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Abstract

It is shown that there is an absolute constant c with the following property: For any two

graphs G1 = (V,E1) and G2 = (V,E2) on the same set of vertices, where G1 has maximum

degree at most d and G2 is a vertex disjoint union of cliques of size cd each, the chromatic

number of the graph G = (V,E1 ∪ E2) is precisely cd. The proof is based on probabilistic

arguments.

1 Introduction

Let G = (V,E) be a graph on n vertices. If k divides n we say that G is strongly k-colorable if for

any partition of V into pairwise disjoint sets Vi, each of cardinality k precisely, there is a proper

k-vertex coloring of G in which each color class intersects each Vi by exactly one vertex. Notice

that G is strongly k-colorable if and only if the chromatic number of any graph obtained from G

by adding to it a union of vertex disjoint k-cliques (on the set V ) is k. If k does not divide n , we

say that G is strongly k-colorable if the graph obtained from G by adding to it kdn/ke−n isolated

vertices is strongly k-colorable. The strong chromatic number of a graph G , denoted by sχ(G), is

the minimum k such that G is strongly k-colorable. As observed in [6] if G is strongly k-colorable

then it is strongly k + 1- colorable as well, and hence sχ(G) is in fact the smallest k such that G

is strongly s-colorable for all s ≥ k.
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Motivated by a problem of F. Hsu, J. Schonheim and others (see [6]) conjectured that for any

cycle Cn of length 3n, sχ(C3n) ≤ 3. This conjecture is still open , although , as observed by various

researchers including F. de la Vega, M. Fellows and the present author it is true that for all n

sχ(C4n) ≤ 4 , (see [1] and [6]).

It appears interesting to study the strong chromatic numbers of more complicated graphs. It

is easy to see that any graph G with maximum degree d has strong chromatic number sχ(G) > d.

Define sχ(d) = max(sχ(G)) , where G ranges over all graphs with maximum degree at most d. It

is easy to see that sχ(1) = 2. As noted in [1] sχ(d) > 3bd/2c for every d. This simple fact is proved

in the beginning of the next section. On the other hand, in [6] it is proved that sχ(d) ≤ 2(6d−1). A

better result is mentioned in [1]. It asserts that for any graphG with chromatic index f , sχ(G) ≤ 2f .

This statement, whose proof is presented in the next section, implies, by Vizing’s Theorem (see,

e.g. [4]) , that sχ(d) ≤ 2d+1 for every d.

Our main result here is the following improvement for these estimates, which shows that in fact

sχ(d) grows only linearly with d.

Theorem 1.1 There is a constant c such that for every d, sχ(d) ≤ cd.

It would be interesting to find the best possible value of c in this theorem. By the above remark,

this value is larger than 3/2, whereas our proof shows that it is smaller than some huge number,

possibly about 21010
. By being more careful this estimate can be reduced to about 108, but since

it is clear that our approach cannot give any realistic estimate for the best possible c we make no

attempt to obtain the best possible constant and merely show it exists.

2 Simple bounds on strong chromatic numbers

The following simple fact is mentioned without a proof in [1].

Proposition 2.1 For every d, sχ(d) > 3bd/2c.

Proof Construct a graph G with 12r vertices, partitioned into 12 classes of cardinality r each,

as follows. Let these classes be A0, . . . , A3, B0, . . . , B3, C0, . . . , C3. Each vertex in Ai is joined by
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edges to each member of Ai−1 and each member of Ai+1, where the indices are reduced modulo 4.

Similarly, each member of Bi is adjacent to each member of Bi−1 and Bi+1 and each member of Ci

is adjacent to each member of Ci−1 ∪ Ci+1. Consider the following partition of the set of vertices

of G into four classes of cardinality 3r each;

V1 = A0 ∪A2 ∪B0, V2 = A1 ∪A3 ∪B2,

V3 = B3 ∪ C0 ∪ C2, V4 = B1 ∪ C1 ∪ C3.

We claim that there is no proper 3r-vertex coloring of G in which each color class intersects

each set Vi. Indeed , any color class containing a vertex of B3 cannot contain any vertex of B0 or

of B2, and since this color class must have a vertex in V1 and in V2 it must contain a vertex in

A0 ∪A2 and a vertex in A1 ∪A3. But this is impossible as each vertex in the first union is adjacent

to each one in the second union, completing the proof of the claim.

Thus sχ(G) > 3r and as the maximum degree in G is 2r this shows that sχ(2r) > 3r, completing

the proof. 2

Next we prove the following statement, which will be needed later, and which is also mentioned

without a proof in [1].

Proposition 2.2 For any two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of vertices,

where G1 is a union of r matchings and G2 is a vertex disjoint union of cliques of size 2r each, the

chromatic number of the graph G = (V,E1 ∪ E2) is 2r.

Proof We apply induction on r. For r = 1, G is just a union of two matchings and hence its

chromatic number is 2, as claimed. Assuming the result holds for r− 1 let us prove it for r. Let G1

be a union of the r edge disjoint matchings M1, . . . ,Mr. Let M be a matching in G2 containing

precisely 2r−1 edges in each 2r-clique from those in G2. The graph (V,Mr ∪M) is a union of two

matchings and is hence two colorable. Let c : V 7→ {0, 1} be a proper 2-vertex coloring of this

graph. Note that exactly half of the vertices in each 2r-clique in G2 are colored 0 (and exactly half

are colored 1) in this coloring. Let G′2 be the graph obtained from G2 by splitting each clique of G2

into two disjoint cliques according to the coloring c as follows; if K is the set of vertices of such a

clique then define Ki = K∩c−1(i) for i = 0, 1 and take the two cliques on K0 and on K1. Let G′1 be
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the union of the r−1 matchings M1, . . . ,Mr−1. By the induction hypothesis the graph whose edges

are all edges of G′1 and all edges of G′2 is 2r−1-colorable. Let d be a proper 2r−1 vertex-coloring

of this graph. One can easily check that the assignment of the ordered pair (c(v), d(v)) for each

vertex v of G is a proper 2r- vertex coloring of G. This completes the proof. 2

Corollary 2.3 For every d, sχ(d) ≤ 2d+1. 2

3 Even Splittings of graphs

In this section we prove the following theorem, which may be interesting in its own right.

Theorem 3.1 For every ε > 0 there exists a constant c1 = c1(ε) such that the following holds. For

any graph G = (V,E) with maximum degree at most d and for any partition V = V1 ∪ . . .∪Vr of V

into sets of size c22j each, where d/(2j) ≥ c1 there is a partition of each set Vi into J = 2j subsets

Vi,1, . . . , Vi,J , such that each Vi,l has precisely c2 elements and for every l, 1 ≤ l ≤ J , the maximum

degree of the induced subgraph of G on the set V1,l ∪ V2,l ∪ . . . ∪ Vr,l is at most (1 + ε)d/(2j).

The proof of the above theorem is probabilistic, and applies the Lovász Local Lemma, proved in

[5], which is the following.

Lemma 3.2 (The local lemma [5], see also [8]) Let A1, . . . , An be events in an arbitrary prob-

ability space. Suppose each Ai is mutually independent of all but at most b other events Aj and

suppose the probability of each Ai is at most p. If ep(b+ 1) < 1 then with positive probability none

of the events Ai holds. 2

There are two difficulties in trying to prove theorem 3.1 by applying the local lemma. The first

one is that we cannot partition the set of vertices of G into J classes by letting each vertex choose

randomly and independently its class, since we need to partition each set Vi into equal classes.

This may cause more dependencies than we may allow. The second difficulty is that we cannot

obtain the desired partition in one step since, again, this would cause too many dependencies. We

overcome the latter difficulty by obtaining the partition in j halving steps, and the former one
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by choosing the random partition in each step in a special manner. This is done in the following

lemma.

Lemma 3.3 For any graph G = (V,E) with maximum degree at most d, where d ≥ 2, and for

any partition V = V1 ∪ . . . ∪ Vr of V into sets of size 2s each, there is a partition of each set Vi

into 2 subsets Vi,1 and Vi,2, such that each Vi,l has precisely s elements and for every l, 1 ≤ l ≤ 2,

the maximum degree of the induced subgraph of G on the set V1,l ∪ V2,l ∪ . . . ∪ Vr,l is at most

d/2 + 2
√
d log d. (Here, and from now on, all logarithms are in the natural base e).

Proof Let us choose an arbitrary perfect matching in each of the sets Vi, i.e., an arbitrary set of

s vertex disjoint edges in each Vi, and let M denote the perfect matching consisting of all these

matchings. (Note that M does not have to contain edges of G; it is simply a matching in the

complete graph on V which matches the vertices of each set Vi among themselves.) We define a

random coloring f : V 7→ {1, 2} by choosing, for each edge u, v of M , randomly and independently

one of the following two possibilities, taken with equal probability: Either f(u) = 1 and f(v) = 2

or f(u) = 2 and f(v) = 1. For each i, 1 ≤ i ≤ r, define Vi,1 = Vi ∩ f−1(1) and Vi,2 = Vi ∩ f−1(2).

Clearly each of the sets Vi,l has precisely s elements. For l = 1, 2, let Gl be the induced subgraph

of G on V1,l ∪ . . . ∪ Vr,l. Each vertex v of G belongs to Gl for some l ∈ {1, 2}. Let Av be the event

that the degree of v in Gl is greater than d/2 + 2
√
d log d. Observe that if none of the events Av

holds then our partition satisfies the assertion of the lemma. Hence, in order to complete the proof

it suffices to show, using the local lemma, that with positive probabilty no event Av holds. Fix a

vertex v of G and consider the event Av. Suppose f(v) = l, i.e., v is in Gl. If v is matched by

the matching M to a neighbor u of v, then f(u) is not l and hence u is not a neighbor of v in Gl.

Similarly, if two neighbours of v are matched to each other by M then exactly one of them is a

neighbor of v in Gl. Let T be the set of all neighbors of v in G which are matched by M to vertices

which are neither v nor one of its neighbors. Let t be the cardinality of T . Clearly t ≤ d and by

the last few sentences the degree of v in Gl is at most (d− t)/2 plus the number of members of T

that belong to Gl.However, by our random choice, this number is a binomial random variable with

parameters t and 1/2.By the standard estimates for Binomial distributions (see, e.g. [8], page 29),

it follows that for every v
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Prob(Av) ≤ e−2(2
√
d log d)2/t ≤ d−8.

Clearly each event Av is mutually independent of all the events Au but those for which either v or

one of its neighbors is incident with the same edge of M as either u or one of its neighbors. Since

there are less than 2(d + 1)2 such vertices u and since ed−82(d + 1)2 < 1 we conclude, by lemma

3.2, that with positive probability no evet Av holds. Hence, there is a coloring f for which no Av

holds, completing the proof of the lemma. 2.

Proof of Theorem 3.1 Given ε > 0 let c1 = c1(ε) satisfy

c1 ≥
512

((1 + ε)1/3 − 1)3
(1)

and

∀x ≥ c1, 2
√
x log x ≤ x2/3 (2)

We prove the assertion of Theorem 3.1 with this c1. Given a graph G = (V,E) with maximum

degree at most d and a partition of V into r pairwise disjoint subsets V1, . . . , Vr of cardinality c22j

each, as in the hypotheses of the theorem, we apply Lemma 3.3 to G and split it into two induced

subgraphs G1 and G2, each containing exactly half of the vertices of each Vi. By Lemma 3.3 there

is such a splitting in which the maximum degree in each Gi does not exceed d1 = d/2 + 2
√
d log d.

The set of vertices of each of the two graphs Gl = (V l, El) is partitioned into the r pairwise disjoint

sets of equal cardinality Vi ∩ V l. By applying Lemma 3.3 again to each of these two graphs we

obtain a splitting of G into four induced subgraphs. Continuing in this manner we obtain, after

j such halving steps, a partition of G into 2j = J induced subgraphs, each containing exactly c2

vertices from each set Vi. Define a sequence dq, (0 ≤ q ≤ j) as follows; d0 = d and for all q < j:

dq+1 = dq/2 + 2
√
dq log dq. Clearly dq ≥ d/(2q), and hence, by (2), dq+1 ≤ dq/2 + d

2/3
q for all q < j.

Moreover, by Lemma 3.3, dq is an upper bound for the maximum degree in any of the 2q induced

subgraphs of G obtained after q halving steps.

In order to complete the proof it thus remains to show that dj ≤ (1 + ε)d/(2j).

Clearly dq+1 ≤ dq/2 + d
2/3
q ≤ 1

2(d1/3
q + 2)3. Hence, by taking cube roots and subtracting 2

21/3−1

from both sides

d
1/3
q+1 − 2

21/3−1
≤ 1

21/3 (d1/3
q + 2)− 2

21/3−1
= 1

21/3 (d1/3
q − 2

21/3−1
).
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Therefore

d
1/3
j − 2

21/3−1
≤ 1

2j/3
(d1/3

0 − 2
21/3−1

),

and, since d0 = d and 21/3 − 1 > 1/4,

d
1/3
j ≤ d1/3

2j/3
+ 8 ≤ (1 + ε)1/3 d1/3

2j/3
.

The last inequality follows from (1) and the assumption that d/(2j) ≥ c1.

Thus dj ≤ (1 + ε)d/(2j), completing the proof of the theorem. 2

4 The proof of the main result

In this section we combine Corollary 2.3 and Theorem 3.1 to establish our main result.

Proof of Theorem 1.1 Let c1 ≥ 1 be a number for which the assertion of Theorem 3.1 with

ε = 1 holds. We prove the assertion of Theorem 1.1 with c = 24c1+1. Let G = (V,E) be a graph

whose maximum degree is at most d. We must show that sχ(G) ≤ cd. Let j be the maximum

integer such that d/(2j) ≥ c1. Observe that 2j ≤ d and d/2j ≤ 2c1. Define also c2 = c = 24c1+1.

To complete the proof we show that sχ(G) ≤ c22j ≤ cd. Clearly we may assume that the number

of vertices of G is divisible by c22j , since otherwise we simply add to G an appropriate number of

isolated vertices. Let V1, . . . , Vr be a partition of the set V of vertices of G into pairwise disjoint

sets each of size c22j . To complete the proof it suffices to show that there is a proper vertex coloring

of G in which each color class contains exactly one vertex in each Vi. By Theorem 3.1 there is a

partition of the set of vertices of G into J = 2j pairwise disjoint classes V 1, . . . , V J , each containing

exactly c2 vertices of each Vi, such that for each l, 1 ≤ l ≤ J , the maximum degree of the induced

subgraph of G on V l is at most (1 + ε)d/(2j) = 2d
2j
≤ 4c1. For each l, 1 ≤ l ≤ J , let Gl be the

induced subgraph of G on V l. Since c2 = 24c1+1, Corollary 2.3 implies that sχ(Gl) ≤ c2 for each l.

For 1 ≤ i ≤ r and 1 ≤ l ≤ J = 2j , define Vi,l = Vi ∩ V l. For each l, 1 ≤ l ≤ J , the sets V1,l, . . . , Vr,l

form a partition of the vertex set V l of Gl into pairwise disjoint sets of cardinality c2 each. Since

sχ(Gl) ≤ c2, there is a proper coloring of Gl in which every color class contains exactly one vertex

from each of the sets Vi,l. Combining these J = 2j colorings, where the J sets of colors used are

pairwise disjoint, we obtain a c22j-proper vertex coloring of G in which every color class contains
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exactly one vertex from each of the sets Vi. Thus sχ(G) ≤ c22j ≤ cd, completing the proof of the

theorem. 2.

5 Concluding remarks

1). In [1] and, independently in [6] it is shown that there is a constant c such that for any graph G

with maximum degree d and every partition of the set of its vertices into pairwise disjoint subsets

each of size at least cd, there is an independent set of G containing a vertex from each of these

subsets. Theorem 1.1 is clearly a strengthening of this result.

2). A theorem of Hajnal and Szemerédi [7] asserts that any graph G with n vertices and with

maximum degree d has a proper d+1-vertex coloring with almost equal color classes, i.e., a coloring

in which each color class has either bn/(d+ 1)c or dn/(d+ 1)e vertices. Theorem 1.1 shows that if

we allow to increase the number of colors by a constant factor we can obtain a coloring with almost

equal color classes satisfying several additional severe restrictions.

3). It would be interesting to determine the best possible constant c in Theorem 1.1. This

constant is probably much closer to 3/2 than to the huge upper bound that can be derived using

our approach. It is worth noting that our approach suffices to prove, e.g., that for every d ,

sχ(d) ≤ bd2 for a rather small constant b.

Another interesting problem is that of exhibiting a polynomial time (deterministic or randomized)

algorithm that gets as an input a graph G with maximum degree d and a partition of its set of

vertices into pairwise disjoint subsets of cardinality cd each, and produces a proper vertex coloring

of this graph in which every color class contains exactly one element of each of these subsets. This

problem has been open when the present paper has been submitted, but as is the case in several

other known proofs in which the local lemma is used, it can be solved by applying the recent

technique of J. Beck [3] (see also [2]).
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