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Abstract

We study the maximum possible sign rank of N×N sign matrices with a given

VC dimension d. For d = 1, this maximum is 3. For d = 2, this maximum is

Θ̃(N1/2). For d > 2, similar but slightly less accurate statements hold.

The lower bounds are obtained by probabilistic constructions, using a theorem

of Warren in real algebraic topology. The upper bounds are obtained using a

result of Welzl about spanning trees with low stabbing number, and using the

moment curve. The upper bound technique also yields an efficient algorithm that

provides an O(N/ log(N)) multiplicative approximation for the sign rank (Basri

et al., and Bhangale and Kopparty proved that deciding if the sign rank is at most

3 is NP-hard).

We also observe a general connection between sign rank and spectral gaps

which is based on Forster’s argument. Consider the N × N adjacency matrix of

a ∆ regular graph with a second eigenvalue of absolute value λ and ∆ ≤ N/2.

We show that the sign rank of the signed version of this matrix is at least ∆/λ.

We also describe limitations of this approach, in the spirit of the Alon-Boppana

theorem.

We further describe connections to communication complexity, geometry, learn-

ing theory, and combinatorics.
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1 Introduction

Boolean matrices (with 0, 1 entries) and sign matrices (with ±1 entries) naturally appear

in many areas of research1. We use them e.g. to represent set systems and graphs in com-

binatorics, concept classes in learning theory, and boolean functions in communication

complexity.

This work further investigates the relation between two useful complexity measures

on sign matrices.

Definition (Sign rank). For a real matrix M with no zero entries, let sign(M) denote

the sign matrix such that (sign(M))i,j = sign(Mi,j) for all i, j. The sign rank of a sign

matrix S is defined as

sign-rank(S) = min{rank(M) : sign(M) = S},

where the rank is over the real numbers. It captures the minimum dimension of a real

space in which the matrix can be embedded using half spaces through the origin 2 (see for

example [36]).

Definition (Vapnik-Chervonenkis dimension). The VC dimension of a sign matrix S,

denoted V C(S), is defined as follows. A subset C of the columns of S is called shattered

if each of the 2|C| different patterns of ones and minus ones appears in some row in the

restriction of B to the columns in C. The VC dimension of B is the maximum size of a

shattered subset of columns. It captures the size of the minimum ε-net for the underlying

set system [26, 30].

The VC dimension and the sign rank appear in various areas of computer science

and mathematics. One important example is learning theory, where the VC dimension

captures the sample complexity of learning in the PAC model [13, 44], and the sign

rank correspond to the efficiency of many practical learning algorithms, such as support

vector machines, large margin classifiers, and kernel classifiers [35, 22, 23, 24, 15, 45].

Loosely speaking, the VC dimension relates to learnability, while sign rank relates to

efficient learnability. Another example is communication complexity, where the sign rank

is equivalent to unbounded error communication complexity [38], and the VC dimension

relates to one round communication complexity under product distributions [31].

These examples are part of the motivation for studying how large can the sign rank be

for a given VC dimension, which is the main focus of this work. In learning theory, this

1There is a standard transformation of a boolean matrix B to the sign matrix S = 2B − J , where
J is the all 1 matrix. The matrix S is called the signed version of B, and the matrix B is called the
boolean version of S.

2That is, the columns correspond to points in Rk and the rows to half spaces through the origin (i.e.
collections of all points x ∈ Rk so that 〈x, v〉 ≥ 0 for some fixed v ∈ Rk).
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question relates to the difference between learnability and efficient learnability. In com-

munication complexity, this relates to the difference between distributional complexity

under product and non product distributions.

1.1 Duality

We start by providing alternative descriptions of the VC dimension and sign rank, which

demonstrate that these notions are in some sense dual. The sign rank of a sign matrix

S is the maximum number k such that

∀ M such that sign(M) = S ∃ k columns j1, . . . , jk

the columns j1, . . . , jk are linearly independent in M

Consider the following definition that is obtained by flipping the order of the quantifiers.

The dual sign rank of S is the maximum number k such that

∃ k columns j1, . . . , jk ∀ M such that sign(M) = S

the columns j1, . . . , jk are linearly independent in M.

It turns out that the dual sign rank is almost equivalent to the VC dimension (the proof

appears in Section A).

Proposition 1. V C(S) ≤ dual-sign-rank(S) ≤ 2V C(S) + 1.

As the dual sign rank is at most the sign rank, a corollary to Proposition 1 is that

the VC dimension is at most the sign rank.

This provides further motivation for studying the largest possible gap between sign

rank and VC dimension; it is equivalent to the largest possible gap between the sign

rank and the dual sign rank.

It is worth noting that there are some interesting classes of matrices for which these

quantities are equal. One such example is the 2n× 2n disjointness matrix DISJ , whose

rows and columns are indexed by all subsets of [n], and DISJx,y = 1 if and only if

|x∩ y| > 0. For this matrix both the sign rank and the dual sign rank are exactly n+ 1.

1.2 Sign rank of matrices with low VC dimension

The VC dimension is always bounded from above by the sign rank. On the other hand,

it is long known that the sign rank is not bounded from above by any function of the

VC dimension. Alon, Haussler, and Welzl [7] provided examples of N×N matrices with

VC dimension 2 for which the sign rank tends to infinity with N . Ben-David et al. in

[10] used ideas from [6] together with estimates concerning the Zarankiewicz problem to
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show that many matrices with constant VC dimension (at least 4) have high sign rank.

Forster et al. [22] proved that incidence matrices of finite geometries have high sign rank

(we discuss it in more detail below).

We further investigate the problem of determining or estimating the maximum pos-

sible sign rank of N × N matrices with VC dimension d. Denote this maximum by

f(N, d). We are mostly interested in fixed d and N tending to infinity.

We observe that there is a dichotomy between the behaviour of f(N, d) when d = 1

and when d > 1. The value of f(N, 1) is 3, but for d > 1, the value of f(N, d) tends to

infinity with N . We now discuss the behaviour of f(N, d) in more detail, and describe

our results.

We start with the case d = 1. The following theorem and claim imply that for all

N ≥ 4,

f(N, 1) = 3.

The following theorem which was proved in [7] shows that for d = 1, matrices with

high sign rank do not exist. For completeness, we provide our simple and constructive

proof in Section 4.

Theorem 2 ([7]). If the VC dimension of a sign matrix M is one then its sign rank is

at most 3.

We also mention that the bound 3 is tight (see Section 4 for a proof).

Claim 3. For N ≥ 4, the N × N signed identity matrix (i.e. the matrix with 1 on the

diagonal and −1 off the diagonal) has VC dimension one and sign rank 3.

Next, we consider the case d > 1, starting with lower bounds on f(N, d). As men-

tioned above, two lower bounds were previously known: The authors of [7] showed that

f(N, 2) ≥ Ω(logN). In [10] it is shown that f(N, d) ≥ ω(N
1− 2

d
− 1

2d/2 ), for every fixed d,

which provides a nontrivial result only for d ≥ 4.

We prove the following stronger lower bound.

Theorem 4. The following lower bounds on f(N, d) hold:

1. f(N, 2) ≥ Ω(N1/2/ logN).

2. f(N, 3) ≥ Ω(N8/15/ logN).

3. f(N, 4) ≥ Ω(N2/3/ logN).

4. For every fixed d > 4,

f(N, d) ≥ Ω(N1−(d2+5d+2)/(d3+2d2+3d)/ logN).
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The understand part 4 better, notice that

d2 + 5d+ 2

d3 + 2d2 + 3d
=

1

d
+

3d− 1

d3 + 2d2 + 3d
,

which is close to 1/d for large d. The proofs are described in Section 5, where we also

discuss the tightness of our arguments, and surprising connections to two other counting

problems.

What about upper bounds on f(N, d)? It is shown in [10] that for every matrix

in a certain class of N × N matrices with constant VC dimension, the sign rank is at

most O(N1/2). The proof uses the connection between sign rank and communication

complexity. However, there is no general upper bound for the sign rank of matrices of

VC dimension d in [10], and the authors explicitly mention they are unable to get such

a result.

Here we prove the following upper bounds, using a concrete embedding of matrices

with low VC dimension in real space.

Theorem 5. For every fixed d ≥ 2,

f(N, d) ≤ O(N1−1/d).

In particular, this determines f(N, 2) up to a logarithmic factor:

Ω(N1/2/ logN) ≤ f(N, 2) ≤ O(N1/2).

The above results imply existence of sign matrices with high sign rank. However,

their proofs use counting arguments and hence do not provide a method of certifying

high sign rank for explicit matrices. In the next section we show how one can derive a

lower bound for the sign rank of many explicit matrices.

1.3 Sign rank and spectral gaps

Spectral properties of boolean matrices are known to be deeply related to their combina-

torial structure. Perhaps the best example is Cheeger’s inequality which relates spectral

gaps to combinatorial expansion [19, 3, 4, 2, 27]. Here, we describe connections between

spectral properties of boolean matrices and the sign rank of their signed versions.

Proving strong lower bounds on the sign rank of sign matrices turned out to be a

difficult task. The authors of [6] were the first to prove that there are sign matrices

with high sign rank, but they have not provided explicit examples. Later on, a break-

through of Forster [21] showed how to prove lower bounds on the sign rank of explicit

matrices, proving, specifically, that Hadamard matrices have high sign rank. Razborov
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and Sherstov proved that there is a function that is computed by a small depth three

boolean circuit, but with high sign rank [40]. It is worth mentioning that no explicit

matrix whose sign rank is significantly larger than N
1
2 is known.

We focus on the case of regular matrices, but a similar discussion can be carried

more generally. A boolean matrix is ∆ regular if every row and every column in it has

exactly ∆ ones, and a sign matrix is ∆ regular if its boolean version is ∆ regular.

An N×N real matrix M has N singular values σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0. The largest

singular value of M is also called its spectral norm

‖M‖ = σ1 = max{‖Mx‖ : ‖x‖ ≤ 1},

where ‖x‖2 = 〈x, x〉 with the standard inner product. The second largest singular value

of M is denoted here by

σ(M) = σ2.

If the ratio σ(M)/‖M‖ is bounded away from one, or small, we say that M has a spectral

gap.

We prove that if B has a spectral gap then the sign rank of S is high.

Theorem 6. Let B be a ∆ regular N ×N boolean matrix with ∆ ≤ N/2, and let S be

its signed version. Then,

sign-rank(S) ≥ ∆

σ(B)
.

In many cases a spectral gap for B implies that it has pseudorandom properties.

This theorem is another manifestation of this phenomenon since random sign matrices

have high sign rank (see [6]).

The theorem above provides a non trivial lower bound on the sign rank of S. There

is a non trivial upper bound as well. The sign rank of a ∆ regular sign matrix is at most

2∆+1. Here is a brief explanation of this upper bound (see [6] for a more detailed proof).

Every row i in S has at most 2∆ sign changes (i.e. columns j so that Si,j 6= Si,j+1). This

implies that for every i, there is a real univariate polynomial Gi of degree at most 2∆

so that Gi(j)Si,j > 0 for all j ∈ [N ] ⊂ R. To see how this corresponds to sign rank

at most 2∆ + 1, recall that evaluating a polynomial G of degree 2∆ on a point x ∈ R
corresponds to an inner product over R2∆+1 between the vector of coefficients of G, and

the vector of powers of x.

Our proof of Theorem 6 and its limitations are discussed in detail in Section 3.
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2 Applications

2.1 Explicit examples

The spectral lower bound on sign rank gives many explicit examples of matrices with high

sign rank, which come from known constructions of expander graphs and combinatorial

designs. A rather simple such family of examples is finite projective geometries (which

is also useful in the proof of Theorem 4).

Let d ≥ 2 and n ≥ 3. Let P be the set of points in a d dimensional projective

space of order n, and let H be the set of hyperplanes in the space (i.e. the set of d− 1

dimensional subspaces). For d = 2, this is just a projective plane with points and lines.

It is known (see, e.g., [11]) that

|P | = |H| = Nn,d := nd + nd−1 + . . .+ n+ 1 =
nd+1 − 1

n− 1
.

Let A ∈ {±1}P×H be the signed point-hyperplane incidence matrix:

Ap,h =

{
1 p ∈ h,
−1 p 6∈ h.

Theorem 7. The matrix A is N × N with N = Nn,d, its VC dimension is d, and its

sign rank is larger than
nd − 1

n
d−1
2 (n− 1)

≥ N
1
2
− 1

2d .

The theorem follows from known properties of projective spaces (see Section 3.3).

A slightly weaker (but asymptotically equivalent) lower bound on the sign rank of A

was given in [22]. The sign rank of A is at most 2Nn,d−1 + 1 = O(N1− 1
d ), due to the

observation in [6] mentioned above. To see this, note that every point in the projective

space is incident to Nn,d−1 hyperplanes.

Other explicit examples come from spectral graph theory. Here is a brief description

of matrices that are even more restricted than having VC dimension 2 but have high

sign rank; no 3 columns in them have more than 6 distinct projections. An (N,∆, λ)-

graph is a ∆ regular graph on N vertices so that the absolute value of every eigenvalue

of the graph besides the top one is at most λ. There are several known constructions

of (N,∆, λ)-graphs for which λ ≤ O(
√

∆), that do not contain short cycles. Any such

graph with ∆ ≥ NΩ(1) provides an example with sign rank at least NΩ(1), and if there is

no cycle of length at most 6 then in the sign matrix we have at most 6 distinct projections

on any set of 3 columns.
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2.2 An algorithm for approximating the sign rank

Consider the problem of computing the sign rank of a given N × N sign matrix. A

simple reduction shows that it is enough to decide whether a system of real polynomial

inequalities is satisfiable. Therefore, a result of Canny [16] implies that this problem

is in PSPACE. It is still open whether this problem is in NP, but Basri et al. [9]3, and

Bhangale and Kopparty [12] showed that the problem of deciding if the sign rank is at

most 3 is NP-hard, and that the problem of deciding if the sign rank is at most 2 is in P.

Another related work of Lee and Shraibman [34] concerns the problem of computing the

approximate rank of a sign matrix, for which they provide an approximation algorithm.

They pose the problem of efficiently approximating the sign rank as an open problem.

Using an idea similar to the one in the proof of Theorem 5 we derive an approximation

algorithm for the sign rank (see Section 5.1.3).

Theorem 8. There exists a polynomial time algorithm that approximates the sign rank

of a given N by N matrix up to a multiplicative factor of c ·N/ log(N) where c > 0 is a

universal constant.

2.3 Communication complexity

We briefly explain the notions from communication complexity we use. For formal

definitions, background and more details, see the textbook [32].

For a function f and a distribution µ on its inputs, define Dµ(f) as the minimum

communication complexity of a deterministic4 protocol that correctly computes f with

error 1/3 over inputs from µ. Define

D×(f) = max{Dµ(f) : µ is a product distribution}.

Define the unbounded error communication complexity U(f) of f as the minimum com-

munication complexity of a randomized private coin5 protocol that correctly computes

f with probability strictly larger than 1/2 on every input.

Two works of Sherstov [42, 41] showed that there are matrices with small distribu-

tional communication complexity under product distributions, but whose randomized

complexity is almost as large as possible. In [42] the separation is as strong as possible

but it is not for an explicit function, and the separation in [41] is not as strong but the

underlying function is explicit.

3Interestingly, their motivation for considering sign rank comes from image processing.
4In the distributional setting, every randomized protocol for f can be replaced by a deterministic

protocol for f without increasing the error nor the communication.
5In the public coin model, every boolean function has unbounded communication complexity at most

two.
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The matrix A with d = 2 and n ≥ 3 in our example from Section 2.1 corresponds

to the following communication problem: Alice gets a point p ∈ P , Bob gets a line

` ∈ L, and they wish to decide whether p ∈ ` or not. Let f : P × L → {0, 1} be the

corresponding function and let m = dlog2(N)e. A trivial protocol would be that Alice

sends Bob using m bits the name of her point, Bob checks whether it is incident to the

line, and outputs accordingly.

Theorem 7 implies the following consequences. Even if we consider protocols that

use randomness and are allowed to err with probability less than but arbitrarily close to
1
2
, then still one cannot do considerably better than the above trivial protocol. However,

if the input (p, `) ∈ P × L is distributed according to a product distribution then there

exists an O(1) protocol that errs with probability at most 1
3
.

Corollary 9. The unbounded error communication complexity of f is6

U(f) ≥ m

4
−O(1).

The distributional communication complexity of f under product distributions is

D×(f) ≤ O(1).

These two seemingly contradicting facts are a corollary of the high sign rank and

the low VC dimension of A, using two known results. The upper bound on D×(f)

follows from the fact that VCdim(A) = 2, and the work of Kremer et al. [31] which

used the PAC learning algorithm to construct an efficient (one round) communication

protocol for f under product distributions. The lower bound on U(f) follows from that

sign-rank(A) ≥ Ω(N1/4), and the result of Paturi and Simon [38] which showed that

unbounded error communication complexity is equivalent to the logarithm of the sign

rank. See [42] for more details.

2.4 Learning theory

Learning theory started with Valiant’s seminal paper [43], in which PAC learning was

introduced. Vapnik and Chervonenkis [44] and Blumer et al. [13] proved that PAC

learnability is exactly captured by VC dimension. Specifically, a concept class of constant

VC dimension, like A, can be PAC learnt using O(1) many examples.

Large margin classifiers concern finding an efficient embedding of the concept class

in real space, and using the geometry of Euclidean space to perform the learning (see

e.g. [15, 45, 35] and references within). One example is Klivans and Servedio’s algorithm

for learning DNF formulas [29].

6By taking larger values of d, the constant 1
4 may be increased to 1

2 −
1
2d .
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The example above shows that although A can be PAC learnt with a constant number

of examples, if we try to learn A via embedding it in a real space then the dimension

must be extremely high (and the margin small by the Johnson-Lindenstrauss lemma

[28], see [10]).

2.5 Geometry

Differences and similarities between finite geometries and real geometry are well known.

An example of a related problem is finding the minimum dimension of Euclidean space

in which we can embed a given finite plane (i.e. a collection of points and lines satisfying

certain axioms). By embed we mean that there are two one-to-one maps eP , eL so that

eP (p) ∈ eL(`) iff p ∈ ` for all p ∈ P, ` ∈ L. The Sylvester-Gallai theorem shows, for

example, that Fano’s plane cannot be embedded in any finite dimensional real space if

points are mapped to points and lines to lines.

How about a less restrictive meaning of embedding? One option is to allow embed-

ding using half spaces, that is, an embedding in which points are mapped to points but

lines are mapped to half spaces. Such embedding is always possible if the dimension

is high enough: Every plane with point set P and line set L can be embedded in RP

by choosing eP (p) as the p’th unit vector, and eL(`) as the half space with positive

projection on the vector with 1 on points in ` and −1 on points outside `. The mini-

mum dimension for which such an embedding exists is captured by the sign rank of the

underlying incidence matrix (up to a ±1).

Corollary 10. A finite projective plane of order n ≥ 3 cannot be embedded in Rk using

half spaces, unless k > N1/4 − 1 with N = n2 + n+ 1.

Roughly speaking, the corollary says that there are no efficient ways to embed finite

planes in real space using half spaces.

2.6 Counting graphs

Here we describe an application of our method for proving Theorem 5 to counting graphs

with a given forbidden substructure.

Let G = (V,E) be a graph (not necessarily bipartite). The universal graph U(d) is

defined as the bipartite graph with two color classes A and B = 2A where |A| = d, and

the edges are defined as {a, b} iff a ∈ b. The graph G is called U(d)-free if for all two

disjoint sets of vertices A,B ⊂ V so that |A| = d and |B| = 2d, the bipartite graph

consisting of all edges of G between A and B is not isomorphic to U(d).

In Theorem 24 of [1] which improves Theorem 2 there, it is proved that for d ≥ 2,
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the number of U(d+ 1)-free graphs on N vertices is at most

2O(N2−1/d(logN)d+2).

The proof in [1] is quite involved, consisting of several technical and complicated steps.

Our methods give a different, quick proof of an improved estimate, replacing the (logN)d+2

term by a single logN term.

Theorem 11. For every fixed d ≥ 1, the number of U(d+ 1)-free graphs on N vertices

is at most 2O(N2−1/d logN).

The proof of the theorem is given in Section 5.1.4.

3 Sign rank and spectral gaps

The lower bound on the sign rank uses Forster’s argument [21], who showed how to

relate sign rank to spectral norm. He proved that if S is an N ×N sign matrix then

sign-rank(S) ≥ N

‖S‖
.

We would like to apply Forster’s theorem to the matrix S in our explicit examples. The

spectral norm of S, however, is too large to be useful: If S is ∆ ≤ N/3 regular and x is

the all 1 vector then Sx = (2∆ −N)x and so ‖S‖ ≥ N/3. Applying Forster’s theorem

to S yields that its sign rank is Ω(1), which is not informative.

Our solution is based on the observation that Forster’s argument actually proves a

stronger statement. His proof works as long as the entries of the matrix are not too

close to zero, as was already noticed in [22]. We therefore use a variant of the spectral

norm of a sign matrix S which we call star norm and denote by7

‖S‖∗ = min{‖M‖ : Mi,jSi,j ≥ 1 for all i, j}.

Three comments seem in place. (i) We do not think of the star norm as a norm. (ii) It

is always at most the spectral norm, ‖S‖∗ ≤ ‖S‖. (iii) Every M in the above minimum

satisfies sign-rank(M) = sign-rank(S).

Theorem 12 ([22]). Let S be an N ×N sign matrix. Then,

sign-rank(S) ≥ N

‖S‖∗
.

7The minimizer belongs to a closed subset of the bounded set {M : ‖M‖ ≤ ‖S‖}.
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For completeness, in Section 3.2 we provide a short proof of this theorem (which uses

the main lemma from [21] as a black box).

To get any improvement using this theorem, we must have ‖S‖∗ � ‖S‖. It is not a

priori obvious that there is a matrix S for which this holds. The following lemma shows

that spectral gaps yield such examples.

Theorem 13. Let S be a ∆ regular N×N sign matrix with ∆ ≤ N/2, and B its boolean

version. Then,

‖S‖∗ ≤ N · σ(B)

∆
.

In other words, every regular sign matrix whose boolean version has a spectral gap

has a small star norm. Theorem 12 and Theorem 13 immediately imply Theorem 6. In

Section 2.1, we provided concrete examples of matrices with a spectral gap, that have

applications in communication complexity, learning theory and geometry.

Proof of Theorem 13. Define the matrix

M =
N

∆
B − J.

Observe that since N ≥ 2∆ it follows that Mi,jSi,j ≥ 1 for all i, j. So,

‖S‖∗ ≤ ‖M‖.

Since B is regular, the all 1 vector y is a right singular vector of B with singular value

∆. Specifically, My = 0. For every x, write x = x1 + x2 where x1 is the projection of x

on y and x2 is orthogonal to y. Thus,

〈Mx,Mx〉 = 〈Mx2,Mx2〉 =
N2

∆2
〈Bx2, Bx2〉.

Note that ‖B‖ ≤ ∆ (and hence ‖B‖ = ∆). Indeed, since B is regular, there are ∆

permutation matrices B(1), . . . , B(∆) so that B is their sum. The spectral norm of each

B(i) is one. The desired bound follows by the triangle inequality.

Finally, since x2 is orthogonal to y,

‖Bx2‖ ≤ σ(B) · ‖x2‖ ≤ σ(B) · ‖x‖.

So,

‖M‖ ≤ N · σ(B)

∆
.
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3.1 Limitations

It is interesting to understand whether the approach above can give a better lower bound

on sign rank. There are two parts to the argument: Forster’s argument, and the upper

bound on ‖S‖∗. We can try to separately improve each of the two parts.

Any improvement over Forster’s argument would be very interesting, but as men-

tioned there is no significant improvement over it even without the restriction induced

by VC dimension, so we do not discuss it further.

To improve the second part, we would like to find examples with the biggest spectral

gap possible. The Alon-Boppana theorem [37] optimally describes limitations on spectral

gaps. The second eigenvalue σ of a ∆ regular graph is not too small,

σ ≥ 2
√

∆− 1− o(1),

where the o(1) term vanishes when N tends to infinity (a similar statement holds when

the diameter is large [37]). Specifically, the best lower bound on sign rank this approach

can yield is roughly
√

∆/2, at least when ∆ ≤ N o(1).

But what about general lower bounds on ‖S‖∗? It is well known that any N × N
sign matrix S satisfies ‖S‖ ≥

√
N . We prove a generalization of this statement.

Lemma 14. Let S be an N×N sign matrix. For i ∈ [N ], let γi be the minimum between

the number of 1’s and the number of −1’s in the i’th row. Let γ = γ(S) = max{γi : i ∈
[N ]}. Then,

‖S‖∗ ≥ N − γ
√
γ + 1

.

This lemma provides limitations on the bound from Theorem 13. Indeed, γ(S) ≤
N
2

and N−γ√
γ+1

is a monotone decreasing function of γ, which implies ‖S‖∗ ≥ Ω(
√
N).

Interestingly, Lemma 14 and Theorem 13 provide a quantitively weaker but a more

general statement than the Alon-Boppana theorem: If B is a ∆ regular N ×N boolean

matrix with ∆ ≤ N/2, then

N · σ(B)

∆
≥ N −∆√

∆ + 1
⇒ σ(B) ≥

(
1− ∆

N

)(√
∆− 1

)
.

This bound is off by roughly a factor of two when the diameter of the graph is large.

When the diameter is small, like in the case of the projective plane which we discuss

in more detail below, this bound is actually almost tight: The second largest singular

value of the boolean point-line incidence matrix of a projective plane of order n is
√
n

while this matrix is n+ 1 regular (c.f., e.g., [5]).

It is perhaps worth noting that in fact here there is a simple argument that gives a

slightly stronger result for boolean regular matrices. The sum of squares of the singular
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values of B is the trace of BtB, which is N∆. As the spectral norm is ∆, the sum of

squares of the other singular values is N∆−∆2 = ∆(N −∆), implying that

σ(B) ≥
√

∆(N −∆)

N − 1
,

which is (slightly) larger than the bound above.

Proof of Lemma 14. Let M be a matrix so that ‖M‖ = ‖S‖∗ and Mi,jSi,j ≥ 1 for all

i, j. Assume without loss of generality8 that γi is the number of −1’s in the i’th row of

S. If γ = 0, then S has only positive entries which implies ‖M‖ ≥ N as claimed. So,

we may assume γ ≥ 1. Let t be the largest real so that

t2 =
(N − γ − t)2

γ
. (1)

That is, if γ = 1 then t = N−γ
2

and if γ > 1 then

t =
−(N − γ) +

√
(N − γ)2 + (γ − 1)(N − γ)2

γ − 1
.

In both cases,

t =
N − γ
√
γ + 1

.

We shall prove that

‖M‖ ≥ t.

There are two cases to consider. One is that for all i ∈ [N ] we have
∑

jMi,j ≥ t. In

this case, if x is the all 1 vector then

‖M‖ ≥ ‖Mx‖
‖x‖

≥ t.

The second case is that there is i ∈ [N ] so that
∑

jMi,j < t. Assume without loss of

8Multiplying a row by −1 does not affect ‖S‖∗.
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generality that i = 1. Denote by C the subset of the columns j so that M1,j < 0. Thus,∑
j∈C

|M1,j| >
∑
j 6∈C

M1,j − t

≥ |[N ] \ C| − t (|Mi,j| ≥ 1 for all i, j)

≥ N − γ − t. (|C| ≤ γ)

Convexity of x 7→ x2 implies that(∑
j∈C

|M1,j|

)2

≤ |C|
∑
j∈C

M2
1,j,

so by (1) ∑
j

M2
1,j ≥

(N − γ − t)2

γ
= t2.

In this case, if x is the vector with 1 in the first entry and 0 in all other entries then

‖(M)Tx‖ =

√∑
j

M2
1,j ≥ t = t‖x‖.

Since ‖(M)T‖ = ‖M‖, it follows that ‖M‖ ≥ t.

3.2 Forster’s theorem

Here we provide a proof of Forster’s theorem, that is based on the following key lemma,

which he proved.

Lemma 15 ([21]). Let X ⊂ Rk be a finite set in general position, i.e., every k vectors

in it are linearly independent. Then, there exists an invertible matrix B so that∑
x∈X

1

‖Bx‖2
Bx⊗Bx =

|X|
k
I,

where I is the identity matrix, and Bx ⊗ Bx is the rank one matrix with (i, j) entry

(Bx)i(Bx)j.

The lemma shows that every X in general position can be linearly mapped to BX

that is, in some sense, equidistributed. In a nutshell, the proof of the lemma is by finding

B1, B2, . . . so that each Bi makes Bi−1X closer to being equidistributed, and finally using

that the underlying object is compact, so that this process reaches its goal.
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Proof of Theorem 12. Let M be a matrix so that ‖M‖ = ‖S‖∗ and Mi,jSi,j ≥ 1 for all

i, j. Clearly, sign-rank(S) = sign-rank(M). Let X, Y be two subsets of size N of unit

vectors in Rk with k = sign-rank(M) so that 〈x, y〉Mx,y > 0 for all x, y. Lemma 15 says

that we can assume ∑
x∈X

x⊗ x =
N

k
I; (2)

If necessary replace X by BX and Y by (BT )−1Y , and then normalize (the assump-

tion required in the lemma that X is in general position may be obtained by a slight

perturbation of its vectors).

The proof continues by bounding D =
∑

x∈X,y∈Y Mx,y〈x, y〉 in two different ways.

First, bound D from above: Observe that for every two vectors u, v, Cauchy-Schwartz

inequality implies

〈Mu, v〉 ≤ ‖Mu‖‖v‖ ≤ ‖M‖‖u‖‖v‖. (3)

Thus,

D =
k∑
i=1

∑
x∈X

∑
y∈Y

Mx,yxiyi

≤
k∑
i=1

‖M‖
√∑

x∈X

x2
i

√∑
y∈Y

y2
i ((3))

≤ ‖M‖

√√√√ k∑
i=1

∑
x∈X

x2
i

√√√√ k∑
i=1

∑
y∈Y

y2
i = ‖M‖N. (Cauchy-Schwartz)

Second, bound D from below: Since |Mx,y| ≥ 1 and |〈x, y〉| ≤ 1 for all x, y, using (2),

D =
∑
x∈X

∑
y∈Y

Mx,y〈x, y〉 ≥
∑
x∈X

∑
y∈Y

(〈x, y〉)2 =
∑
y∈Y

∑
x∈X

〈y, (x⊗ x)y〉 =
N

k

∑
y∈Y

〈y, y〉 =
N2

k
.

3.3 Projective spaces

Here we prove Theorem 7. It is well known that the VC dimension of A is d, but we

provide a brief explanation. The VC dimension is at least d by considering any set of d

independent points (i.e. so that no strict subset of it spans it). The VC dimension is at

most d since every set of d+ 1 points is dependent in a d dimensional space.
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The lower bound on the sign rank follows immediately from Theorem 6, and the

following known bound on the spectral gap of these matrices.

Lemma 16. If B is the boolean version of A then

σ(B)

∆
=
n

d−1
2 (n− 1)

nd − 1
≤ N

− 1
2

+ 1
2d

n,d .

The proof is so short that we include it here.

Proof. We use the following two known properties (see, e.g., [11]) of projective spaces.

Both the number of distinct hyperplanes through a point and the number of distinct

points on a hyperplane are Nn,d−1. The number of hyperplanes through two distinct

points is Nn,d−2.

The first property implies that A is ∆ = Nn,d−1 regular. These properties also imply

BBT = (Nn,d−1 −Nn,d−2) I +Nn,d−2J = nd−1I +Nn,d−2J.

Therefore, all singular values except the maximum one are n
d−1
2 .

4 VC dimension one

Our goal in this section to show that sign matrices with VC dimension one have sign

rank at most 3, and that 3 is tight. Before reading this section, it may be a nice exercise

to prove that the sign rank of the N × N signed identity matrix is exactly three (for

N ≥ 4).

Let us start by recalling a geometric interpretation of sign rank. Let M by an R×C
sign matrix. A d-dimensional embedding of M using half spaces consists of two maps

eR, eC so that for every row r ∈ [R] and column c ∈ [C], we have that eR(r) ∈ Rd, eC(c)

is a half space in Rd, and Mr,c = 1 iff eR(r) ∈ eC(c). The important property for us is

that if M has a d-dimensional embedding using half spaces then its sign rank is at most

d+ 1. The +1 comes from the fact that the hyperplanes defining the half spaces do not

necessarily pass through the origin.

Our goal in this section is to embed M with VC dimension one in the plane using

half spaces. The embedding is constructive and uses the following known claim (see,

e.g., [20]).

Claim 17. Let M be an R × C sign matrix with VC dimension one so that no row

appears twice in it, and every column c is shattered (i.e. the two values ±1 appear in it).

Then, there is a column c0 ∈ [C] and a row r0 ∈ [R] so that Mr0,c0 6= Mr,c0 for all r 6= r0

in [R].
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Proof. For every column c, denote by onesc the number of rows r ∈ [R] so that Mr,c = 1,

and let mc = min{onesc, R − onesc}. Assume without loss of generality that m1 ≤ mc

for all c, and that m1 = ones1. Since all columns are shattered, m1 ≥ 1. To prove the

claim, it suffices to show that m1 ≤ 1.

Assume towards a contradiction that m1 ≥ 2. For b ∈ {1,−1}, denote by M (b) the

submatrix of M consisting of all rows r so that Mr,1 = b. The matrix M (1) has at least

two rows. Since all rows are different, there is a column c 6= 1 so that two rows in M (1)

differ in c. Specifically, column c is shattered in M (1). Since VCdim(M) = 1, it follows

that c is not shattered in M (−1), which means that the value in column c is the same for

all rows of the matrix M (−1). Therefore, mc < m1, which is a contradiction.

The embedding we construct has an extra structure which allows the induction to

go through: The rows are mapped to points on the unit circle (i.e. set of points x ∈ R2

so that ‖x‖ = 1).

Lemma 18. Let M be an R × C sign matrix of VC dimension one so that no row

appears twice in it. Then, M can be embedded in R2 using half spaces, where each row

is mapped to a point on the unit circle.

The lemma immediately implies Threorem 2 due to the connection to sign rank

discussed above.

Proof. The proof follows by induction on C. If C = 1, the claim trivially holds.

The inductive step: If there is a column that is not shattered, then we can remove

it, apply induction, and then add a half space that either contains or does not contain

all points, as necessary.

So, we can assume all columns are shattered. By Claim 17, we can assume without

loss of generality that M1,1 = 1 but Mr,1 = −1 for all r 6= 1.

Denote by r0 the row of M so that Mr0,c = M1,c for all c 6= 1, if such a row exists. Let

M ′ be the matrix obtained from M by deleting the first column, and row r0 if it exists,

so that no row in M ′ appears twice. By induction, there is an appropriate embedding

of M ′ in R2.

The following is illustrated in Figure 1. Let x ∈ R2 be the point on the unit circle

to which the first row in M ′ was mapped to (this row corresponds to the first row of M

as well). The half spaces in the embedding of M ′ are defined by lines, which mark the

borders of the half spaces. The unit circle intersects these lines in finitely many points.

Let y, z be the two closest points to x among all these intersection points. Let y′ be the

point on the circle in the middle between x, y, and let z′ be the point on the circle in

the middle between x, z. Add to the configuration one more half space which is defined

by the line passing through y′, z′. If in addition row r0 exists, then map r0 to the point

x0 on the circle which is right in the middle between y, y′.
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y

y′
x

z′
z

x0

Figure 1: An example of a neighbourhood of x. All other points in embedding of M ′

are to left of y and right of z on the circle. The half space defined by the line through
y′, z′ is coloured light gray.

This is the construction. Its correctness follows by induction, by the choice of the

last added half space which separates x from all other points, and since if x0 exists it

belongs to the same cell as x in the embedding of M ′.

We conclude the section by showing that the bound 3 above cannot be improved.

Proof of Claim 3. One may deduce the claim from Forster’s argument, but we provide

a more elementary argument. It suffices to consider the case N = 4. Consider an

arrangement of four half planes in R2. These four half planes partition R2 to eight cones

with different sign signatures, as illustrated in Figure 2. Let M be the 8× 4 sign matrix

whose rows are these sign signatures. The rows of M form a distance preserving cycle

(i.e. the distance along cycle is hamming distance) of length eight in the discrete cube

of dimension four9. Finally, the signed identity matrix is not a submatrix of M . To

see this, note that the four rows of the signed identity matrix have pairwise hamming

distance two, but there are no such four points (not even three points) on this cycle of

length eight.

9The graph with vertex set {±1}4 where every two vectors of hamming distance one are connected
by an edge.
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Figure 2: Four lines defining four half planes, and the corresponding eight sign signatures.

5 Sign rank and VC dimension

In this section we study the maximum possible sign rank of N × N matrices with VC

dimension d, presenting the proofs of Proposition 1 and Theorems 5 and 4. We also show

that the arguments supply a new, short proof and an improved estimate for a problem

in asymptotic enumeration of graphs studied in [1].

5.1 The upper bound

In this subsection we prove Theorem 5. The proof is short, but requires several ingredi-

ents. The first one has been mentioned already, and appears in [6]. For a sign matrix

S, let SC(S) denote the maximum number of sign changes (SC) along a column of S.

Define SC∗(S) = minSC(M) where the minimum is taken over all matrices M obtained

from S by a permutation of the rows.

Lemma 19 ([6]). For any sign matrix S, sign-rank(S) ≤ SC∗(S) + 1.

Of course we can replace here rows by columns, but for our purpose the above version

will do.

The second result we need is a theorem of Welzl [47] (see also [17]). As observed, for

example, in [33], plugging in its proof a result of Haussler [25] improves it by a logarithmic

factor, yielding the result we describe next. For a function g mapping positive integers

to positive integers, we say that a sign matrix S satisfies a primal shatter function g if

for any integer t and any set I of m columns of S, the number of distinct projections of

the rows of S on I is at most g(t). The result of Welzl (after its optimization following
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[25]) can be stated as follows10.

Lemma 20 ([47], see also [17, 33]). Let S be a sign matrix with N rows that satisfies

the primal shatter function g(t) = ctd for some constants c ≥ 0 and d > 1. Then

SC∗(S) ≤ O(N1−1/d).

Proof of Theorem 5. Let S be an N × N sign matrix of VC dimension d > 1. By

Sauer’s lemma [39], it satisfies the primal shatter function g(t) = td. Hence, by Lemma

20, SC∗(S) ≤ O(N1−1/d). Therefore, by Lemma 19, sign-rank(S) ≤ O(N1−1/d).

5.1.1 On the tightness of the argument

The proof of Theorem 5 works, with essentially no change, for a larger class of sign

matrices than the ones with VC dimension d. Indeed, the proof shows that the sign

rank of any N × N matrix with primal shatter function at most ctd for some fixed c

and d > 1 is at most O(N1−1/d). In this statement the estimate is sharp for all integers

d, up to a logarithmic factor. This follows from the construction in [8], which supplies

N ×N boolean matrices so that the number of 1 entries in them is at least Ω(N2−1/d),

and they contain no d by D = (d − 1)! + 1 submatrices of 1’s. These matrices satisfy

the primal shatter function g(t) = D
(
t
d

)
+
∑d−1

i=0

(
t
i

)
(with room to spare). Indeed, if we

have more than that many distinct projections on a set of t columns, we can omit all

projections of weight at most d− 1. Each additional projection contains 1’s in at least

one set of size d, and the same d-set cannot be covered more than D times. Plugging

this matrix in the counting argument that gives a lower bound for the sign rank using

Lemma 26 proven below supplies an Ω(N1−1/d/ logN) lower bound for the sign rank of

many N ×N matrices with primal shatter function O(td).

We have seen in Lemma 19 that sign rank is at most of order SC∗. Moreover, for

a fixed r, many of the N × N sign matrices with sign rank at most r also have SC∗

at most r: Indeed, a simple counting argument shows that the number of N × N sign

matrices M with SC(M) < r is(
2 ·

r−1∑
i=0

(
N − 1

i

))N

= 2Ω(rN logN),

so, the set of N ×N sign matrices with SC∗(M) < r is a subset of size 2Ω(rN logN) of all

N ×N sign matrices with sign rank at most r. How many N ×N matrices of sign rank

at most r are there? by Lemma 26 proved in the next section, this number is at most

10The statement in [47] and the subsequent papers is formulated in terms of somewhat different
notions, but it is not difficult to check that it is equivalent to the statement below.
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2O(rN logN). So, the set of matrices with SC∗ < r is a rather large subset of the set of

matrices with sign rank at most r.

It is reasonable, therefore, to wonder whether an inequality in the other direction

holds. Namely, whether all matrices of sign rank r have SC∗ order of r. We now

describe an example which shows that this is far from being true, and also demonstrates

the tightness of Lemma 20. Namely, for every constant d > 1, there are N ×N matrices

S, which satisfy the primal shatter function g(t) = ctd for a constant c, and on the other

hand SC∗(S) ≥ Ω(N1−1/d). Consider the grid of points P = [n]d as a subset of Rd.

Denote by e1, . . . , ed the standard unit vectors in Rd. For i ∈ [n− 1] and j ∈ [d], define

the hyperplane hi,j = {x : 〈x, ej〉 > i + (1/2)}. Denote by H the set of these d(n − 1)

axis parallel hyperplanes. Let S be the P ×H sign matrix defined by P and H. That

is, Sp,h = 1 iff p ∈ h. First, the matrix S satisfies the primal shatter function ctd, since

every family of t hyperplanes partition Rd to at most ctd cells. Second, we show that

SC∗(S) ≥ nd − 1

d(n− 1)
≥ |P |

1−1/d

d
.

Indeed, fix some order on the rows of S, that is, order the points P = {p1, . . . , pN} with

N = |P |. The key point is that one of the hyperplanes h0 ∈ H is so that the number of

i ∈ [N−1] for which Spi,h0 6= Spi+1,h0 is at least (nd−1)/(d(n−1)): For each i there is at

least one hyperplane h that separates pi and pi+1, that is, for which Spi,h 6= Spi+1,h. The

number of such pairs of points is nd− 1, and the number of hyperplanes is just d(n− 1).

5.1.2 The number of matrices with a given VC dimension

The proof of Theorem 5 also supplies an upper bound for the number of N×N matrices

with VC dimension d, and in fact with primal shatter function O(td). Indeed, in each

such matrix one can permute the rows and get a matrix in which the number of sign

changes in each column is O(N1−1/d). The number of ways to choose the permutation

is N !, and then the number of ways to choose each column is at most 2O(N1−1/d logN).

This gives that the total number of such matrices is at most 2O(N2−1/d logN). By the

discussion above, this is tight up to the logarithm in the exponent for d = 2, and for

counting matrices with primal shatter function O(td) it is tight up to this logarithm for

any integer d > 1, by the construction using the matrices of [8]. For VC dimension 1, it

is not difficult to show that the correct number is 2Θ(N logN).

5.1.3 An algorithm approximating the sign rank

In this section we describe an efficient algorithm that approximates the sign rank (The-

orem 8).
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The algorithm uses the following notion. Let V be a set. A pair v, u ∈ V is crossed

by a vector c ∈ {±1}V if c(v) 6= c(u). Let T be a tree with vertex set V = [N ] and edge

set E. Let S be a V × [N ] sign matrix. The stabbing number of T in S is the largest

number of edges in T that are crossed by the same column of S. For example, if T is a

path then T defines a linear order (permutation) on V and the stabbing number is the

largest number of sign changes among all columns with respect to this order.

Welzl [47] gave an efficient algorithm for computing a path T with a low stabbing

number for matrices S with VC dimension d. The analysis of the algorithm can be

improved by a logarithmic factor using a result of Haussler [25].

Theorem 21 ([47, 25]). There exists a polynomial time algorithm such that given a

V × [N ] sign matrix S with |V | = N , outputs a path on V with stabbing number at most

200N1−1/d where d = V C(S).

For completeness, and since to the best of our knowledge no explicit proof of this

theorem appears in print, we provide a description and analysis of the algorithm. We

assume without loss of generality that the rows of S are pairwise distinct.

We start by handling the case11 d = 1. In this case, we directly output a tree that is

a path (i.e., a linear order on V ). If d = 1, then Claim 17 implies that there is a column

with at most 2 sign changes with respect to any order on V . The algorithm first finds

by recursion a path T for the matrix obtained from S by removing this column, and

outputs the same path T for the matrix S as well. By induction, the resulting path has

stabbing number at most 2 (when there is a single column the stabbing number can be

made 1).

For d > 1, the algorithm constructs a sequence of N forests F0, F1, . . . , FN−1 over the

same vertex set V . The forest Fi has exactly i edges, and is defined by greedily adding

an edge ei to Fi−1. As we prove below, the tree FN−1 has a stabbing number at most

100N1−1/d. The tree FN−1 is transformed to a path T as follows. Let v1, v2, . . . , v2N−1

be an eulerian path in the graph obtained by doubling every edge in FN−1. This path

traverses each edge of FN−1 exactly twice. Let S ′ be the matrix with 2N−1 rows and N

columns obtained from S be putting row vi in S as row i, for i ∈ [2N − 1]. The number

of sign changes in each column in S ′ is at most 2 · 100N1−1/d. Finally, let T be the path

obtained from the eulerian path by leaving a single copy of each row of S. Since deleting

rows from S ′ cannot increase the number of sign changes, the path T is as stated.

The edge ei is chosen as follows. The algorithm maintains a probability distribution

pi on [N ]. The weight wi(e) of the pair e = {v, u} is the probability mass of the columns

e crosses, that is, wi(e) = pi({j ∈ [N ] : Su,j 6= Sv,j}). The algorithm chooses ei as an

edge with minimum wi-weight among all edges that are not in Fi−1 and do not close a

cycle in Fi−1.

11This analysis also provides an alternative proof for Lemma 18.
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The distributions p1, . . . , pN are chosen iteratively as follows. The first distribution

p1 is the uniform distribution on [N ]. The distribution pi+1 is obtained from pi by

doubling the relative mass of each column that is crossed by ei. That is, let xi = wi(ei),

and for every column j that is crossed by ei define pi+1(j) = 2pi(j)
1+xi

, and for every other

column j define pi+1(j) = pi(j)
1+xi

.

This algorithm clearly produces a tree on V , and the running time is indeed polyno-

mial in N . It remains to prove correctness. We claim that each column is crossed by at

most O(N1−1/d) edges in T . To see this, let j be a column in S, and let k be the number

of edges crossing j. It follows that

pN(j) =
1

N
· 2k · 1

(1 + x1)(1 + x2) . . . (1 + xN−1)
.

To upper bound k, we use the following claim.

Claim 22. For every i we have xi ≤ 4e2(N − i)−1/d.

The claim completes the proof of Theorem 21: Since pN(j) ≤ 1 and d > 1,

k ≤ logN + log (1 + x1) + . . .+ log (1 + xN−1)

≤ logN + 4e2
(
N−1/d + . . .+ 2−1/d

)
≤ logN + 8e2N1−1/d ≤ 100N1−1/d.

The claim follows from the following theorem of Haussler.

Theorem 23 ([25]). Let p be a probability distribution on [N ], and let ε > 0. Let

S ∈ {±1}V×[N ] be a sign matrix of VC dimension d so that the p-distance between every

two distinct rows u, v is large:

p({j ∈ [N ] : Sv,j 6= Su,j}) ≥ ε.

Then, the number of distinct rows in S is at most

e(d+ 1) (2e/ε)d ≤
(
4e2/ε

)d
.

Proof of Claim 22. Haussler’s theorem states that if the number of distinct rows is M ,

then there must be two distinct rows of pi-distance at most 4e2M−1/d. There are N − i
connected components in Fi. Pick N − i rows, one from each component. Therefore,

there are two of these rows whose distance is at most 4e2M−1/d = 4e2(N − i)−1/d. Now,

observe that the wi-weight of the pair {u, v} equals the pi-distance between u, v. Since

ei is chosen to have minimum weight, xi ≤ 4e2(N − i)−1/d

We now describe the approximation algorithm. Let S be an N × N sign matrix of

VC dimension d. Run Welzl’s algorithm on S, and get a permutation of the rows of S
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that yield a low stabbing number. Let s be the maximum number of sign changes among

all columns of S with respect to this permutation. Output s + 1 as the approximation

to the sign rank of S.

We now analyze the approximation ratio. By Lemma 19 the sign rank of S is at

most s + 1. Therefore, the approximation factor s+1
sign-rank(S)

is at least 1. On the other

hand, Proposition 1 implies that d ≤ sign-rank(S). Thus, by the guarantee of Welzl’s

algorithm,

s+ 1

sign-rank(S)
≤ O

(
N1−1/d

sign-rank(S)

)
≤ O

(
N1−1/d

d

)
.

This factor is maximized for d = Θ(logN) and is therefore at most O(N/ logN).

5.1.4 An application: counting graphs

Proof of Theorem 11. The key observation is that whenever we split the vertices of a

U(d+1)-free graph into two disjoint sets of equal size, the bipartite graph between them

defines a matrix of VC dimension at most d. Hence, the number of such bipartite graphs

is at most

T (N, d) = 2O(N2−1/d logN).

By a known lemma of Shearer [18], this implies that the total number of U(d + 1)-free

graphs on N vertices is less than T (N, d)2 = 2O(N2−1/d logN). For completeness, we include

the simple details. The lemma we use is the following.

Lemma 24 ([18]). Let F be a family of vectors in S1×S2 · · ·×Sn. Let G = {G1, . . . , Gm}
be a collection of subsets of [n], and suppose that each element i ∈ [n] belongs to at least

k members of G. For each 1 ≤ i ≤ m, let Fi be the set of all projections of the members

of F on the coordinates in Gi. Then

|F|k ≤
m∏
i=1

|Fi|.

In our application, n =
(
N
2

)
and S1 = . . . = Sn = {0, 1}. The vectors represent

graphs on N vertices, each vector being the characteristic vector of a graph on N labeled

vertices. The set [n] corresponds to the set of all
(
N
2

)
potential edges. The family F

represents all U(d+ 1)-free graphs. The collection G is the set of all complete bipartite

graphs with N/2 vertices in each color class. Each edge i ∈ [n] belongs to at least (in
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fact a bit more than) half of them, i.e., k ≥ m/2. Hence,

|F| ≤

(
m∏
i=1

|Fi|

)2/m

≤ ((T (N, d))m)2/m ,

as desired.

5.2 The lower bound

In this subsection we prove Theorem 4. Our approach follows the one of [6], which is

based on known bounds for the number of sign patterns of real polynomials. A similar

approach has been subsequently used in [10] to derive lower bounds for f(N, d) for d ≥ 4,

but here we do it in a slightly more sophisticated way and get better bounds.

Although we can use the estimate in [6] for the number of sign matrices with a given

sign rank, we prefer to describe the argument by directly applying a result of Warren

[46], described next.

Let P = (P1, P2, . . . , Pm) be a list of m real polynomials, each in ` variables. Define

the semi-variety

V = V (P ) = {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}.

For x ∈ V , the sign pattern of P at x is the vector

(sign(P1(x)), sign(P2(x)), . . . , sign(Pm(x))) ∈ {−1, 1}m.

Let s(P ) be the total number of sign patterns of P as x ranges over all of V . This

number is bounded from above by the number of connected components of V .

Theorem 25 ([46]). Let P = (P1, P2, . . . , Pm) be a list of real polynomials, each in `

variables and of degree at most k. If m ≥ ` then the number of connected components

of V (P ) (and hence also s(P )) is at most (4ekm/`)`.

An N×N matrix M is of rank at most r iff it can be written as a product M = M1·M2

of an N×r matrix M1 by an r×N matrix M2. Therefore, each entry of M is a quadratic

polynomial in the 2Nr variables describing the entries of M1 and M2. We thus deduce

the following from Warren’s Theorem stated above.

Lemma 26. Let r ≤ N/2. Then, the number of N × N sign matrices of sign rank at

most r does not exceed (O(N/r))2Nr ≤ 2O(rN logN).

For a fixed r, this bound for the logarithm of the above quantity is tight up to

a constant factor: As argued in Subsection 5.1.1, there are at least some 2Ω(rN logN)

matrices of sign rank r.
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In order to derive the statement of Theorem 4 from the last lemma it suffices to

show that the number of N × N sign matrices of VC dimension d is sufficiently large.

We proceed to do so. It is more convenient to discuss boolean matrices in what follows

(instead of their signed versions).

Proof of Theorem 4. There are 4 parts as follows.

1. The case d = 2: Consider the N ×N incidence matrix A of the projective plane with

N points and N lines, considered in the previous sections. The number of 1 entries in A

is (1 + o(1))N3/2, and it does not contain J2×2 (the 2× 2 all 1 matrix) as a submatrix,

since there is only one line passing through any two given points. Therefore, any matrix

obtained from it by replacing ones by zeros has VC dimension at most 2, since every

matrix of VC dimension 3 must contain J2×2 as a submatrix. This gives us 2(1+o(1))N3/2

distinct N×N sign matrices of VC dimension at most 2. Lemma 26 therefore establishes

the assertion of Theorem 4, part 1.

2. The case d = 3: Call a 5× 4 binary matrix heavy if its rows are the all 1 row and the

4 rows with Hamming weight 3. Call a 5× 4 boolean matrix heavy-dominating if there

is a heavy matrix which is smaller or equal to it in every entry.

We claim that there is a boolean N ×N matrix B so that the number of 1 entries in

it is at least Ω(N23/15), and it does not contain any heavy-dominating 5× 4 submatrix.

Given such a matrix B, any matrix obtained from B by replacing some of the ones by

zeros have VC dimension at most 3. This implies part 2 of Theorem 4, using Lemma 26

as before.

The existence of B is proved by a probabilistic argument. Let C be a random binary

matrix in which each entry, randomly and independently, is 1 with probability p = 1
2N7/15 .

Let X be the random variable counting the number of 1 entries of C minus twice the

number of 5× 4 heavy-dominant submatrices C contains. By linearity of expectation,

E(X) ≥ N2p− 2N4+5p1·4+4·3 = Ω(N23/15).

Fix a matrix C for which the value of X is at least its expectation. Replace at most two

1 entries by 0 in each heavy-dominant 5× 4 submatrix in C to get the required matrix

B.

3. The case d = 4: The basic idea is as before, but here there is an explicit construction

that beats the probabilistic one. Indeed, Brown [14] constructed an N × N boolean

matrix B so that the number of 1 entries in B is at least Ω(N5/3) and it does not

contain J3×3 as a submatrix (see also [8] for another construction). No set of 5 rows in

every matrix obtained from this one by replacing 1’s by 0’s can be shattered, implying

the desired result as before.

4. The case d > 4: The proof here is similar to the one in part 2. We prove by a
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probabilistic argument that there is an N × N binary matrix B so that the number of

1 entries in it is at least

Ω(N2−(d2+5d+2)/(d3+2d2+3d))

and it contains no heavy-dominant submatrix. Here, heavy-dominant means a 1 + (d+

1) +
(
d+1

2

)
by d + 1 matrix that is bigger or equal in each entry than the matrix whose

rows are all the distinct vectors of length d+ 1 and Hamming weight at least d− 1. Any

matrix obtained by replacing 1’s by 0’s in B cannot have VC dimension exceeding d.

The result follows, again, from Lemma 26.

We start as before with a random matrix C in which each entry, randomly and

independently, is chosen to be 1 with probability

p =
1

2
·N

2−1−(d+1)−(d+1
2 )−(d+1)

1·(d+1)+(d+1)·d+(d+1
2 )·(d−1)−1 =

1

2N (d2+5d+2)/(d3+2d2+3d)
.

Let X be the random variable counting the number of 1 entries of C minus three times

the number of heavy-dominant submatrices C contains. As before, E(X) ≥ Ω(N2p),

and by deleting some of the 1’s in C we get B.

6 Concluding remarks and open problems

We have given explicit examples of N ×N sign matrices with small VC dimension and

large sign rank. However, we have not been able to prove that any of them has sign

rank exceeding N1/2. Indeed this seems to be the limit of Forster’s approach, even if

we do not bound the VC dimension. Forster’s theorem shows that the sign rank of any

N × N Hadamard matrix is at least N1/2. It is easy to see that there are Hadamard

matrices of sign rank significantly smaller than linear in N . Indeed, the sign rank of the

4×4 signed identity matrix is 3, and hence the sign rank of its k’th tensor power, which

is an N × N Hadamard matrix with N = 4k, is at most 3k = N log 3/ log 4. It may well

be, however, that some Hadamard matrices have sign rank linear in N , as do random

sign matrices, and it will be very interesting to show that this is the case for some such

matrices.

It will also be interesting to decide what is the correct behavior of the sign rank of

the incidence graph of the points and lines of a projective plane with N points. We have

seen that it is at least Ω(N1/4) and at most O(N1/2).

We have shown that the maximum sign rank f(N, d) of an N ×N matrix with VC

dimension d > 1 is at most O(N1−1/d), and that this is tight up to a logarithmic factor

for d = 2, and close to being tight for large d. It seems plausible to conjecture that

f(N, d) = Θ̃(N1−1/d) for all d > 1.
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We have also showed how to use this upper bound to get a nontrivial approximation

algorithm for the sign rank. It will be interesting to fully understand the computational

complexity of computing the sign rank.

Finally we note that most of the analysis in this paper can be extended to deal

with M ×N matrices, where M and N are not necessarily equal, and we restricted the

attention here for square matrices mainly in order to simplify the presentation.
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[6] N. Alon, P. Frankl, and V. Rödl. Geometrical realization of set systems and prob-

abilistic communication complexity. In 26th Annual Symposium on Foundations of

Computer Science, pages 277–280, 1985.

[7] N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of range

spaces of finite Vapnik-Chervonenkis dimension. In Symposium on Computational

Geometry, pages 331–340, 1987.
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A Duality

Here we discuss the connection between VC dimension and dual sign rank.

We start with an equivalent definition of dual sign rank, that is based on the following

notion. We say that a set of columns C is antipodally shattered in a sign matrix S if for

each v ∈ {±1}C , either v or −v appear as a row in the restriction of S to the columns

in C.

Claim 27. The set of columns C is antipodally shattered in S if and only if in every

matrix M with sign(M) = S the columns in C are linearly independent.

Proof. First, assume C is such that there exists some M with sign(M) = S in which

the columns in C are linearly dependent. For a column j ∈ C, denote by M(j) the j’th

column in M . Let {αj : j ∈ C} be a set of real numbers so that
∑

j∈C αjM(j) = 0 and

not all αj’s are zero. Consider the vector v ∈ {±1}C such that vj = 1 if αj ≥ 0 and

vj = −1 if αj < 0. The restriction of S to C does not contain v nor −v as a row, which

certifies that C is not antipodally shattered by S.

Second, let C be a set of columns which is not antipodally shattered in S. Let

v ∈ {±1}C be such that both v,−v do not appear as a row in the restriction of S to C.

Consider the subspace U = {u ∈ RC :
∑

j∈C ujvj = 0}. For each sign vector s ∈ {±1}C
so that s 6= ±v, the space U contains some vector us such that sign(us) = s. Let M be

so that sign(M) = S and in addition for each row in S that has pattern s ∈ {±}C in S

restricted to C, the corresponding row in M restricted to C is us ∈ U . All rows in M

restricted to C are in U , and therefore the set {M(j) : j ∈ C} is linearly dependent.

Corollary 28. The dual sign rank of S is the maximum size of a set of columns that

are antipodally shattered in S.

Now, we prove Proposition 1:

V C(S) ≤ dual-sign-rank(S) ≤ 2V C(S) + 1.

The left inequality: The VC dimension of S is at most the maximum size of a set

of columns that is antipodally shattered in S, which by the above claim equals the dual

sign rank of S.

The right inequality: Let C be a largest set of columns that is antipodally shattered

in S. By the claim above, the dual sign rank of S is |C|. Let A ⊆ C such that

|A| = b|C|/2c. If A is shattered in S then we are done. Otherwise, there exists some

v ∈ {±1}A that does not appear in S restricted to A. Since C is antipodally shattered

by S, this implies that S contains all patterns in {±1}C whose restriction to A is −v.

In particular, S shatters C \ A which is of size at least b|C|/2c.
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