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Abstract

An r-augmented tree is a rooted tree plus r edges added from each leaf to ancestors.
For d, g, r ∈ N, we construct a bipartite r-augmented complete d-ary tree having girth
at least g. The height of such trees must grow extremely rapidly in terms of the girth.

Using the resulting graphs, we construct sparse non-k-choosable bipartite graphs,
showing that maximum average degree at most 2(k− 1) is a sharp sufficient condition
for k-choosability in bipartite graphs, even when requiring large girth. We also give a
new simple construction of non-k-colorable graphs and hypergraphs with any girth g.

1 Introduction

A graph G is k-choosable if, for every way of assigning a list L(v) of k colors to each vertex

v ∈ V (G), there is a proper coloring f of G with f(v) ∈ L(v) for all v. The choice number

of a graph is the least k such that it is k-choosable. If every subgraph has average degree

less than k, then it has a vertex with degree less than k, and inductively it is k-choosable.

For bipartite graphs, one can guarantee k-choosability with average degree up to 2(k−1).

Using (an early version of) the Combinatorial Nullstellensatz [1], Alon and Tarsi [2] proved
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Theorem 1.1 below, which implied the conjecture of [5] that planar bipartite graphs are 3-

choosable. As mentioned in [2], another route to the result was subsequently noted by Bondy,

Boppana, and Siegel, as follows. A kernel of a digraph is an independent set S containing

a successor of every vertex outside S. If a graph G has an orientation D with maximum

outdegree less than k, and every induced subdigraph of D has a kernel, then inductively G

is k-choosable. Richardson [14] proved that every digraph with no odd cycle has a kernel.

Hakimi [7] proved that G has an orientation with maximum outdegree at most k − 1 when

all induced subgraphs have average degree at most 2(k − 1).

Theorem 1.1 ([2]). If G is a bipartite graph such that every subgraph has average degree at

most 2(k − 1), then G is k-choosable.

We show that Theorem 1.1 is sharp in a strong sense: we construct non-k-choosable

bipartite graphs G such that after deleting any edge from G, all subgraphs of the remaining

graph have average degree at most 2(k−1). Thus our graphs are (k+1)-choice-critical. Fur-

thermore, such examples exist with arbitrarily large girth. We prove the following theorem.

Theorem 1.2. For g, k ∈ N, there is a bipartite graph G with girth at least g that is not

k-choosable even though every proper subgraph has average degree at most 2(k − 1).

To prove this, we consider a new problem. Let an r-augmented tree be a graph consisting

of a rooted tree (called the underlying tree) plus edges from each leaf to r of its ancestors

(called augmenting edges). A complete d-ary tree of height m is a rooted tree whose internal

vertices have d children and whose leaves have distance m from the root. For d, r, g ∈ N, let

a (d, r, g)-graph be a bipartite r-augmented complete d-ary tree with girth at least g.

Theorem 1.3. For d, r, g ∈ N, there exists a (d, r, g)-graph.

In Section 2 we prove Theorem 1.3, and in Section 3 we give several applications. In

Section 3.1 we present a simple construction of t-uniform hypergraphs with arbitrarily large

girth and chromatic number, for all t. For t = 2, Erdős [3] used the probabilistic method to

prove existence; see also [4, 8] for subsequent work. Explicit constructions followed in [11,

12, 13]. These are inductive and, except for [11], use hypergraphs with large edges. Using

(d, r, g)-graphs (built inductively), our construction is non-inductive and does not involve

hypergraphs with larger edges. Moreover, the same method provides explicit high girth

hypergraphs of any uniformity based on (d, r, g)-graphs, without using hypergraphs (besides

those constructed) in the process.

We prove Theorem 1.2 in Section 3.2. Stronger versions involving restricted list as-

signments are proved in Section 3.3. For example, when the lists at adjacent vertices are

disjoint, every coloring chosen from the lists is proper. We extend the analysis of the graph
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constructed for Theorem 1.2 by constructing a k-list assignment in which any two adjacent

lists have exactly one common color and yet no proper coloring can be chosen.

One can also restrict list assignments by bounding the size of the union of the lists. For

bipartite graphs, a proper coloring can be chosen from any k-lists whose union has size at

most 2k − 2. We prove that this is sharp (for any girth) by constructing a bipartite graph

with k-lists whose union has size 2k − 1 from which no proper coloring can be chosen.

Finally, in Section 4 we discuss the height of the trees used in Theorem 1.3. For fixed

d ≥ 2 and r ≥ 1, we show that the height must grow extremely rapidly in terms of the girth.

2 Augmented trees

In this section and throughout, we restrict g to be even. If there is a (d, r, g)-graph, then

let m(d, r, g) denote the least height of the underlying tree in such a graph (otherwise, let

m(d, r, g) =∞). Theorem 1.3 is the statement that m(d, r, g) is finite for all d, r, g ∈ N. We

prove this by double induction, using the following three lemmas.

Lemma 2.1. For d, r ∈ N, we have m(d, r, 4) = 2r + 1.

Lemma 2.2. For g, d ∈ N with g at least 4 and even, m(d, 1, g + 2) ≤ 2 +m(d, d2, g).

Lemma 2.3. With d, r, g as above, m(d, r+1, g) ≤ m1 +m2−1, where m1 = 2
⌊
m(d,1,g)

2

⌋
+ 1

and m2 = m(dm1 , r, g).

These three lemmas imply the finiteness of m(d, r, g) for all d, r, g ∈ N with g even and

at least 4. Letting P (r, g) denote the claim that m(d, r, g) is finite for all d, we prove P (r, g)

by induction on g. As the base step, P (r, 4) holds for all r by Lemma 2.1. If P (r, g) holds

for all r, then we prove P (r, g + 2) by induction on r: first P (1, g + 2) holds by Lemma 2.2

(using the truth of P (r, g) for all r), and then P (r + 1, g + 2) follows from P (r, g + 2) by

Lemma 2.3 (since P (1, g + 2) also holds). This completes the proof of Theorem 1.3.

It remains to prove the three lemmas. Lemma 2.1 is trivial: just make each leaf adjacent

to its r non-parent ancestors at odd distance from it in the tree.

Proof of Lemma 2.2. LetG′ with underlying tree T ′ be a (d, d2, g)-graph with heightm(d, d2, g).

Replace each leaf v of T ′ with a complete d-ary tree Tv of height 2 rooted at v. Replace the

augmenting edges from v to its ancestors by letting the d2 lower endpoints be the leaves of

Tv instead of v. This produces a 1-augmented complete d-ary tree G of height 2+m(d, d2, g).

Since each augmenting edge has had its lower endpoint moved two levels down, G is bipartite.

If G has a cycle C of length at most g, then C must contain an augmenting edge, say

xy, with y being a leaf in the underlying tree T of G. Let v be the leaf in T ′ such that y is

in Tv. Since dG(y) = 2, the cycle C contains the edge yy′ of Tv incident with y. Contracting
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the added subtrees of height 2 into leaves of T ′ contracts C to a closed walk C ′ in G′ of

length less than g. Since C ′ traverses edge vx only once, the remaining walk from x to v

along C ′ contains a path that with vx completes a cycle of G′ having length less than g, a

contradiction. Thus G has no cycles of length less than g + 2.

Proof of Lemma 2.3. Fix r. Assuming for all d and g that m(d, r, g) and m(d, 1, g) are finite,

let m1 = 2 bm(d, 1, g)/2c + 1 and m2 = m(dm1 , r, g). Note that m1 is the least odd integer

that is at least m(d, 1, g). We construct the desired graph G from two graphs G1 and G2.

For G1 we use a (d, 1, g)-graph having height m1. If m(d, 1, g) is odd, then m1 = m(d, 1, g)

and we use a shortest (d, 1, g)-graph. If m(d, 1, g) is even, then m1 = m(d, 1, g) + 1, and we

form G1 from d copies of a shortest (d, 1, g)-graph by adding a new root having the roots of

those graphs as children.

For G2, let d′ = dm1 , and consider a (d′, r, g)-graph H having height m2. Let G2 be an

induced subgraph of H formed by starting from the root of the underlying tree of H and

keeping only d children of each included vertex, except that all d′ children are kept at the

last level. Thus G2 has an underlying tree T ′ of height m2, and deleting the dm2−1d′ leaves

of T ′ yields a complete d-ary tree of height m2− 1. All ancestors in H of a leaf of T ′ appear

in T ′, so each leaf of T ′ has r ancestors as neighbors in G2.

Now we construct G from G1 and G2. In G2, let S(u) be the star consisting of a vertex u

at level m2−1 and its d′ leaf children. Replace each S(u) with a copy G1(u) of the graph G1,

so that the d′ leaves in G1 each become one of the leaves in S(u), inheriting the r augmenting

edges that were incident to that leaf in G2. We call the augmenting edges obtained from G2

in this way long edges ; the augmenting edges in G1(u) are short edges.

The underlying tree in our construction thus has two parts. The top part is the tree T ′

for G2 without its bottom level; it has height m2 − 1. The bottom part, with height m1,

consists of copies of G1. Each leaf has one incident short edge from G1 and r incident long

edges inherited from G2. Thus G is an (r + 1)-augmented complete d-ary tree of height

m1 + m2 − 1. When replacing one of the r augmenting edges from a leaf of G2 by a long

edge, the difference in the heights of the endpoints increases by m1 − 1. Since m1 is odd,

this change is even, so G is bipartite.

A cycle C in G that contains no long edges is a cycle in a copy of G1 and hence has

length at least g. When C contains a long edge, contracting a subtree G1(u) into a star S(u)

contracts C to a closed walk C ′ in G2 using an augmenting edge e. Since leaves of G1(u)

correspond bijectively to leaves of S(u), the edge e is not repeated in C ′. Hence the other

walk in C ′ joining its endpoints contains a path that completes a cycle with e. Since this is

a cycle in G2 and has length at least g, also C has length at least g.

This completes the proof of Lemma 2.3 and Theorem 1.3.
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3 Applications

In a complete k-ary tree, a full path is a path from the root to a leaf. Let [k] = {1, . . . , k}.
A [k]-coloring is a k-coloring using the colors in [k].

Definition 3.1. Given an ordering of the children at each internal vertex, the vertices of

a complete k-ary tree with height m correspond naturally to the strings of length at most

m from the alphabet [k]. Define an edge-coloring φ by letting the color of each edge from

parent x to child y be the index of y in the ordering of the children of x (note that φ is not

a proper coloring). For a [k]-coloring f of the vertices of T , a full path P is an f -path if the

color of each non-leaf vertex on P equals the color of the edge to its child on P .

Whenever f is a [k]-coloring of a complete k-ary tree, there is a unique f -path: just start

from the root and repeatedly follow the descending edge whose color matches the color of

the current vertex. Similarly, every full path is an f -path for some [k]-coloring f .

3.1 Large chromatic number and girth

As mentioned in the introduction, there exist t-uniform hypergraphs with large chromatic

number and girth. Our (d, r, g)-graphs provide a remarkably simple such construction. It has

the benefits of being non-recursive (once (d, r, g)-graphs are constructed), and not involving

hypergraphs as inputs to the construction. Thus unlike the earlier constructions which use

hypergraphs to provide high girth graphs, the method described here constructs high girth

graphs and hypergraphs using only graphs.

Theorem 3.2 ([3, 4, 12, 13, 11, 8]). For k, g, t ∈ N, there is a t-uniform hypergraph with

girth at least g and chromatic number larger than k.

Proof. Let G be a (k, (t − 1)k + 1, 2g)-graph with underlying tree T having leaf set L. Let

V ′ = V (T ) − L. For v ∈ L, consider the full path P ending at v. Among the (t − 1)k + 1

neighbors of v via augmenting edges, the pigeonhole principle yields a set of t neighbors of

v whose descending edges along P have the same color; let ev be such a set of vertices in V ′.

Let H be the t-uniform hypergraph with vertex set V ′ and edge set {ev : v ∈ L}.
Any [k]-coloring f of V ′ yields a unique f -path in T , ending at some leaf v. As a coloring

of H, this makes the edge ev monochromatic. Hence H has no proper k-coloring.

Let C be a shortest cycle in H, with edges e1, . . . , el in order and vertex xi chosen from

ei−1∩ ei (subscripts modulo l). Since C is a shortest cycle, x1, . . . , xl are distinct. Each edge

of H consists of neighbors of a single leaf of T via augmenting edges; let vi be the common

leaf neighbor of the vertices in ei. Form C ′ in G by replacing each edge ei of C by the copy

of P3 in G having endpoints xi−1 and xi and midpoint vi. Since for each leaf of T we formed

exactly one edge in H, the leaves v1, . . . , vl are distinct. Hence C ′ is a cycle, and its length

is twice that of C. By the choice of G as a (d, k, 2g)-graph, H has girth at least g.
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The hypergraph H in Theorem 3.2 satisfies |E(H)| = |L| = kh and |V (H)| = |V ′| = kh−1
k−1 ,

where h = m(k, (t− 1)k+ 1, 2g). Hence |E(H)| = (k− 1)|V (H)|+ 1. However, H may have

(and actually does have) dense subgraphs. For t = 2, we provide a different construction,

inductive, of sparse graphs with large girth and chromatic number. A graph G is sparse when

it has a small value of the maximum average degree, defined to be maxH⊆G

∑
v∈V (H) dH(v)

|V (H)| . Our

construction has asymptotically lowest average degree even in the broader class of triangle-

free graphs. This follows from the lower bound by Kostochka and Stiebitz [9]: every k-

chromatic triangle-free graph has maximum average degree at least 2k − o(k).

Definition 3.3. Let G be a (d, r, g)-graph with a specified ordering of the d children at

each non-leaf vertex of the underlying tree T . The corresponding reduced (d, r, g)-graph H is

obtained from G as follows: given the coloring φ of E(G) from Definition 3.1, form H from

G by deleting at each non-root internal vertex v of T the subtree under the descending edge

whose color under φ is the same as the color of the edge to the parent of v. Each non-leaf

vertex of H ∩ T has degree d in T , and φ is a proper edge-coloring of H ∩ T .

The reduced (d, r, g)-graph with underlying tree T associated with the edge-coloring φ

as in Definition 3.3 still has a unique f -path for any proper [d]-coloring f of T .

Theorem 3.4. For k, g ∈ N, there is a graph with girth at least g that is not k-colorable and

has maximum average degree at most 2(k − 1).

Proof. For fixed g, we construct such a graph Jk by induction on k. For the basis step, let

J2 be an odd cycle of length at least g. Given Jk−1, let r = |V (Jk−1)|.
Let H be a reduced (k, (r−1)k+1, g)-graph, with underlying tree T and edge-coloring φ.

For each leaf v of T , consider the full path P ending at v. By the pigeonhole principle, some

r neighbors of v in H (via augmenting edges) have the same color on their descending edges

along P . Keep the augmenting edges from v to one such set and delete the other augmenting

edges. The resulting graph H ′ is a reduced (k, r, g)-graph.

Next replace each leaf v of H ′ with a copy of Jk−1; each vertex in the copy for v inherits

exactly one augmenting edge of H ′ from v. This is the graph Jk. The edge to v in T

disappears; vertices at the level just before the leaves no longer have edges to children.

Any proper [k]-coloring f of V (T ) yields a unique f -path; it ends at some leaf v. Because

it is an f -path, the colors on the vertices match the colors on the descending edges. Let Q be

the copy of Jk−1 corresponding to v in Jk. By the construction of Jk, there is a fixed color c

that appears on the neighbor in V (T ) of each vertex in Q. Since Jk−1 is not (k−1)-colorable,

we cannot complete a proper k-coloring of Jk.

A cycle in one copy of Jk−1 has length at least g. For any other cycle C in Jk, contracting

each copy of Jk−1 to a single vertex yields a closed walk C ′ in H ′ using some augmenting edge.

Since each vertex in a copy of Jk−1 inherits only one augmenting edge, each augmenting edge
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is used only once in C ′. Hence as in the proof of Lemma 2.3, C ′ contains a cycle in H ′. This

cycle has length at least g, so C has length at least g.

For the maximum average degree, consider a subgraph F , and let F ′ = F −V (T ). Being

contained in copies of Jk−1, the graph F ′ has average degree at most 2(k − 2). Augmenting

edges add at most 1 to the degree of each vertex of F ′ and hence at most 2 to the degree-sum

in F for each vertex in F ′. Working upward in T , each added vertex in F adds at most k−1

downward edges, which contributes at most 2(k − 1) to the degree-sum. The root may add

k downward edges, but the lowest vertex added from T adds fewer than k − 1. Thus the

degree-sum is at most 2(k − 1) per vertex of F .

3.2 Choosability

A modification of the construction in Theorem 3.4 yields non-k-choosable bipartite graphs

that are as sparse as can be. As noted in Theorem 1.1, every bipartite graph with maximum

average degree at most 2(k−1) is k-choosable. Hence the graphs we construct in Theorem 1.2

with just one extra edge are (k + 1)-choice-critical.

It is well known (since [5]) that a bipartite graph consisting of two even cycles sharing

one vertex is not 2-choosable; indeed, it is 3-choice-critical.

Theorem 1.2. For k ≥ 2 and g ≥ 4, there is a bipartite graph Gk with girth at least g that

is not k-choosable even though every proper subgraph has average degree at most 2(k − 1).

Proof. We proceed by induction on k for even g. To count edges in subgraphs, we will orient

Gk and count edges by their tails. The orientation gives each vertex outdegree k − 1 except

a designated root vertex, which has outdegree k, and every vertex will be reachable from

the root. Thus Gk will have (k − 1) |V (Gk)|+ 1 edges, and every proper subgraph will have

smaller outdegree at some vertex and thus have average degree at most 2(k − 1).

Let G2 be the graph consisting of two g-cycles sharing one vertex, which is the root.

Orient G2 consistently along each of the two cycles. The desired properties hold.

For k ≥ 3, suppose that Gk−1 has all the desired properties. Let r = |V (Gk−1)| − 1, and

let H ′ be a reduced (k, r, 2g)-graph, with underlying tree T . We modify the bipartite graph

H ′ slightly to guarantee that Gk will be bipartite. Let (A,B) be the bipartition of Gk−1,

with A containing the root, and let a = |A| − 1 and b = |B|. Each leaf v in T has a + b

incident augmenting edges. Let A(v) denote some set of a of these edges. For the remaining

b augmenting edges incident to v, move their endpoints in the tree one step closer to v along

the full path to v. Let B(v) denote this new set of b augmenting edges at v. Let H be the

resulting graph; H is a reduced (k, r, g)-graph except for not being bipartite.

Form Gk from H by adding a copy of Gk−1 for each leaf v of T , merging v with the root

of Gk−1, with each vertex of A in the copy of Gk−1 (other than the root) inheriting one edge
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of A(v) and each vertex of B in the copy of Gk−1 inheriting one edge of B(v). Since the

vertices of B have odd distance from v in Gk−1, this guarantees that Gk is bipartite.

Designate the root of T as the root of Gk. Orient the edges of T away from the root, keep

the orientation guaranteed by the induction hypothesis on the copies of Gk−1, and orient the

augmenting edges away from the copies of Gk−1. Because H ′ is a reduced (k, r, 2g)-graph,

every vertex has outdegree k − 1 except that the root has outdegree k.

A cycle in a copy of Gk−1 has length at least g. Let C be a cycle in Gk that is not in

Gk−1. Contracting each copy of Gk−1 in G to a single vertex turns C into a closed walk C ′

in H. Since each vertex in a copy of Gk−1 has only one augmenting edge, C ′ contains a cycle

in H. This cycle has length at least g, so C has length at least g.

Let L′ be an assignment of lists of size k−1 to Gk−1 such that Gk−1 is not L′-colorable and

none of these lists intersects [k]. Form a list assignment L for Gk as follows. Put L(x) = [k]

for each non-leaf vertex x in V (T ). For each leaf v ∈ V (T ) and each vertex w of V (Gk−1),

let wv denote the copy of w in the copy of Gk−1 at v. Let P be the full path in T ending

at v. Let L(wv) = L′(w) ∪ {c}, where c is the color on the edge of P descending from the

neighbor of wv in V (P ). In particular, when w is the root, the added color is the color on

the edge of T reaching v.

Let f be a coloring of Gk with f(u) ∈ L(u) for u ∈ V (Gk). If f is proper on T , then

since f(x) ∈ [k] for x ∈ V (T ), there is a unique f -path P in T . In the copy of Gk−1 for

the leaf v at the end of P , the color c that was added to each list is now forbidden in a

proper coloring, leaving the list L′(w) at wv. By the choice of L′, a proper coloring cannot

be completed from these lists.

3.3 Restricted list colorings

As described in the introduction, we now strengthen Theorem 1.2 by proving non-choosability

results for restricted list assignments. We consider both restrictions on the intersections of

adjacent lists and restrictions on the size of the union of the lists.

Every graph is L-colorable (by choosing arbitrarily) when adjacent vertices have disjoint

lists, but L-colorability may fail when adjacent lists are almost disjoint. List coloring with

intersection constraints on adjacent lists has been studied by Kratochv́ıl, Tuza, and Voigt [10]

and by Füredi, Kostochka, and Kumbhat [6]. We next strengthen Theorem 1.2 by showing

that our graph Gk there fails to be L-colorable for a particular k-list assignment L such that

|L(u) ∩ L(v)| = 1 for every edge uv.

Theorem 3.5. Fix g ∈ N with g ≡ 4 (mod 6). For k ≥ 2, the bipartite graph Gk with

girth at least g constructed in Theorem 1.2 admits a k-list assignment L such that Gk is not

L-colorable despite satisfying |L(u) ∩ L(v)| = 1 for all uv ∈ E(Gk).

Proof. For k = 2, let u be the common vertex of the two cycles in G2. Set L(u) = {1, 2}.
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On each of the two cycles, the number of remaining vertices is a multiple of 3. Along one

cycle, rotate through the lists {1, 3}, {3, 4}, {4, 1}. This forces color 1 onto a neighbor of u.

On the other cycle substitute 2 for 1, forcing color 2 onto a neighbor of u. Now u cannot be

colored. Adjacent lists share one color.

For k ≥ 3, let T be the underlying tree in Gk. Color the edges of T by distinct colors.

For a non-leaf vertex x in T , let L(x) be the set of colors on the edges incident to x; thus

lists adjacent via edges of T have one common color.

By the induction hypothesis, there is a (k−1)-list assignment L′ on Gk−1 such that Gk−1

is not L′-colorable. For each leaf v ∈ V (T ), let L′v be a copy of this assignment indexing the

colors by v, so that the colors used for the copy G′ of Gk−1 at v will not be used anywhere

else. For each vertex w of V (Gk−1) other than the root, let wv denote the copy of w in G′.

Let P be the full path in T ending at v. Let x be the neighbor of wv in V (P ), and let cx
be the color of the edge in P descending from x along P . Let L(wv) = L′v(w) ∪ {cx}. Let

L(v) = L′v(v) ∪ {cv}, where cv is the color of the edge incident to v in T .

For any proper coloring f of T chosen from these lists, there is a unique full path Q such

that the color of each non-leaf vertex is the color of the edge to its child on Q, constructed

from the root: that is, an f -path. Let v be the leaf reached by Q. The parent of v has

been given color cv, so that color cannot be used at v. Similarly, for each other vertex in the

copy of Gk−1 at v, the added color in its list has been used on its neighbor in T . Finding an

L-coloring of Gk thus requires finding an L′-coloring of Gk−1, which does not exist.

Perhaps surprisingly, for bipartite graphs larger intersections than in Theorem 3.5 also

guarantee L-colorability, giving the sharpness of Theorem 3.5 in another way.

Proposition 3.6. If G is a bipartite graph, and L is a list assignment such that any two

adjacent lists have at least two common elements (the lists may have any sizes at least 2),

then G is L-colorable.

Proof. Let X and Y be the parts of G, and index the colors in
⋃

v∈V (G) L(v) as c1, . . . , ct.

Color each vertex of X with the highest-indexed color in its list and each vertex of Y with

the lowest-indexed color in its list. If two adjacent vertices receive the same color, then it is

the only common color in their lists, a contradiction. Hence the coloring is proper.

When G is j-colorable but not k-choosable, one may ask how large the union U of the

lists must be in a k-list assignment L such that G is not L-colorable. Trivially |U | > j is

needed. In fact, one needs somewhat more, which reduces to 2k − 1 when j = 2.

Proposition 3.7. Let G be a j-colorable graph, with j ≤ k. If L is a k-list assignment on G

such that |
⋃

v∈V (G) L(v)| ≤ j(k−1)
j−1 , then G is L-colorable. Furthermore, the bound is sharp.
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Proof. Let f be a proper j-coloring of G. Let U =
⋃

v∈V (G) L(v). Split U into disjoint sets

U1, . . . , Uj, with the smallest having size b|U |/jc. Since |U | ≤ j(k−1)
j−1 , the largest j − 1 of

the sets together have size at most k − 1. (Note that
⌊
j(k−1)
j−1

⌋
−
⌊
k−1
j−1

⌋
= k − 1, and when

|U | <
⌊
j(k−1)
j−1

⌋
the conclusion becomes easier.) Thus each k-list L(v) intersects each Ui.

Hence each vertex v can choose a color from L(v) ∩ Uf(v). Such a coloring is proper.

For sharpness, consider a universe U of colors, and let G be a complete j-partite graph

with
(|U |

k

)
vertices in each part. Assign lists by letting L give each k-subset of U as a list

to one vertex in each part. In an L-coloring, each color can be chosen in only one part.

Since a color must be chosen from every vertex, on each part at least |U | − (k − 1) colors

must be chosen. Hence j(|U | − k + 1) colors must be chosen. Thus L-colorability requires

j(|U | − k + 1) ≤ |U |, which is precisely the inequality |U | ≤ j(k−1)
j−1 .

The sharpness examples in Proposition 3.7 are very dense and have small cycles. The

special case j = 2 states that a bipartite graph is L-colorable when L is a k-list assignment

with |
⋃

v∈V (G) L(v)| ≤ 2k − 2. This condition forces any two lists to have at least two

common elements, so Proposition 3.6 is stronger than Proposition 3.7 for the case j = 2.

Nevertheless, we show next that Proposition 3.7 remains sharp when j = 2 even for sparse

graphs with large girth having just one extra edge beyond where Theorem 1.1 applies.

Theorem 3.8. Fix k, g ∈ N with g even and k ≥ 2. There is a bipartite graph Hk and a k-list

assignment L on Hk such that Hk is not L-colorable, even though |
⋃

v∈V (Hk)
L(v)| = 2k − 1

and Hk has girth at least g with each proper subgraph having average degree at most 2(k−1).

Proof. We use induction on k. For k = 2, let H2 be G2, the graph consisting of two g-cycles

sharing one vertex u. Set L(u) = {1, 2}. On one cycle, use lists {1, 3} and {1, 2} on the

neighbors of u and {2, 3} on the rest of the cycle. Since the number of copies of {2, 3} is

odd, color 1 must be chosen on a neighbor of u. Interchanging 1 and 2 yields the lists on the

other cycle, forcing a neighbor of u to have color 2. Now u cannot be colored. The union of

the lists has three colors.

For k ≥ 3, let r = |V (Hk−1)| − 1, and let a+ 1 be the number of vertices of Hk−1 in the

partite set containing the root; note that a < r. We construct Hk with a list assignment L.

Consider a reduced (k, (r− 1)k, 2g)-graph with underlying tree T and corresponding proper

[k]-edge-coloring of T . The root of T will be the root of Hk.

For each leaf v of T , proceed as follows. Let P be the full path to v in T . Since v has

more than (a − 1)k augmenting edges, by the pigeonhole principle there are a such edges

for which the edge along P descending from the neighbor of v has the same color; call it c.

Move the other endpoints of all (r−1)k−a other augmenting edges at v one step closer to v

along P , as in the proof of Theorem 1.2. Since (r−1)k−a > (r−a−1)k, by the pigeonhole

principle there are r−a of these remaining edges for which the edge along P descending from

10



the neighbor of v has the same color; call it c′. Discard all augmenting edges not chosen in

these two steps. After doing this for each leaf v of T , the result is a reduced (k, r, g)-graph

except for not being bipartite.

For each leaf v of T , add a copy H ′v of Hk−1, merging its root with v and letting each non-

root vertex inherit one of the augmenting edges at v, with the vertices in the part opposite

v inheriting the r − a edges whose other endpoints were moved closer to v. Let Hk be the

resulting graph; it is bipartite, and the density bound for its subgraphs is computed as for

Gk in Theorem 1.2. Arguing as for Gk also shows that Hk has girth at least g.

Next we produce the list assignment L. Assign list [k] to each non-leaf vertex of T . By

the induction hypothesis, for each leaf v of T there is a (k−1)-list assignment L′v on H ′ whose

lists are contained in a (2k − 3)-set. For this (2k − 3)-set use [2k − 1] − {c, c′}, discarding

any additional color if c′ = c. Also, let cv be the color of the edge reaching v in T . Since

2k− 3 > k− 1 when k > 2, we may permute the colors within L′v to ensure that L′ does not

assign color cv to v.

To define lists, form L(v) by adding cv to the list given by L′v to the root. For w ∈ V (Hk−1)

other than the root, let wv be the copy of w in H ′v. Set L(wv) = L′v(w) ∪ {c} if w is in the

same partite set as the root of Hk−1, and otherwise set L(wv) = L′v(w) ∪ {c′}.
It remains to show that Hk is not L-colorable. Let f be a proper coloring chosen from L.

Since the list on each non-leaf vertex of T is [k] and the coloring is proper, there is a unique

f -path Q leading to a particular leaf v. Since the color of each non-leaf vertex on Q agrees

with the color on the edge descending from it along Q, the color added to the list of each

vertex wv in the copy of Hk−1 at v has been used on its neighbor in T and is now forbidden

from use on wv. Finding an L-coloring of Hk thus requires finding an L′-coloring of Hk−1,

which does not exist.

4 The height of the trees in Theorem 1.3

The underlying trees in our construction of (d, r, g)-graphs are astoundingly tall; their height

in terms of g is a version of the Ackermann function. Here we show that even for r = 1 and

d = 2, they must be very tall. In the discussion below all logarithms are in base 2.

Theorem 4.1. If G is a (2, 1, g)-graph with height m, then g ≤ (4 + o(1)) log(log∗m).

Proof. For simplicity, we omit floor and ceiling signs; they are not crucial.

For g ∈ N, let q = 2g/4−2. Let k−1 = −1, k0 = g − 1, and for 0 ≤ i < r set

ki+1 = 2(ki−g/2+4)/2 + ki.

This yields g ≈ 4 log(log∗ kq). Let G be a 1-augmented binary tree of height m, and let g be

the least integer such that kq ≥ m. We will find in G a cycle of length at most g.
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Define integer intervals I0, . . . , Iq by Ij = [m − kj,m − kj−1 − 1] (deleting any negative

elements). These intervals group the levels in T . The number of levels in Ij is at most

kj − kj−1, the value of which is roughly a tower of height j. However, since we only choose

g so that kq ≥ m, the least j with kj ≥ m may be less than q, so the intervals toward the

end of the list may be empty.

Let the mate of a leaf of T be the other endpoint of its augmenting edge in G. Let the

type of the leaf be j if the level of its mate lies in Ij. We may assume that no leaf has type 0,

since otherwise G has a cycle of length at most g. With each leaf having type in the integer

interval [1, q], some type is assigned to at least 1/q of the leaves of G. Fix such a type t.

By averaging, for some vertex u at level m− kt−1 − 1 at least 1/q of the leaves under u

have type t. Let C denote the set of all leaves of type t under u. Let v be the ancestor of u

at level m− kt (or level 0 if m < kt). For each leaf x ∈ C, the mate of x is on the u, v-path

P in T . Note that |V (P )| ≤ kt − kt−1 = 2(kt−1−g/2+4)/2.

The vertex u has 2kt−1−g/4+2 descendants at level m − (g/4 − 1); call this set D. The

subtree rooted at any y ∈ D has 2q leaves. Call y full if at least two leaves of T under y

belong to C. Let β|D| be the number of full vertices in D. The number of leaves under u

is 2q|D|. Allowing all leaves under full vertices of D and at most one leaf under non-full

vertices, the number of leaves in C under u is at most (2qβ + 1)|D|. The fraction of leaves

under u in C is thus at most β + 1
2q

, but by the choice of u it is at least 1/q. Thus β ≥ 1
2q

.

Hence at least 2kt−1−g/2+3 vertices of D are full. Under each full vertex of D some two

leaves v and v′ have mates in P . If v and v′ have the same mate x, then x completes a cycle

of length at most 2 + 2(g/4 − 1) < g with the path joining v and v′ in T . Otherwise, each

full vertex of D has two leaves under it whose mates are distinct vertices of P . Since the

number of full vertices of D exceeds
(|V (P )|

2

)
, by the pigeonhole principle some two vertices

y, y′ ∈ D yield the same pair x, x′ ∈ V (P ) of mates of two leaves under them. The paths

joining those leaves in the subtrees under y and y′ and the edges from those leaves to x and

x′ form a cycle of length at most 2(g/4− 1) + 2(g/4− 1) + 4, which equals g.
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