
PROBLEM SECTION

Splitting digraphs

Noga Alon ∗

There are several known results asserting that undirected graphs can be partitioned in a way that
satisfies various imposed constrains on the degrees. The corresponding results for directed graphs,
where degrees are replaced by outdegrees, often fail, and when they do hold, they are usually much
harder, and lead to fascinating open problems. In this note we list three problems of this type, and
mention the undirected analogs. All graphs and digraphs considered here are simple, that is, they
have no loops and no multiple edges.
Minimum degrees

A result of Steibitz [7] asserts that if the minimum degree of an undirected graph G is d1 + d2 +
. . . + dk + k− 1, where each di is a non-negative integer, then the vertex set of G can be partitioned
into k pairwise disjoint sets V1, . . . , Vk, so that for all i, the induced subgraph on Vi has minimum
degree at least di. This is clearly tight, as shown by an appropriate complete graph. The analogous
problem for directed graphs seems more difficult. For non-negative integers d1 ≥ d2 ≥ . . . ≥ dk, let
F (d1, d2, . . . , dk) denote the minimum number F (if it exists), such that if the minimum outdegree
of a directed graph D is F , then the vertex set of D can be partitioned into k pairwise disjoint sets
V1, . . . , Vk, so that the induced subdigraph of D on Vi has minimum outdegree at least di. If there
is no such finite F , define F (d1, d2, . . . , dk) = ∞.

When d1 = d2 = . . . = dk = d, denote F (d1, d2, . . . , dk) by Fk(d). It is easy to see that for
every positive k, Fk(1) is precisely the minimum F so that any digraph with minimum outdegree
F contains k pairwise vertex disjoint directed cycles. Bermond and Thomassen [3] conjectured that
Fk(1) = 2k − 1, Thomassen [8] proved this assertion for k ≤ 2 and showed that Fk(1) ≤ (k + 1)!
for all k. A better, linear upper estimate for Fk(1) is proved in [2], where the author mentions the
problem of deciding if F (2, 2) is finite. More generally, we suggest the following problem.
Problem 1: For which values d1 ≥ d2 ≥ . . . ≥ dk ≥ 1, is the number F (d1, d2, . . . , dk) finite ? In
particular, is F (2, 1) finite ?

Maximum degrees
A theorem of Lovász [5] asserts that if G is an undirected graph with maximum degree ∆, and

d1 ≥ d2 ≥ . . . ≥ dk are non-negative integers satisfying d1 +d2 + · · ·+dk +k−1 = ∆, then the vertex
set of G can be partitioned into V1, V2, . . . , Vk so that for all i, the maximum degree of the induced
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subgraph of G on Vi is at most di. This is tight, as shown, again, by a complete graph of the right
size. Thus, in particular, if the maximum degree is 2d + 1, then the vertex set can be partitioned
into two parts so that the maximum degree of the induced graph on each part is at most d.

This last assertion fails for digraphs in the following strong sense: for every integer ∆ there is a
digraph with maximum outdegree ∆ so that for every partition of its set of vertices into two parts,
the maximum outdegree in one of the parts is ∆. This is a simple consequence of a construction of
Thomassen [9], who gives, for every ∆, a digraph in which all outdegrees are exactly ∆ that contains
no even directed cycle. If D = (V,E) is such a digraph, and V = V1 ∪ V2 is a partition of its vertex
set into two disjoint parts, then there is a vertex in one of the classes having all its out-neighbors
in the same class. Indeed, otherwise, starting at an arbitrary vertex v1 we can define an infinite
sequence v1, v2, v3, . . ., where each pair (vi, vi+1) is a directed edge with one end in V1 and one in
V2. As the graph is finite, there is a smallest j such that there is i < j with vi = vj , and the cycle
vi, vi+1, . . . , vj = vi is even, contradiction.

Thus, it is impossible, in general, to reduce the maximum outdegree by splitting the vertex set
into two parts. Surprisingly, it is possible to reduce it (significantly), by splitting into three parts
or more. This follows from a result of Keith Ball (c.f., [4]) about partitions of matrices. For our
purpose, it is useful to formulate the following slightly more general result, whose proof is similar.

Lemma 1 Let A = (aij) be an n by n real matrix, where aii = 0 for all i, aij ≥ 0 for all i 6= j,
and

∑
j aij ≤ 1 for all i. Then, for every k and every positive reals c1, . . . , ck whose sum is 1, there

is a partition of [n] = {1, 2, . . . , n} into pairwise disjoint sets S1, S2, . . . , Sk, such that for every r,
1 ≤ r ≤ k and every i ∈ Sr,

∑
j∈Sr

aij ≤ 2cr.

Proof: By increasing some of the numbers aij , if needed, we may assume that
∑

j aij = 1 for all
i. We also may assume, by an obvious continuity argument, that aij > 0 for all i 6= j. Thus, by
the Perron-Frobenius Theorem, 1 is the largest eigenvalue of A with right eigenvector (1, 1, . . . , 1),
and it has a left eigenvector (u1, u2, . . . , un) in which all entries are positive. It follows that for all j,∑

i uiaij = uj . Define bij = uiaij , then
∑

i bij = uj and
∑

j bij = ui(
∑

j aij) = ui.

Let [n] = S1∪S2∪ . . .∪Sk be a partition of [n] into k parts, for which the sum
∑k

r=1
1
cr

∑
i,j∈Sr

bij

is minimum. By minimality, the value of the sum will not decrease if we shift an element i ∈ Sr to
St, and therefore for each such i

1
cr

∑
j∈Sr

(bij + bji) ≤
1
ct

∑
j∈St

(bij + bji)

Multiplying both sides by ct and summing over all t, using the fact that
∑

t ct = 1, we conclude that
1
cr

∑
j∈Sr

(bij + bji) ≤
∑

j∈[n](bij + bji) = 2ui.
Therefore,

∑
j∈Sr

uiaij =
∑

j∈Sr
bij ≤

∑
j∈Sr

(bij + bji) ≤ 2crui. Dividing by ui, the desired result
follows. 2

Using the above lemma we get the following

Corollary 2 Let d1, d2, . . . , dk,∆ be non-negative integers, and suppose that d1+d2+. . .+dk+k−1 =
2∆. Then the vertex set of any directed graph D with maximum outdegree ∆ can be partitioned into
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k subsets Vi, so that for all i, the maximum outdegree of the induced subdigraph of D on Vi is at
most di

Proof: Let [n] be the vertex set of D, and define aij = 1/∆ if (i, j) is a directed edge, and aij = 0
otherwise. For each r, 1 ≤ r ≤ k, define cr = dr+1−1/k

2∆ . The desired result follows by applying the
previous lemma to A and the numbers cr. 2

In some cases the assertion of the last Corollary is tight; if, for example, di = 0 for all i,
1 ≤ i ≤ k = 2q, ∆ = q and D is a regular tournament on 2q +1 vertices, then in any partition of the
vertex set of D into k = 2q parts, the maximum outdegree in some part Vi will be at least 1 > di,
although d1 + d2 + . . . + dk + k − 1 differs from 2∆ only by 1. For general integers di, however, the
situation is less clear. The following problem seems interesting.
Problem 2: Characterize all the sequences of integers (∆, d1, d2, . . . , dk) such that the vertex set
of any digraph with maximum outdegree ∆ can be partitioned into k disjoint parts Vi, so that the
maximum outdegree in the induced subdigraph on Vi is at most di. In particular, what is the smallest
d = d(∆) such that (∆, d, d, d) is such a sequence ?

Subgraphs of prescribed size
Let an (n,≥ q)-graph denote an undirected graph on n vertices in which every degree is at least

q. It is easy to prove that any undirected (m+n,≥ q +r)-graph G contains either an (m,≥ q)-graph
or an (n,≥ r)-graph. To see this, consider all partitions of the set of vertices of G into two disjoint
sets, V1 of cardinality m, and V2, of cardinality n, and fix one that maximizes the total number of
edges of G inside the two parts. If there is a v1 ∈ V1 whose degree in the induced subgraph on V1

is less than q, and a v2 ∈ V2 whose degree in the induced subgraph on V2 is less than r, then by
switching v1 and v2 one gets a partition contradicting the maximality, implying the desired assertion.
Here, too, a complete graph shows that the result is tight.

In his survey article [6], Nash-Williams raised the corresponding problem for digraphs. Let an
(n,≥ q)-digraph denote a digraph in which all outdegrees are at least q. The final question in the list
of open problems mentioned in [6] is if any (m+n,≥ q + r)-digraph must contain either an (m,≥ q)-
digraph, or an (n,≥ r)-digraph. It turns out that this is not the case; several counterexamples are
given in [1]. In all of them, however, one of the two numbers m,n is much smaller than the other
(and the same holds for the numbers q and r). It seems interesting to clarify the situation for the
case m = n, q = r.
Problem 3: What is the largest number d = d(s), so that for every n, every (2n,≥ s)-digraph
must contain an (n,≥ d)-subdigraph ? In particular, is there an absolute constant c such that
d(s) ≥ s/2− c for all s ?

It is not too difficult to show that there is an absolute constant c such that d(s) ≥ s/2−c
√

s
√

log s

for all s. This can be proved by a probabilistic argument. Here is a sketch. Let D = (V,E) be a
digraph on 2n vertices in which every outdegree is precisely s (we can clearly assume this is the case,
as any (2n,≥ s)-digraph contains such a subdigraph). Let p < 1/2 be a positive real, to be chosen
later. Let X ⊂ V be a random set of vertices obtained by picking each vertex v ∈ V to be a member
of X randomly and independently, with probability p. Let d < s/2 be an integer, to be chosen later.
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For each vertex v of V , let dX(v) denote the number of outneighbors of v in X. Let Y = Y (X) be
the random variable Y = |X| +

∑
v∈V,dX(v)<d(d − dX(v)). We claim that if Y = Y (X) ≤ n, then

there is an (n ≥ q)-subdigraph of D. Indeed, the set Z of vertices obtained from X by adding to
it, for each v ∈ V satisfying dX(v) < d, an arbitrary set of d− dX(v) outneighbors of v that do not
lie in X, has at most Y ≤ n vertices, and every vertex (including the ones not in Z) has at least
d outneighbors in Z. We can now take any n-element subset of V containing Z to get the desired
subdigraph, proving the claim.

The expected value of Y is precisely

2np + 2n
∑
i<d

(
s

i

)
pi(1− p)s−i(d− i).

A simple computation, which is omitted, implies that by choosing, say, p = 1
2 −

1√
s

and d =
s
2 − c

√
s
√

log s, for an appropriate absolute constant c, the above expectation is smaller than n,
completing the proof. This does not suffice to settle Problem 3, as well as the more general prob-
lem of characterizing all fourtuples (n, m, s, d) such that every (n,≥ s)-digraph must contain an
(m,≥ d)-subdigraph.
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