

various applications of the properties of the entropy function of a random variable to Extremal

Finite Set Theory.

1 Probabilistic proofs of three basic results

Each of the three results presented in this section has numerous generalizations, extensions and

applications. Their simple probabilistic proofs demonstrate nicely the basic application of proba-

bilistic arguments.

The first result is Sperner’s Theorem [25], considered by many researchers to be the starting

point of Extremal Finite Set Theory. Recall that a family F of subsets of {1, . . . , n} is called an

antichain if no set of F is contained in another.
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Theorem 1.1 Let F be an antichain. Then

∑
A∈F

1( n
|A|
) ≤ 1

Proof Let σ be a uniformly chosen permutation of {1, . . . , n} and set

Cσ = {{σ(j) : 1 ≤ j ≤ i} : 0 ≤ i ≤ n}

(The cases i = 0, n give ∅, {1, . . . , n} ∈ Cσ, respectively.) Define a random variable

X = |F ∩ Cσ|

Clearly

X =
∑
A∈F

XA

where XA is the indicator random variable for A ∈ C. Thus

E(XA) = Pr(A ∈ Cσ) =
1( n
|A|
)

since Cσ contains precisely one set of size |A|, which is distributed uniformly among the |A|-sets.

By linearity of expectation

E(X) =
∑
A∈F

1( n
|A|
)

For any σ, Cσ forms a chain - every pair of sets is comparable. Since F is an antichain we must

have X = |F ∩ Cσ| ≤ 1. Thus E(X) ≤ 1. 2

Corollary 1.2 ( [25]) Let F be an antichain. Then

|F| ≤
(

n

bn/2c

)

Proof The function
(n
x

)
is maximized at x = bn/2c so that

1 ≥
∑
A∈F

1( n
|A|
) ≥ |F|( n

bn/2c
) .

2

The second basic result presented here is the Erdős Ko Rado Theorem [13]. A family F of sets

is called intersecting if for every A,B ∈ F A ∩B 6= ∅.
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Theorem 1.3 ([13]) Suppose n ≥ 2k and let F be an intersecting family of k-element subsets of

an n-set. Then |F| ≤
(n−1
k−1

)
.

Observe that the result is sharp, as shown by taking the family of all k-sets containing a particular

point. The short proof given here is due to G. Katona (1972). Let F be an intersecting family of

subsets of {0, . . . , n− 1}.

Lemma 1.4 For 0 ≤ s ≤ n−1 set As = {s, s+ 1, . . . , s+k−1} where addition is modulo n. Then

F contains at most k of the sets As.

Proof By symmetry we can suppose that A0 ∈ F . The only sets As that intersect A0 other than

A0 itself are the 2k−2 sets As with −(k−1) ≤ s ≤ k−1, s 6= 0 (where the indices are taken modulo

n). These sets can be partitioned into k − 1 pairs of disjoint sets, Ai, Ai+k, where −k ≤ i ≤ −1.

Since F can contain at most one set of each such pair the assertion of the lemma follows. 2

Now we prove the Erdős Ko Rado Theorem. Let a permutation σ of {0, . . . , n − 1} and i ∈

{0, . . . , n−1} be chosen randomly, uniformly and independently and set A = {σ(i), σ(i+1), . . . , σ(i+

k − 1)}, addition again modulo n. Conditioning on any choice of σ the Lemma gives Pr(A ∈ F) ≤

k/n. Hence Pr(A ∈ F) ≤ k/n. But A is uniformly chosen from all k-sets so

k

n
≥ Pr(A ∈ F) =

|F|(n
k

) ,
implying that

|F| ≤ k

n

(
n

k

)
=

(
n− 1
k − 1

)
.

2

We conclude this section with a theorem of Bollobás [6]. The proof presented here is due to

Jaeger and Payan [17] and Katona [19].

Let F = {(Ai, Bi)}hi=1 be a family of pairs of subsets of an arbitrary set. We call F a (k, l)-system

if |Ai| = k and |Bi| = l for all 1 ≤ i ≤ k, Ai ∩Bi = ∅ and Ai ∩Bj 6= ∅ for all 1 ≤ i, j ≤ k.

Theorem 1.5 If F = {(Ai, Bi)}hi=1 is a (k, l)-system then h ≤
(k+l
k

)
.

Proof Put X = ∪hi=1(Ai ∪Bi) and consider a random order π of X. For each i, 1 ≤ i ≤ k, let Xi

be the event that all the elements of Ai precede all those of Bi in this order. Clearly

Pr(Xi) = 1/

(
k + l

k

)
.
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It is also easy to check that the events Xi are pairwise disjoint. Indeed, assume this is false and

let π be an order in which all the elements of Ai precede those of Bi and all the elements of Aj

precede those of Bj . Without loss of generality we may assume that the last element of Ai does

not appear after the last element of Aj . But in this case, all elements of Ai precede all those of

Bj , contradicting the fact that Ai ∩ Bj 6= ∅. Therefore, all the events Xi are pairwise disjoint, as

claimed. It follows that

1 ≥ Pr(∪hi=1Xi) =
h∑
i=1

Pr(Xi) = h · 1
(
k + l

k

)
,

completing the proof. 2

Theorem 1.5 is sharp, as shown by the family F = {(A,X \ A) : A ⊂ X, |A| = k}, where

X = {1, 2, . . . , k + l}.

2 Random constructions

Probabilistic arguments are very useful in proofs of existence of combinatorial structures satisfying a

set of required properties. Existence proofs of this type are sometimes called random constructions.

Here is a typical, simple example. A collection F of subsets of N = {1, 2, . . . , n} is k-independent

if for every k distinct sets F1, F2, . . . , Fk of F , all the 2k intersections ∩ki=1Gi are nonempty, where

each Gi is either Fi or its complement N \ Fi. Kleitman and Spencer [21] considered the problem

of estimating the maximum possible cardinality of a k-independent family of subsets of an n-set.

Their lower bound is proved by a random construction.

Theorem 2.1 If (
m

k

)
2k(1− 2−k)n < 1 (1)

then there is a k-independent family of subsets of N = {1, . . . , n} whose cardinality is at least m.

Proof Suppose (1) holds, and let v1, v2, . . . , vm be a sequence of m randomly chosen binary vectors

of length n, where each coordinate of each of the vectors vi is chosen, randomly and independently,

to be either 0 or 1 with equal probability. For each fixed set I of k distinct indices 1 ≤ i1 < i2 <

. . . ik ≤ m and each fixed value of ε = (ε1, . . . εk) ∈ {0, 1}k let A(I, ε) denote the event that there is

no coordinate j, 1 ≤ j ≤ n such that vil(j) = εl for all 1 ≤ l ≤ k. Clearly Pr(A(I, ε)) = (1− 2−k)n.
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Therefore, by (1), with positive probability none of the events A(I, ε) holds. Let v1, . . . , vm be a fixed

sequence for which none of these events holds, and let Fi be the subset of N whose characteristic

function is vi. One can easily check that the family F = {F1, . . . Fm} is k-independent, completing

the proof. 2

We note that by using the fact that (1 − 2−k)n ≤ e−n/2
k
, where e = 2.718... is the base of

the natural logarithm, and by a special simple construction for k ≤ 2 one can derive from the last

theorem that for every n and k there is a k-independent family of subsets of N whose cardinality

is at least ben/(k2k)c. There is no known explicit construction of such a large k-independent family,

although there are known explicit constructions of such families of size 2ckn, where ck > 0 is a

constant depending only on k. See [2] for more details.

The second random construction we describe, due to Erdős and Fűredi [12], is similar, but has

an interesting application in Combinatorial Geometry.

Proposition 2.2 For every n ≥ 1 there is a family F of m subsets of N = {1, . . . , n}, where

m = b1
2( 2√

3
)nc, such that there are no three distinct members A,B and C of F satisfying

A ∩B ⊂ C ⊂ A ∪B. (2)

Proof Define m = b1
2( 2√

3
)nc, and choose, randomly and independently, 2m 0, 1-vectors of length n,

where each coordinate of each of the vectors independently is chosen to be either 0 or 1 with equal

probability. Each vector is the characteristic vector of a corresponding subset of N . For every fixed

triple a, b and c of the chosen vectors, the probability that the corresponding sets satisfy equation

(2) is precisely (3/4)n. This is because (2) simply means that for each i, 1 ≤ i ≤ n, neither

ai = bi = 0, ci = 1 nor ai = bi = 1, ci = 0 hold. Therefore, the probability that for three fixed

indices i, j and k, the sets A,B,C corresponding to the chosen vectors a, b, c respectively satisfy (2)

is (3/4)n. Since there are
(2m

3

)
3 possible triples as above, the expected number of triples A,B,C

that satisfy (2) is (
2m
3

)
3(3/4)n ≤ m,

where the last inequality follows from the choice of m. Thus there is a choice of a family X of 2m

subsets of N in which the number of triples A,B,C satisfying (2) is at most m. By deleting one

set from each such triple we obtain a family F of at least 2m − m = m subsets of N satisfying
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the assertion of the proposition. Notice that the members of F are all distinct since (2) is trivially

satisfied if A = C. This completes the proof. 2

There are several striking examples, in different areas of Combinatorics, where the probabilistic

method supplies simple counter- examples to long-standing conjectures. The following consequence

of the last proposition is such an example.

Theorem 2.3 ([12]) For every n ≥ 1 there is a set of at least b1
2( 2√

3
)nc points in the n-dimensional

Euclidean space Rn, such that all angles determined by three points from the set are strictly less

than π/2.

This theorem disproves an old conjecture of Danzer and Grűnbaum [11], that the maximum car-

dinality of such a set is at most 2n − 1. We note that as proved by Danzer and Grűnbaum the

maximum cardinality of a set of points in Rn in which all angles are at most π/2 is 2n.

Proof of Theorem 2.3 We select the points of a set X in Rn from the vertices of the n-dimensional

cube. As before, we view the vertices of the cube, which are 0, 1-vectors of length n, as the

characteristic vectors of subsets of an n-element set. A simple consequence of Pythagoras’ Theorem

gives that the three vertices a, b and c of the n-cube, corresponding to the sets A,B and C,

respectively, determine a right angle at c if and only if (2) holds. As the angles determined by triples

of points of the n-cube are always at most π/2, the result follows immediately from Proposition

2.2. 2

Our final example for a random construction is more complicated than the previous ones and is

only sketched here. let F and H be two families of subsets of N = {1, . . . , n}. We say that F ∈ F

hits H ∈ H if |F ∩H| = 1. We say that the family F hits the family H if for every H ∈ H there

is an F ∈ F that hits it. Let t(H) be the minimum cardinality of a family F that hits H. Finally,

let t(n) denote the maximum possible value of t(H), where the maximum is taken over all families

H of n subsets of n. Our objective is to estimate t(n).

This problem, considered in [1], is motivated by the study of a certain communication network,

as we briefly describe below. A radio network is a synchronous network of processors that com-

municate by transmitting messages to their neighbors. A processor receives a message in a given

step iff it is silent in this step and precisely one of its neighbors transmits. This model is discussed

in various papers, see, e.g., [8], [1] and their references. Suppose that a processor p in this model
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has a message which it has to broadcast to all the other processors in the network. Suppose also,

for simplicity, that p has a common neighbor with each other processor in the network. In one

step p can transmit the message to all its neighbors, and then these have to transmit it to the

other processors. It is not difficult to check that the problem of completing all these transmissions

in a minimum total number of steps is closely related to the problem of determining t(H) for an

appropriately defined family of sets H. In particular, t(n) is equal, up to a constant factor, to

the maximum possible number of steps required to complete the broadcast task in an n-processors

network of the above type.

In [8] it is shown that there exists a positive constant c such that t(n) ≤ c(log2 n)2. As shown

in [1] this is sharp, up to a constant factor:

Theorem 2.4 There are two positive constants b and c such that for every n,

b(log2 n)2 ≤ t(n) ≤ c(log n)2.

The lower bound is proved in [1] by a random construction. Since the function (log2 n)2 changes

only by a constant factor when n is replaced by any polynomial in n it suffices to prove the existence

of a polynomial size family H for which t(H) is at least, say, (log2 n)2/100. Construct a family H

composed of 0.2 log n subfamilies Hl, each of cardinality n7. For each l, 0.4 log n ≤ l ≤ 0.6 log n,

let Hl be a random family of n7 (not necessarily distinct) subsets H of N chosen as follows: for

each i ∈ N , randomly and independently, Pr(i ∈ H) = 2−l. It can be shown that for such an

H, the probability that t(H) ≤ (log2 n)2/100 is (much) less than 1, establishing the lower bound

in theorem 2.4. The detailed proof, given in [1], which is rather complicated and includes various

combinatorial arguments and an application of the FKG-Inequality (cf., e.g., [7]), is omitted.

3 Two additional examples

The probabilistic method is most striking when it is applied to prove theorems whose statement

does not seem to suggest at all the need of probability. Most of the examples given in the previous

sections are simple instances of such statements. In this section we describe two slightly more

complicated examples.
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The first result solves a conjecture of Daykin and Erdős. Let F be a family of m distinct subsets

of X = {1, 2, . . . , n}. Let d(F) denote the number of disjoint pairs in F , i.e.,

d(F) = |{(F, F ′) : F, F ′ ∈ F , F ∩ F ′ = ∅}|.

Daykin and Erdős conjectured that if m = 2( 1
2

+δ)n, then, for every fixed δ > 0, d(F) = o(m2), as

n tends to infinity. More generally, Erdős conjectured that if F is a family of m subsets of X, and

m = 2(1/(k+1)+δ)n, where δ > 0, then

d(F) ≤ (1− 1
k

)

(
m

2

)
+ o(m2)

as n tends to infinity.

The more general conjecture is proved in [3]. Since the proof for the general case is somewhat

complicated, we describe here only that of the special case k = 1, mentioned above. We prove a

stronger result, as follows.

Theorem 3.1 ( [3]) Let F be a family of m = 2( 1
2

+δ)n subsets of X = {1, 2, . . . , n}, where δ > 0.

Then

d(F) < m2− δ
2

2 . (3)

Proof Suppose (3) is false and pick independently t members A1, A2, . . . , At of F with repetitions

at random, where t is a large positive integer, to be chosen later. We will show that with positive

probability |A1∪A2∪ . . .∪At| > n/2 and still this union has an empty intersection with more than

2n/2 distinct subsets of X. This contradiction will establish (3).

In fact

Pr(|A1 ∪A2 ∪ . . . ∪At| ≤ n/2)

≤
∑

S⊂X,|S|≤n/2
Pr(Ai ⊂ S, i = 1, . . . , t)

≤ 2n(2n/2/2((1/2)+δ)n)t = 2n(1−δt). (4)

Define

v(B) = |{A ∈ F : B ∩A = ∅}|.

Clearly ∑
B∈F

v(B) = 2d(F) ≥ 2m2−δ2/2.
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Let Y be the random variable whose value is the number of members B ∈ F which are disjoint to

all the Ai (1 ≤ i ≤ t). By the convexity of the function zt the expected value of Y satisfies

E(Y ) =
∑
B∈F

(v(B)/m)t =
1
mt
·m

(∑
v(B)t

m

)
≥ 1
mt
·m

(
2d(F)
m

)t
> 2m1−tδ2/2 .

Since Y ≤ m we conclude that

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2. (5)

One can check that for t = b1+1/(δ−δ2/4−δ3/2)c, m1−tδ2/2 > 2n/2 and the right-hand side of (5)

is greater than the right-hand side of (4). Thus, with positive probability, |A1∪A2∪ . . .∪At| > n/2

and still this union has an empty intersection with more than 2n/2 members of F . This contradiction

implies inequality (3). 2

The second example we describe in this section is a very recent result of the author, and it is

very likely that the estimate here can be still improved. The problem we consider was raised by

Fiat and Naor [14], who were motivated by the study of a method for distributing keys in a certain

multi-user crypto-system. The objective is, roughly, to distribute keys among n users, so that each

one receives a small set of keys and so that for every pair of users and every set of m other users,

the pair would have at least one key in common among the keys that none of the other m have.

Formulated as a problem on set-systems, the problem is the following.

Let F = {F1, . . . , Fn} be a family of finite sets, and define N = {1, 2, . . . , n}. We say that F

has property (2,m) if there are no two distinct indices i, j ∈ N and a subset M of N such that

|M | = m, i, j 6∈M and

Fi ∩ Fj ⊂ ∪k∈MFk.

Let c(F) denote the minimum cardinality of a member of F and let C(F) denote the maximum

cardinality of a member of F . For n ≥ m+2 ≥ 3, let c(m,n) denote the minimum possible value of

c(F), where the minimum is taken over all families F of n sets that have property (2,m). Similarly,

C(m,n) denotes the minimum possible value of C(F), as F ranges over all families as above. Our

objective is to estimate the two functions c(m,n) and C(m,n). As suggested by the notation, one

can consider families that satisfy the naturally defined more general property (k,m), and indeed

the results we prove below for property (2,m) can be extended to this more general case. For

simplicity we only deal here with property (2,m).
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As observed by Fiat and Naor, a simple random construction shows that there exists an absolute

constant a such that for all admissible m and n

c(m,n) ≤ C(m,n) ≤ am2 log2 n.

To see this, take a set X of a
2m

3 log2 n elements and let F1, . . . F2n be 2n random subsets of X,

where for each set Fi and for each element x ∈ X independently, Pr(x ∈ Fi) = 1/m. An easy

calculation shows that for a sufficiently large a (say a = 20), there is a positive probability that the

collection of all the above 2n sets has property (2,m) and at least half of the sets have cardinality

at most am2 log2 n. By letting F be a collection of n of the small sets the above inequality follows.

We omit the detailed calculation.

Another simple observation is the fact that for all admissible m and n

C(m,n) ≥ c(m,n) ≥ m log2((n− 1)/m).

This can be shown as follows. Let F = {F1, . . . Fn} be a family satisfying the property (2,m) and

suppose, without loss of generality, that c(m,n) = c(F) = |Fn| = c. For each 1 ≤ i ≤ n − 1,

put Gi = Fi ∩ Fn. We claim that there is no union of m sets Gi which is contained in a union of

another collection of m of the sets Gi. Indeed, suppose this is false and suppose that S1 and S2

are two distinct subsets of cardinality m of {1, . . . , n−1} and that ∪s1∈S1Gs1 ⊂ ∪s2∈S2Gs2 . Choose

arbitrarily an index j ∈ S1 \ S2. Then

Fj ∩ Fn = Gj ⊂ ∪s1∈S1Gs1 ⊂ ∪s2∈S2Gs2 ⊂ ∪s2∈S2Fs2 ,

contradicting the assumption that F has property (2,m). Thus the claim is true and there is an

antichain of
(n−1
m

)
subsets of Fn, implying that(

n− 1
m

)
≤
(

c

bc/2c

)
≤ 2c.

Therefore c ≥ m log2((n− 1)/m), as needed.

It is easy to see that for all admissible m and n, c(m,n) ≤ C(m,n) ≤ n−1. This is because the

family F = {F1, . . . , Fn} in which Fi is the set of unordered pairs given by Fi = {{i, j} : 1 ≤ j ≤

n, j 6= i} has property (2,m) for all m ≤ n − 2. In fact, it is easy to see that c(n, n − 2) = n − 1,

since every pair of sets in a collection of n sets that has property (2, n − 2) must have a common

element that does not belong to any other set in the collection besides these two.
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In case n >> m >> log n the gap between the upper and lower bounds given above is rather

large. A better lower bound for these cases is given in the following proposition.

Proposition 3.2 For every n ≥ m+ 2 ≥ 3,

C(m,n) ≥ c(m,n) ≥Min{n
2
,
m2

8
}.

The multiplicative constants in the above proposition can be improved, but we are only interested

here in the asymptotic behaviour of the corresponding functions, up to a constant factor.

Proof Let F be a family of sets satisfying property (2,m) and let F be a member of F . We must

show that

|F | ≥Min{n
2
,
m2

8
}.

Let xi denote the number of points in F that belong to i members of F (including F ). If x2 ≥ n/2

the desired result holds and hence we may assume that x2 ≤ n
2 − 1. Therefore, there are at least

n/2 members G of F such that any point in the intersection F ∩G belongs to at least 3 members

of F . We call these members of F F -good.

Let G be a randomly chosen F -good member of F , chosen uniformly among all F -good members

of F . Define p = m
2(n−2)(≤ 1/2) and let S be a random collection of members of F obtained by

choosing each member of F other than F and G, randomly and independently, to be a member

of S with probability p. Let Y1 be the random variable whose value is the number of members of

S, and let Y2 be the random variable whose value is the number of points in F ∩ G which do not

belong to ∪S∈SS. Define, also Y = Y1 + Y2.

We claim that the random variable Y is always greater than m. Indeed, suppose this is false

and for some choice of G and S Y = Y1 + Y2 ≤ m. For each of the Y2 points that contribute to

Y2 (i.e., that lie in F ∩ G but not in ∪S∈SS) choose arbitrarily a set T other than F and G that

contains this point. (There is always such a set since G is F -good). Let T be the collection of all

these sets T . Then |T | ≤ Y2 and hence |S ∪ T | ≤ m. Moreover,

F ∩G ⊂ ∪S∈SS ∪T∈T T,

contradicting the assumption that F has property (2,m). Thus Y > m, as claimed.

It follows that the expectation of Y is greater than m. Since the expectation of Y1 is p(n−2) =

m/2 this implies that E(Y2) > m/2. We next obtain an upper bound for the expectation of Y2.
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Let q be a point of F that belongs to i members of F . The probability that q contributes to Y2 is

the probability that it belongs to G and does not belong to all the members of S. This probability

is 0 if i ≤ 2, since G is chosen among the F -good members of F and these do not contain such a

point q. In case i > 2, the probability that q belongs to G is at most i−1
n/2 , since there are at least

n/2 F -good sets in F \ {F}, and i − 1 of them contain q. Given the choice of G that contains q,

the probability that none of the sets in S contains q is (1 − p)i−2, since there are precisely i − 2

members of F other than F and G that contain q. It follows that the probability that q contributes

to Y2 is at most

2(i− 1)
n

(1− p)i−2 ≤ 4(i− 1)
n

(1− p)i−1 ≤ 4(i− 1)
n

e−p(i−1),

where here we used the fact that 1− p ≥ 1/2.

Linearity of expectation now implies that

E(Y2) ≤
∑
i>2

xi
4(i− 1)

n
e−p(i−1) =

4
n

∑
i>2

xi(i− 1)e−p(i−1).

A simple computation shows that the maximum of the function g(z) = ze−pz for z ≥ 0 is attained

at z = 1/p, and this maximum is 1/(ep). Therefore,

E(Y ) ≤ 4
n

∑
i>2

xi
1
ep

=
4
enp

∑
i>2

xi ≤
4
enp
|F |

=
8(n− 2)
emn

|F | ≤ 8
em
|F | ≤ 4

m
|F |.

Since E(Y2) > m/2 this implies that |F | > m2/8, completing the proof. 2

4 Some applications of the properties of the entropy function

Let X be a random variable taking values in some range S, and let px denote the probability that

the value of X is x. The binary entropy of X, denoted by H(X) is defined by

H(X) =
∑
x∈S
−px log2 px.

The following well known fact is simple but useful.
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Proposition 4.1 Let X = (X1, . . . , Xn) be a random variable taking values in the set S = S1 ×

S2× . . .×Sn, where each of the coordinates Xi of X is a random variable taking values in Si. Then

H(X) ≤
n∑
i=1

H(Xi).

Proof Let p(x1, . . . , xn) denote the probability that X = (x1, . . . , xn) and let p(i : xi) denote the

probability that Xi = xi. Since the summation of p(x1, . . . , xn) over all xj ∈ Sj , j 6= i is precisely

p(i : xi) it follows from the definition of the entropy function that

H(X)−
n∑
i=1

H(Xi) =
n∑
i=1

∑
xi∈Si

−p(x1, . . . , xn) log2

p(x1, . . . , xn)
p(1 : x1)p(2 : x2) . . . p(n : xn)

=
n∑
i=1

∑
xi∈Si

p(1 : x1)p(2 : x2) . . . p(n : xn)f(
p(x1, . . . , xn)

p(1 : x1)p(2 : x2) . . . p(n : xn)
),

where here f(z) = −z log2 z. By the convexity of the function f(z) and by Jensen Inequality the

last quantity is at most −x log2 x where

x =
n∑
i=1

∑
xi∈Si

p(1 : x1)p(2 : x2) . . . p(n : xn)(
p(x1, . . . , xn)

p(1 : x1)p(2 : x2) . . . p(n : xn)
) = 1.

Therefore H(X)−
∑n
i=1H(Xi) ≤ −1 log2 1 = 0, completing the proof. 2

The above proposition is used in [20] to derive several interesting applications in Extremal

Finite Set Theory, including an upper estimate for the maximum possible cardinality of a family

of k-sets in which the intersection of no two is contained in a third. The basic idea in [20] can be

illustrated by the following simple corollary of Proposition 4.1.

Corollary 4.2 Let F be a family of subsets of {1, 2, . . . , n} and let pi denote the fraction of sets

in F that contain i. Then

|F| ≤ 2
∑n

i=1
H(pi),

where H(y) = −y log2 y − (1− y) log2(1− y).

Proof Associate each set F ∈ F with its characteristic vector v(F ), which is a binary vector of

length n. Let X = (X1, . . . , Xn) be the random variable taking values in {0, 1}n, where Pr(X =

v(F )) = 1/|F| for all F ∈ F . Clearly H(X) = |F|(− 1
|F| log 1

|F|) = log |F|, and since here H(Xi) =

H(pi) for all 1 ≤ i ≤ n, the result follows from Proposition 4.1. 2
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As observed by Peter Frankl [15], the last corollary supplies a quick proof for the well known

estimate, (that follows, e.g., from the results in [9]), that for every integer n and for every real

0 < p ≤ 0.5,
∑
i≤np

(n
i

)
≤ 2nH(p). Indeed, let F be the family of all subsets of cardinality at most

pn of {1, 2, . . . , n}. If pi is the fraction of subsets of F that contain i, then clearly pi ≤ p for all i.

Since the function H(p) is increasing for 0 ≤ p ≤ 0.5 this, together with Corollary 4.2 implies that

∑
i≤np

(
n

i

)
= |F| ≤ 2

∑n

i=1
H(pi) ≤ 2nH(p),

as needed.

An interesting extension of Proposition 4.1 is proved in [10]. As in that proposition, let X =

(X1, . . . , Xn) be a random variable taking values in the set S = S1 × S2 × . . . × Sn, where each

Xi is a random variable taking values in Si. For a subset I of {1, 2, . . . , n}, let X(I) denote the

random variable (Xi)i∈I . With these notations, the following proposition is proved in [10] for the

case Si = {0, 1} for all i. The proof for the general case is analogous, and we omit it.

Proposition 4.3 Let X = (X1, . . . , Xn) and S be as above. If G is a family of subsets of {1, . . . , n}

and each i ∈ {1, . . . , n} belongs to at least k members of G then

kH(X) ≤
∑
G∈G

H(X(G)).

2

Corollary 4.4 ([10]) Let S be a finite set, and let F be a family of subsets of S. Let G =

{G1, G2, . . . Gm} be a collection of subsets of S, and suppose that each element of S belongs to at

least k members of G. For each 1 ≤ i ≤ m define Fi = {F ∩Gi : F ∈ F}. Then

|F|k ≤
m∏
i=1

|Fi|.

Proof Suppose S = {1, . . . , n}, and define Si = {0, 1} for 1 ≤ i ≤ n. Let X = (X1, . . . , Xn) be the

random variable taking values in S, where for each F ∈ F X is equal to the characteristic vector

of F with probability 1/|F|. By Proposition 4.3

kH(X) ≤
m∑
i=1

H(X(Gi)).

But H(X) = log2 |F|, whereas H(X(Gi)) ≤ log2 |Fi|, implying the desired result. 2
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A special case of the last corollary is proved in [23], in a different method.

Another application of Proposition 4.3 is given in [4]. The d-dimensional grid Gn,d is the graph

formed by the product of d n-vertex paths. It has N = nd vertices and dnd−1(n− 1) edges. For a

spanning tree T of G = Gn,d, let V (T ) denote the average distance in T between u and v, where

the average is taken over all edges uv of G. Motivated by the study of a certain game on trees, it

is proved in [4] that there exists an absolute constant c > 0 such that for every n, d ≥ 2, there is a

spanning tree T of G such that V (T ) ≤ c log2N . Moreover, there exists another absolute constant

c′ > 0, such that for every spanning tree T of G, V (T ) ≥ c′ log2N . The proof of the lower bound

relies on Proposition 4.3, together with some additional ideas. The somewhat lengthy details can

be found in [4].

For a family of subsets A of S = {1, 2, . . . , n}, define the average distance in A, denoted dist(A),

by

dist(A) =
1
|A|2

∑
A∈A

∑
B∈A

d(A,B),

where d(A,B) is the cardinality of the symmetric difference of A and B (i.e., the cardinality of

(A \B) ∪ (B \A)). The authors of [5] proved that for every family A as above,

dist(A) ≥ n+ 1
2
− 2n−1

|A|
.

This result is sharp for |A| = 2n−1 (and, of course, for |A| = 2n), but it is very far from being sharp

for smaller values of |A|.

The following result supplies a better estimate for smaller values of |A|.

Proposition 4.5 For every family A of |A| = a subsets of {1, . . . , n}:

dist(A) ≥ n

2
− loge(

2n

a
).

We note that it is easy to show that if a = |A| ≥
∑t
i=1

(n
i

)
then dist(A) ≥ Ω(t), which is better

than the above estimate for very small values of a. The above proposition is useful to estimate how

close to n/2 dist(A) must be when |A| = a = 2(1−o(1))n.

The above proposition will be derived from Corollary 4.2, together with the following simple

technical lemma.
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Lemma 4.6 For every real x, 0 < x < 1,

2x(1− x) ≥ −x loge x− (1− x) loge(1− x) + 1/2− loge 2.

Prof Define f(x) = 2x(1− x) + x loge x+ (1− x) loge(1− x)− 1/2 + loge 2. Then f ′(x) = −4(x−
1
2) + loge(x/(1− x)), f ′′(x) = −4 + 1

x(1−x) . Therefore, f(1/2) = f ′(1/2) = 0 and f ′′(x) ≥ 0 for all

0 < x < 1. This easily implies that f(x) ≥ 0 for all 0 < x < 1, as needed. 2

Proof of Proposition 4.5 Let A be a family of a subsets of {1, . . . , n}, and let pi denote the

fraction of subsets of A that contain i, (1 ≤ i ≤ n). By Corollary 4.2
n∑
i=1

H(pi) ≥ log2 a.

Define He(z) = −z loge z − (1− z) loge(1− z) and observe that by the last inequality
n∑
i=1

He(pi) ≥ loge a.

Clearly, the number of ordered pairs (A,B) of subsets of A for which i is in the symmetric difference

of A and B is precisely 2|A|pi|A|(1− pi). Therefore, by Lemma 4.6,

dist(A) =
n∑
i=1

2pi(1− pi) ≥
n∑
i=1

He(pi) + n/2− n loge 2

≥ loge a+ n/2− n loge 2 =
n

2
− loge(

2n

a
),

completing the proof. 2

Combining Proposition 4.5 with the convexity of the function −z loge z we obtain the following.

Corollary 4.7 If A1, . . . ,Ak is a partition of all 2n subsets of an n-set into k pairwise disjoint

sets, then
k∑
i=1

|Ai|
2n

dist(Ai) ≥
n

2
− loge k.

This improves, for all k ≥ 4, the lower bound of (n+ 1− k)/2 derived for the above quantity in [5].

The final result we mention here deals with vectors over Zk, (and not with binary vectors, which

correspond naturally to subsets of a set). We describe it here, since the basic ideas used in its proof

are similar to the ones described in this section. This result answers a question of Lapidot and

Shamir, and although it may look somewhat artificial it is naturally suggested, as shown in [22], in

the study of the possibility to parallelize certain two-prover zero-knowledge protocols.
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Let Znk ×Znk denote the set of all ordered pairs (u, v), where u and v are vectors of length n over

Zk = {0, . . . , k − 1}. We say that a subset F of Znk × Znk has property P if there are u0, . . . , uk−1

and v0, . . . vk−1 in Znk , such that (ui, vj) ∈ F for all 0 ≤ i, j ≤ k−1, and there is a coordinate l such

that the value of ui as well as that of vi in that coordinate is i for all 0 ≤ i ≤ k − 1. Let f(n, k)

denote the maximum possible cardinality of a family F ⊂ Znk × Znk which does not have property

P.

The following theorem supplies an estimate for f(n, k).

Theorem 4.8 There are two absolute positive constants c1 and c2 such that for every k ≥ 2 and

for every n ≥ 1,

k2n(1−c1/(k2 log2 k)) ≤ f(n, k) ≤ k2n(1−c2/(k2(log2 k)2)).

The lower bound is very simple, but the proof of the upper bound is more complicated and relies

on several probabilistic arguments some of which depend on the properties of the entropy function.
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