The strong chromatic number of a graph

Noga Alon*

Abstract

It is shown that there is an absolute constant c with the following property: For any two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on the same set of vertices, where G_{1} has maximum degree at most d and G_{2} is a vertex disjoint union of cliques of size $c d$ each, the chromatic number of the graph $G=\left(V, E_{1} \cup E_{2}\right)$ is precisely $c d$. The proof is based on probabilistic arguments.

1 Introduction

Let $G=(V, E)$ be a graph on n vertices. If k divides n we say that G is strongly k-colorable if for any partition of V into pairwise disjoint sets V_{i}, each of cardinality k precisely, there is a proper k-vertex coloring of G in which each color class intersects each V_{i} by exactly one vertex. Notice that G is strongly k-colorable if and only if the chromatic number of any graph obtained from G by adding to it a union of vertex disjoint k-cliques (on the set V) is k. If k does not divide n, we say that G is strongly k-colorable if the graph obtained from G by adding to it $k\lceil n / k\rceil-n$ isolated vertices is strongly k-colorable. The strong chromatic number of a graph G, denoted by $s \chi(G)$, is the minimum k such that G is strongly k-colorable. As observed in [6] if G is strongly k-colorable then it is strongly $k+1$ - colorable as well, and hence $s \chi(G)$ is in fact the smallest k such that G is strongly s-colorable for all $s \geq k$.

[^0]Motivated by a problem of F. Hsu, J. Schonheim and others (see [6]) conjectured that for any cycle C_{n} of length $3 n, s \chi\left(C_{3 n}\right) \leq 3$. This conjecture is still open, although, as observed by various researchers including F. de la Vega, M. Fellows and the present author it is true that for all n $s \chi\left(C_{4 n}\right) \leq 4,($ see $[1]$ and [6]).

It appears interesting to study the strong chromatic numbers of more complicated graphs. It is easy to see that any graph G with maximum degree d has strong chromatic number $s \chi(G)>d$. Define $s \chi(d)=\max (s \chi(G))$, where G ranges over all graphs with maximum degree at most d. It is easy to see that $s \chi(1)=2$. As noted in $[1] s \chi(d)>3\lfloor d / 2\rfloor$ for every d. This simple fact is proved in the beginning of the next section. On the other hand, in [6] it is proved that $s \chi(d) \leq 2\left(6^{d-1}\right)$. A better result is mentioned in [1]. It asserts that for any graph G with chromatic index $f, s \chi(G) \leq 2^{f}$. This statement, whose proof is presented in the next section, implies, by Vizing's Theorem (see, e.g. [4]), that $s \chi(d) \leq 2^{d+1}$ for every d.

Our main result here is the following improvement for these estimates, which shows that in fact $s \chi(d)$ grows only linearly with d.

Theorem 1.1 There is a constant c such that for every d, $s \chi(d) \leq c d$.

It would be interesting to find the best possible value of c in this theorem. By the above remark, this value is larger than $3 / 2$, whereas our proof shows that it is smaller than some huge number, possibly about $2^{10^{10}}$. By being more careful this estimate can be reduced to about 10^{8}, but since it is clear that our approach cannot give any realistic estimate for the best possible c we make no attempt to obtain the best possible constant and merely show it exists.

2 Simple bounds on strong chromatic numbers

The following simple fact is mentioned without a proof in [1].
Proposition 2.1 For every d, $s \chi(d)>3\lfloor d / 2\rfloor$.

Proof Construct a graph G with $12 r$ vertices, partitioned into 12 classes of cardinality r each, as follows. Let these classes be $A_{0}, \ldots, A_{3}, B_{0}, \ldots, B_{3}, C_{0}, \ldots, C_{3}$. Each vertex in A_{i} is joined by
edges to each member of A_{i-1} and each member of A_{i+1}, where the indices are reduced modulo 4. Similarly, each member of B_{i} is adjacent to each member of B_{i-1} and B_{i+1} and each member of C_{i} is adjacent to each member of $C_{i-1} \cup C_{i+1}$. Consider the following partition of the set of vertices of G into four classes of cardinality $3 r$ each;
$V_{1}=A_{0} \cup A_{2} \cup B_{0}, V_{2}=A_{1} \cup A_{3} \cup B_{2}$, $V_{3}=B_{3} \cup C_{0} \cup C_{2}, V_{4}=B_{1} \cup C_{1} \cup C_{3}$.

We claim that there is no proper $3 r$-vertex coloring of G in which each color class intersects each set V_{i}. Indeed, any color class containing a vertex of B_{3} cannot contain any vertex of B_{0} or of B_{2}, and since this color class must have a vertex in V_{1} and in V_{2} it must contain a vertex in $A_{0} \cup A_{2}$ and a vertex in $A_{1} \cup A_{3}$. But this is impossible as each vertex in the first union is adjacent to each one in the second union, completing the proof of the claim.

Thus $s \chi(G)>3 r$ and as the maximum degree in G is $2 r$ this shows that $s \chi(2 r)>3 r$, completing the proof.

Next we prove the following statement, which will be needed later, and which is also mentioned without a proof in [1].

Proposition 2.2 For any two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on the same set of vertices, where G_{1} is a union of r matchings and G_{2} is a vertex disjoint union of cliques of size 2^{r} each, the chromatic number of the graph $G=\left(V, E_{1} \cup E_{2}\right)$ is 2^{r}.

Proof We apply induction on r. For $r=1, G$ is just a union of two matchings and hence its chromatic number is 2 , as claimed. Assuming the result holds for $r-1$ let us prove it for r. Let G_{1} be a union of the r edge disjoint matchings M_{1}, \ldots, M_{r}. Let M be a matching in G_{2} containing precisely 2^{r-1} edges in each 2^{r}-clique from those in G_{2}. The graph $\left(V, M_{r} \cup M\right)$ is a union of two matchings and is hence two colorable. Let $c: V \mapsto\{0,1\}$ be a proper 2-vertex coloring of this graph. Note that exactly half of the vertices in each 2^{r}-clique in G_{2} are colored 0 (and exactly half are colored 1) in this coloring. Let G_{2}^{\prime} be the graph obtained from G_{2} by splitting each clique of G_{2} into two disjoint cliques according to the coloring c as follows; if K is the set of vertices of such a clique then define $K_{i}=K \cap c^{-1}(i)$ for $i=0,1$ and take the two cliques on K_{0} and on K_{1}. Let G_{1}^{\prime} be
the union of the $r-1$ matchings M_{1}, \ldots, M_{r-1}. By the induction hypothesis the graph whose edges are all edges of G_{1}^{\prime} and all edges of G_{2}^{\prime} is 2^{r-1}-colorable. Let d be a proper 2^{r-1} vertex-coloring of this graph. One can easily check that the assignment of the ordered pair $(c(v), d(v))$ for each vertex v of G is a proper 2^{r} - vertex coloring of G. This completes the proof.

Corollary 2.3 For every $d, s \chi(d) \leq 2^{d+1}$.

3 Even Splittings of graphs

In this section we prove the following theorem, which may be interesting in its own right.
Theorem 3.1 For every $\epsilon>0$ there exists a constant $c_{1}=c_{1}(\epsilon)$ such that the following holds. For any graph $G=(V, E)$ with maximum degree at most d and for any partition $V=V_{1} \cup \ldots \cup V_{r}$ of V into sets of size $c_{2} 2^{j}$ each, where $d /\left(2^{j}\right) \geq c_{1}$ there is a partition of each set V_{i} into $J=2^{j}$ subsets $V_{i, 1}, \ldots, V_{i, J}$, such that each $V_{i, l}$ has precisely c_{2} elements and for every $l, 1 \leq l \leq J$, the maximum degree of the induced subgraph of G on the set $V_{1, l} \cup V_{2, l} \cup \ldots \cup V_{r, l}$ is at most $(1+\epsilon) d /\left(2^{j}\right)$.

The proof of the above theorem is probabilistic, and applies the Lovász Local Lemma, proved in [5], which is the following.

Lemma 3.2 (The local lemma [5], see also [8]) Let A_{1}, \ldots, A_{n} be events in an arbitrary probability space. Suppose each A_{i} is mutually independent of all but at most b other events A_{j} and suppose the probability of each A_{i} is at most p. If ep $(b+1)<1$ then with positive probability none of the events A_{i} holds.

There are two difficulties in trying to prove theorem 3.1 by applying the local lemma. The first one is that we cannot partition the set of vertices of G into J classes by letting each vertex choose randomly and independently its class, since we need to partition each set V_{i} into equal classes. This may cause more dependencies than we may allow. The second difficulty is that we cannot obtain the desired partition in one step since, again, this would cause too many dependencies. We overcome the latter difficulty by obtaining the partition in j halving steps, and the former one
by choosing the random partition in each step in a special manner. This is done in the following lemma.

Lemma 3.3 For any graph $G=(V, E)$ with maximum degree at most d, where $d \geq 2$, and for any partition $V=V_{1} \cup \ldots \cup V_{r}$ of V into sets of size $2 s$ each, there is a partition of each set V_{i} into 2 subsets $V_{i, 1}$ and $V_{i, 2}$, such that each $V_{i, l}$ has preciselys elements and for every $l, 1 \leq l \leq 2$, the maximum degree of the induced subgraph of G on the set $V_{1, l} \cup V_{2, l} \cup \ldots \cup V_{r, l}$ is at most $d / 2+2 \sqrt{d \log d}$. (Here, and from now on, all logarithms are in the natural base e).

Proof Let us choose an arbitrary perfect matching in each of the sets V_{i}, i.e., an arbitrary set of s vertex disjoint edges in each V_{i}, and let M denote the perfect matching consisting of all these matchings. (Note that M does not have to contain edges of G; it is simply a matching in the complete graph on V which matches the vertices of each set V_{i} among themselves.) We define a random coloring $f: V \mapsto\{1,2\}$ by choosing, for each edge u, v of M, randomly and independently one of the following two possibilities, taken with equal probability: Either $f(u)=1$ and $f(v)=2$ or $f(u)=2$ and $f(v)=1$. For each $i, 1 \leq i \leq r$, define $V_{i, 1}=V_{i} \cap f^{-1}(1)$ and $V_{i, 2}=V_{i} \cap f^{-1}(2)$. Clearly each of the sets $V_{i, l}$ has precisely s elements. For $l=1,2$, let G_{l} be the induced subgraph of G on $V_{1, l} \cup \ldots \cup V_{r, l}$. Each vertex v of G belongs to G_{l} for some $l \in\{1,2\}$. Let A_{v} be the event that the degree of v in G_{l} is greater than $d / 2+2 \sqrt{d \log d}$. Observe that if none of the events A_{v} holds then our partition satisfies the assertion of the lemma. Hence, in order to complete the proof it suffices to show, using the local lemma, that with positive probabilty no event A_{v} holds. Fix a vertex v of G and consider the event A_{v}. Suppose $f(v)=l$, i.e., v is in G_{l}. If v is matched by the matching M to a neighbor u of v, then $f(u)$ is not l and hence u is not a neighbor of v in G_{l}. Similarly, if two neighbours of v are matched to each other by M then exactly one of them is a neighbor of v in G_{l}. Let T be the set of all neighbors of v in G which are matched by M to vertices which are neither v nor one of its neighbors. Let t be the cardinality of T. Clearly $t \leq d$ and by the last few sentences the degree of v in G_{l} is at most $(d-t) / 2$ plus the number of members of T that belong to G_{l}.However, by our random choice, this number is a binomial random variable with parameters t and $1 / 2$.By the standard estimates for Binomial distributions (see, e.g. [8], page 29), it follows that for every v
$\operatorname{Prob}\left(A_{v}\right) \leq e^{-2(2 \sqrt{d \log d})^{2} / t} \leq d^{-8}$.
Clearly each event A_{v} is mutually independent of all the events A_{u} but those for which either v or one of its neighbors is incident with the same edge of M as either u or one of its neighbors. Since there are less than $2(d+1)^{2}$ such vertices u and since $e d^{-8} 2(d+1)^{2}<1$ we conclude, by lemma 3.2 , that with positive probability no evet A_{v} holds. Hence, there is a coloring f for which no A_{v} holds, completing the proof of the lemma.

Proof of Theorem 3.1 Given $\epsilon>0$ let $c_{1}=c_{1}(\epsilon)$ satisfy

$$
\begin{equation*}
c_{1} \geq \frac{512}{\left((1+\epsilon)^{1 / 3}-1\right)^{3}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall x \geq c_{1}, 2 \sqrt{x \log x} \leq x^{2 / 3} \tag{2}
\end{equation*}
$$

We prove the assertion of Theorem 3.1 with this c_{1}. Given a graph $G=(V, E)$ with maximum degree at most d and a partition of V into r pairwise disjoint subsets V_{1}, \ldots, V_{r} of cardinality $c_{2} 2^{j}$ each, as in the hypotheses of the theorem, we apply Lemma 3.3 to G and split it into two induced subgraphs G_{1} and G_{2}, each containing exactly half of the vertices of each V_{i}. By Lemma 3.3 there is such a splitting in which the maximum degree in each G_{i} does not exceed $d_{1}=d / 2+2 \sqrt{d \log d}$. The set of vertices of each of the two graphs $G_{l}=\left(V^{l}, E^{l}\right)$ is partitioned into the r pairwise disjoint sets of equal cardinality $V_{i} \cap V^{l}$. By applying Lemma 3.3 again to each of these two graphs we obtain a splitting of G into four induced subgraphs. Continuing in this manner we obtain, after j such halving steps, a partition of G into $2^{j}=J$ induced subgraphs, each containing exactly c_{2} vertices from each set V_{i}. Define a sequence $d_{q},(0 \leq q \leq j)$ as follows; $d_{0}=d$ and for all $q<j$: $d_{q+1}=d_{q} / 2+2 \sqrt{d_{q} \log d_{q}}$. Clearly $d_{q} \geq d /\left(2^{q}\right)$, and hence, by $(2), d_{q+1} \leq d_{q} / 2+d_{q}^{2 / 3}$ for all $q<j$. Moreover, by Lemma 3.3, d_{q} is an upper bound for the maximum degree in any of the 2^{q} induced subgraphs of G obtained after q halving steps.

In order to complete the proof it thus remains to show that $d_{j} \leq(1+\epsilon) d /\left(2^{j}\right)$.
Clearly $d_{q+1} \leq d_{q} / 2+d_{q}^{2 / 3} \leq \frac{1}{2}\left(d_{q}^{1 / 3}+2\right)^{3}$. Hence, by taking cube roots and subtracting $\frac{2}{2^{1 / 3}-1}$ from both sides
$d_{q+1}^{1 / 3}-\frac{2}{2^{1 / 3}-1} \leq \frac{1}{2^{1 / 3}}\left(d_{q}^{1 / 3}+2\right)-\frac{2}{2^{1 / 3}-1}=\frac{1}{2^{1 / 3}}\left(d_{q}^{1 / 3}-\frac{2}{2^{1 / 3}-1}\right)$.

Therefore
$d_{j}^{1 / 3}-\frac{2}{2^{1 / 3}-1} \leq \frac{1}{2^{j / 3}}\left(d_{0}^{1 / 3}-\frac{2}{2^{1 / 3}-1}\right)$,
and, since $d_{0}=d$ and $2^{1 / 3}-1>1 / 4$,
$d_{j}^{1 / 3} \leq \frac{d^{1 / 3}}{2^{j / 3}}+8 \leq(1+\epsilon)^{1 / 3} \frac{d^{1 / 3}}{2^{j / 3}}$.
The last inequality follows from (1) and the assumption that $d /\left(2^{j}\right) \geq c_{1}$.
Thus $d_{j} \leq(1+\epsilon) d /\left(2^{j}\right)$, completing the proof of the theorem.

4 The proof of the main result

In this section we combine Corollary 2.3 and Theorem 3.1 to establish our main result.
Proof of Theorem 1.1 Let $c_{1} \geq 1$ be a number for which the assertion of Theorem 3.1 with $\epsilon=1$ holds. We prove the assertion of Theorem 1.1 with $c=2^{4 c_{1}+1}$. Let $G=(V, E)$ be a graph whose maximum degree is at most d. We must show that $s \chi(G) \leq c d$. Let j be the maximum integer such that $d /\left(2^{j}\right) \geq c_{1}$. Observe that $2^{j} \leq d$ and $d / 2^{j} \leq 2 c_{1}$. Define also $c_{2}=c=2^{4 c_{1}+1}$. To complete the proof we show that $s \chi(G) \leq c_{2} 2^{j} \leq c d$. Clearly we may assume that the number of vertices of G is divisible by $c_{2} 2^{j}$, since otherwise we simply add to G an appropriate number of isolated vertices. Let V_{1}, \ldots, V_{r} be a partition of the set V of vertices of G into pairwise disjoint sets each of size $c_{2} 2^{j}$. To complete the proof it suffices to show that there is a proper vertex coloring of G in which each color class contains exactly one vertex in each V_{i}. By Theorem 3.1 there is a partition of the set of vertices of G into $J=2^{j}$ pairwise disjoint classes V^{1}, \ldots, V^{J}, each containing exactly c_{2} vertices of each V_{i}, such that for each $l, 1 \leq l \leq J$, the maximum degree of the induced subgraph of G on V^{l} is at most $(1+\epsilon) d /\left(2^{j}\right)=\frac{2 d}{2^{j}} \leq 4 c_{1}$. For each $l, 1 \leq l \leq J$, let G^{l} be the induced subgraph of G on V^{l}. Since $c_{2}=2^{4 c_{1}+1}$, Corollary 2.3 implies that $s \chi\left(G^{l}\right) \leq c_{2}$ for each l. For $1 \leq i \leq r$ and $1 \leq l \leq J=2^{j}$, define $V_{i, l}=V_{i} \cap V^{l}$. For each $l, 1 \leq l \leq J$, the sets $V_{1, l}, \ldots, V_{r, l}$ form a partition of the vertex set V^{l} of G^{l} into pairwise disjoint sets of cardinality c_{2} each. Since $s \chi\left(G^{l}\right) \leq c_{2}$, there is a proper coloring of G^{l} in which every color class contains exactly one vertex from each of the sets $V_{i, l}$. Combining these $J=2^{j}$ colorings, where the J sets of colors used are pairwise disjoint, we obtain a $c_{2} 2^{j}$-proper vertex coloring of G in which every color class contains
exactly one vertex from each of the sets V_{i}. Thus $s \chi(G) \leq c_{2} 2^{j} \leq c d$, completing the proof of the theorem.

5 Concluding remarks

1). In [1] and, independently in [6] it is shown that there is a constant c such that for any graph G with maximum degree d and every partition of the set of its vertices into pairwise disjoint subsets each of size at least $c d$, there is an independent set of G containing a vertex from each of these subsets. Theorem 1.1 is clearly a strengthening of this result.
2). A theorem of Hajnal and Szemerédi [7] asserts that any graph G with n vertices and with maximum degree d has a proper $d+1$-vertex coloring with almost equal color classes, i.e., a coloring in which each color class has either $\lfloor n /(d+1)\rfloor$ or $\lceil n /(d+1)\rceil$ vertices. Theorem 1.1 shows that if we allow to increase the number of colors by a constant factor we can obtain a coloring with almost equal color classes satisfying several additional severe restrictions.
3). It would be interesting to determine the best possible constant c in Theorem 1.1. This constant is probably much closer to $3 / 2$ than to the huge upper bound that can be derived using our approach. It is worth noting that our approach suffices to prove, e.g., that for every d, $s \chi(d) \leq b d^{2}$ for a rather small constant b.

Another interesting problem is that of exhibiting a polynomial time (deterministic or randomized) algorithm that gets as an input a graph G with maximum degree d and a partition of its set of vertices into pairwise disjoint subsets of cardinality $c d$ each, and produces a proper vertex coloring of this graph in which every color class contains exactly one element of each of these subsets. This problem has been open when the present paper has been submitted, but as is the case in several other known proofs in which the local lemma is used, it can be solved by applying the recent technique of J. Beck [3] (see also [2]).

References

[1] N. Alon, The linear arboricity of graphs, Israel J. Mathematics 62 (1988), 311-325.
[2] N. Alon, A parallel algorithmic version of the Local Lemma, to appear.
[3] J. Beck, An algorithmic approach to the Lovász Local Lemma, to appear.
[4] B. Bollobás, Extremal Graph Theory, Academic Press, London and New York, 1978.
[5] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in:"Infinite and Finite Sets" (A. Hajnal et. al. eds), Colloq. Math. Soc. J. Bolyai 11, North Holland, Amsterdam, 1975, pp. 609-627.
[6] M. Fellows, Transversals of vertex partitions in graphs, SIAM J. on Discrete Math., in press.
[7] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdős, in: "Combinatorial Theory and its Applications", vol. II (P. Erdős et. al. eds), Colloq. Math. Soc. J. Bolyai 4, North Holland, Amsterdam, 1970, pp. 601-623.
[8] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, 1987.

[^0]: *IBM Almaden Research Center, San Jose, CA 95120 ,USA and Department of Mathematics, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

