# Generalized Sum Graphs 

Noga Alon*<br>Department of Mathematics<br>Raymond and Beverly Sackler Faculty of Exact Sciences<br>Tel Aviv University<br>Ramat Aviv , Tel Aviv 69978 Israel<br>Edward R. Scheinerman ${ }^{\dagger}$<br>Department of Mathematical Sciences<br>The Johns Hopkins University<br>Baltimore, Maryland 21218 USA


#### Abstract

Harary [8] calls a finite, simple graph $G$ a sum graph if one can assign to each $v_{i} \in V(G)$ a label $x_{i}$ so that $\left\{v_{i}, v_{j}\right\} \in E(G)$ iff $x_{i}+x_{j}=x_{k}$ for some $k$. We generalize this notion by replacing " $x_{i}+x_{j}$ " with an arbitrary symmetric polynomial $f\left(x_{i}, x_{j}\right)$. We show that for each $f$, not all graphs are " $f$-graphs". Furthermore, we prove that for every $f$ and every graph $G$ we can transform $G$ into an $f$-graph via the addition of $|E(G)|$ isolated vertices. This result is nearly best possible in the sense that for all $f$ and for all $m \leq \frac{1}{2}\binom{n}{2}$, there is a graph $G$ with $n$ vertices and $m$ edges which, even after the addition of $m-O(n \log n)$ isolated vertices, is not an $f$-graph.


[^0]
## 1 Introduction

Harary [8] makes the following definition: Let $G$ be a (finite, simple) graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Such a graph is called a sum graph if one can assign a positive integer $x_{i}$ to each vertex $v_{i}$ so that $\left\{v_{i}, v_{j}\right\} \in E(G)$ if and only if $x_{i}+x_{j}=x_{k}$ for some $k$. Other authors (see, for example, $[3,6,10])$ have considered variants of this definition. We propose the following generalization:

Given a symmetric polynomial of two variables, $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, we say $G$ is an $f$-graph if one can assign real numbers $x_{1}, x_{2}, \ldots, x_{n}$ to its vertices $v_{1}, v_{2}, \ldots, v_{n}$ (respectively) so that $\left\{v_{i}, v_{j}\right\} \in E(G)$ iff $f\left(x_{i}, x_{j}\right)=x_{k}$ for some $k$.

When $f(x, y)=x+y$ this gives us (a slight generalization of) sum graphs.
Sum graphs (and their generalizations) can be very efficiently stored in a computer. An array holds the vertex labels. Adjacency can be tested by simple computations followed by a table look-up.

Ideally one would like to characterize $f$-graphs for each given $f$. In this paper we consider the following two problems. First, we show that not all graphs are $f$-graphs by estimating the number of $f$-graph on $n$ vertices. Second, we consider the problem of how to transform a given graph with $n$ vertices and $m$ edges into an $f$-graph by the addition of isolated vertices. We show that this is always possible by the addition of $m$ isolates and that this result is essentially best possible.

The $f$-graph idea provides a wide latitude for graph representations. Furthermore, our methods can be readily extended beyond the $f$-graph paradigm to more general representation schemes.

## 2 Some Graphs are not f-Graphs

Our main result in this section is an approximate count of the number of $f$-graphs for any symmetric polynomial $f$. This estimate shows that for any $f$, not all graphs are $f$-graphs. However, there is no "universal" non- $f$-graph: For every graph $G$ we show there is a polynomial $f$ such that $G$ is an $f$-graph.

Theorem 1 If $f$ is a non-constant, symmetric polynomial and $X_{f}(n)$ is the
number of labelled $f$-graphs on the vertex set $\{1,2, \ldots, n\}$, then

$$
\log X_{f}(n)=\Theta(n \log n)
$$

The key to proving this theorem is the following result due to Warren [11]. Let $p_{1}, p_{2}, \ldots, p_{r}$ be polynomials in $\ell$ variables of degree at most $d$. For $\mathbf{x} \in \mathbf{R}^{\ell}$ the sign pattern of $p_{1}(\mathbf{x}), p_{2}(\mathbf{x}), \ldots, p_{r}(\mathbf{x})$ is the vector

$$
\left(\operatorname{sgn} p_{1}(\mathbf{x}), \operatorname{sgn} p_{2}(\mathbf{x}), \ldots, \operatorname{sgn} p_{r}(\mathbf{x})\right) \in\{-1,0,+1\}^{r}
$$

As $\mathbf{x}$ ranges over $\mathbf{R}^{\ell}$, the above vector changes values. Since each coordinate may have one of three values, a simple upper bound on the number of sign patterns is $3^{r}$. However, since the $p_{i}$ 's are polynomials, Warren's theorem (see $[2,11]$ ) gives the following sharper result:

Theorem 2 (Warren) Let $p_{1}, \ldots, p_{r}: \mathbf{R}^{\ell} \rightarrow \mathbf{R}$ be polynomials of degree at most $d$. If $r \geq \ell$ then the number of sign patterns of the $p_{i}$ 's is at most

$$
\left(\frac{8 e d r}{\ell}\right)^{\ell}
$$

Proof of Theorem 1. Let $f$ be a symmetric polynomial in two variables of degree $d$. Consider the polynomials $p_{i j k}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ defined by

$$
p_{i j k}(\mathbf{x})=f\left(x_{i}, x_{j}\right)-x_{k}
$$

where $1 \leq i, j, k \leq n$ and $i<j$. There are $\binom{n}{2} n<\frac{1}{2} n^{3}$ such polynomials. Observe that the number of different $f$-graphs on $n$ vertices is bounded above by the number of sign patterns of the $p_{i j k}$. [The vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ indicates a labeling of the vertices. Two labelings which result in the same sign patterns for the $p_{i j k}$ 's necessarily give the same $f$-graph. Thus different $f$-graphs must give different sign patterns.] Thus by Warren's theorem,

$$
\begin{equation*}
X_{f}(n) \leq\left(\frac{8 e d \frac{1}{2} n^{3}}{n}\right)^{n} \leq(K n)^{2 n} \tag{1}
\end{equation*}
$$

for some constant $K$.
To establish the lower bound, let $m=\lfloor n / \log n\rfloor$ and choose values $x_{1}, \ldots, x_{m}$ so that the $\binom{m}{2}$ values $f\left(x_{i}, x_{j}\right)$ are all distinct and none are equal to $x_{k}$ for any $1 \leq k \leq m$.
[We can construct such a sequence inductively. We can always choose $x_{1}, \ldots, x_{s}$ such that there are only finitely many $x$ 's such that either $f\left(x_{i}, x\right)=$ $f\left(x_{j}, x\right)$ or $f\left(x_{i}, x_{j}\right)=x$. Thus we have infinitely many choices for $x_{s+1}$ satisfying the specified conditions. Indeed, we can do this even if we were to restrict the $x$ 's to be integers. Furthermore, the choice of $m$ is not crucial; we just need a sublinear function which grows sufficiently quickly.]

For $x_{m+1}, \ldots, x_{n}$ we choose distinct values among $f\left(x_{i}, x_{j}\right)$ with $1 \leq i, j \leq$ $m$. Note that by varying the choices of $\left(x_{m+1}, \ldots, x_{n}\right)$ we can form any $(n-m)$-edge graph on vertices $1, \ldots, m$ we please. Thus,

$$
\begin{equation*}
X_{f}(n) \geq\binom{\binom{ m}{2}}{n-m}=n^{[1-o(1)] n} \tag{2}
\end{equation*}
$$

Hence, by (1) and (2) we have $\log X_{f}(n)=\Theta(n \log n)$.
Since there are $2^{\binom{n}{2}}$ graphs on $n$ vertices, it is an immediate corollary that for any symmetric polynomial $f$, there exists a graph $G$ which is not an $f$-graph. Likewise, we can conclude that there are bipartite graphs or regular graphs which are not $f$-graphs, etc.

One may wonder if there is some graph $G$ which is not an $f$-graph for any polynomial $f$. This is not the case, as shown in the following simple proposition.

Theorem 3 Let $G$ be a graph. There exists a symmetric polynomial $f$ so that $G$ is an $f$-graph.

Proof. Suppose the vertex set of the given graph is $V(G)=\{0,1, \ldots, n-1\}$. Let

$$
f(x, y)=\prod_{\{i, j\} \in E(G)}\left[(x+i)^{2}+(y+j)^{2}\right]\left[(y+i)^{2}+(x+j)^{2}\right] .
$$

Note that $f(x, y)$ is symmetric and is zero exactly when $x=-i, y=-j$ (or vice versa) and $\{i, j\} \in E(G) ; f$ is positive otherwise. To show that $G$ is an $f$-graph we must assign a labeling to its vertices. We do this by letting the label at vertex $i$ be $x_{i}=-i$. Note that if $\{i, j\} \in E(G)$ then $f\left(x_{i}, x_{j}\right)=0=x_{0}$, but if $\{i, j\} \notin E(G)$ then $f\left(x_{i}, x_{j}\right)>0$ which cannot be the value of any $x_{k}$ since they are all non-positive. Hence $G$ is an $f$-graph.

## 3 Every Graph is an $f$-Graph...

..once one adds to it sufficiently many isolated vertices.
Given an arbitrary graph $G$, one can transform it into a sum graph by the addition of sufficiently many isolated vertices $[4,5,8]$. (For example, label each vertex of $G$ with distinct powers of 3 . Add $m=|E(G)|$ vertices corresponding to the edges of $G$ and label each with the sum of the labels of its corresponding endpoints. One checks that the resulting graph is $G+m K_{1}$.) Harary [8] asked: What is the minimum number of isolated vertices which one must add to $G$ to make it into a sum graph?

For a symmetric polynomial $f$ and a graph $G$, let $s_{f}(G)$ denote the smallest integer $s$ such that $G+s K_{1}$ is an $f$-graph. We show that $s_{f}(G) \leq|E(G)|$.

Theorem 4 If $G$ is a graph and $f$ is a non-constant symmetric polynomial, then $s_{f}(G) \leq|E(G)|$.

Proof. Suppose $V(G)=\{1,2, \ldots, n\}$ and $m=|E(G)|$. Suppose the coefficients of the polynomial $f$ are $c_{1}, \ldots, c_{t}$. Having chosen labels $x_{1}, \ldots, x_{i-1}$ for vertices 1 through $i-1$, let the label for vertex $i$ be any real number $x_{i}$ such that $x_{i}$ is transcendental over the field $F_{i-1}=\mathbf{Q}\left(c_{1}, \ldots, c_{t}, x_{1}, \ldots, x_{i-1}\right)$. (Since $F_{i-1}$ is countable, there are only countably many real values which are algebraic over $F_{i-1}$.) Now we add $m$ additional vertices $u_{i j}$ corresponding to $\{i, j\} \in E(G)$. Let the label on $u_{i j}$ be $x_{i j}=f\left(x_{i}, x_{j}\right)$. We must show that this labeling represents $G+m K_{1}$.

It is immediate that each edge $\{i, j\} \in E(G)$ is properly represented. What remains to be checked is that (1) no further edges between vertices of $G$ are represented and (2) the additional vertices, $u_{i j}$, are isolated. Let

$$
X=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i j}:\{i, j\} \in E(G)\right\}
$$

We must prove:

1. For all $1 \leq i<j \leq n$ with $\{i, j\} \notin E(G)$ we have $f\left(x_{i}, x_{j}\right) \notin X$, and
2. For all $\{i, j\} \in E(G)$ we have $f\left(x_{i j}, x_{k}\right) \notin X$ and $f\left(x_{i j}, x_{a b}\right) \notin X$ for any $k$ and any $\{a, b\} \in E(G)$.

For (1) suppose $f\left(x_{i}, x_{j}\right)=x_{k}$ or $f\left(x_{i}, x_{j}\right)=x_{a b}=f\left(x_{a}, x_{b}\right)$. But in either equation we violate the transcendentality of the $x$ with the largest subscript. Likewise for (2) we would have

- $f\left[f\left(x_{i}, x_{j}\right), x_{k}\right]=x_{a}$, or
- $f\left[f\left(x_{i}, x_{j}\right), x_{k}\right]=f\left(x_{a}, x_{b}\right)$, or
- $f\left[f\left(x_{i}, x_{j}\right), f\left(x_{a}, x_{b}\right)\right]=x_{c}$, or
- $f\left[f\left(x_{i}, x_{j}\right), f\left(x_{a}, x_{b}\right)\right]=f\left(x_{c}, x_{d}\right)$.

As before, each of these polynomial relations would violate the transcendentality of the $x$ with the largest subscript.

If the coefficients in $f$ are integers then it is possible to choose the $x_{i}$ 's in the above proof to be integers as well (and completely avoid transcendental numbers). Put

$$
\left.\begin{array}{l}
F_{1}=\prod_{i \neq j}\left(x_{i}-x_{j}\right) \\
F_{2}=\prod_{\{i, j\} \neq\{k, \ell\}}\left[f\left(x_{i}, x_{j}\right)-f\left(x_{k}, x_{\ell}\right)\right] \\
F_{3}=\prod_{i \neq j}\left[f\left(x_{i}, x_{j}\right)-x_{k}\right] \\
F_{4}=\prod_{i \neq j}\left[f\left(f\left(x_{i}, x_{j}\right), x_{k}\right)-x_{a}\right] \\
F_{5}=\prod_{i \neq j, a \neq b}\left[f\left(f\left(x_{i}, x_{j}\right), x_{k}\right)-f\left(x_{a}, x_{b}\right)\right] \\
F_{6}=\prod_{i \neq j, k \neq \ell}\left[f\left(f\left(x_{i}, x_{j}\right), f\left(x_{k}, x_{\ell}\right)\right)-x_{a}\right] \\
F_{7}=\prod_{i \neq j, k \neq \ell, a \neq b}\left[f\left(f\left(x_{i}, x_{j}\right), f\left(x_{k}, x_{\ell}\right)\right)-f\left(x_{a}, x_{b}\right)\right] \\
F
\end{array}=F_{1} \cdot F_{2} \cdot F_{3} \cdot F_{4} \cdot F_{5} \cdot F_{6} \cdot F_{7}\right]
$$

where indicies run between 1 and $n$ inclusive subject to the conditions shown. Now one checks that since $F$ is not identically zero one can choose integer values for the $x_{i}$ 's so that $F \neq 0$. Having done this we let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the labels for the original vertices in $G$ and $\left\{f\left(x_{i}, x_{j}\right): i j \in E(G)\right\}$ be the labels for the added isolated vertices.

Moreover, applying the method in [9], random substitutions into the variables $x_{i}$ (with, say, integers between 1 and $k n^{7}$ for some constant $k$ ) will yield a non-zero value for $F$ with high probability. This can be converted into a
deterministic polynomial time labelling algorithm (or even a deterministic efficient parallel algorithm) using the methods in [1].

Note that for graphs with $n$ vertices and $m$ edges, the above theorem implies that $s_{f}(G) \leq m=O\left(n^{2}\right)$. One may suspect that for some $f$ there is a sub-quadratic upper bound, however, we can apply Theorem 1 to show that a much better bound cannot be obtained. If one compares the number of graphs on $n$ vertices with the number of $f$-graphs on $n+x$ vertices, one gets the existence of a graph for which $s_{f}(G) \geq c n^{2} / \lg n$ for any $c<\frac{1}{4}$. (Here and below, $\lg$ denotes the base-2 logarithm.) However, a more careful use of Warren's theorem gives us the following result.

Theorem 5 Let $f$ be a non-constant, symmetric polynomial. There exists a constant $C>0$ (depending only on $f$ ) such that for all $n$ and all $m \leq \frac{1}{2}\binom{n}{2}$ there is a graph $G$ with $n$ vertices and $m$ edges such that

$$
s_{f}(G)>m-3 n \lg n-C n .
$$

Proof. For convenience we put $N=\binom{n}{2}$. Suppose $m \leq \frac{1}{2} N$ and suppose that for all graphs $G$ with $n$ vertices and $m$ edges we have $s_{f}(G) \leq m-a$ where $a=3 n \lg n+C n$. Clearly, we may assume that $m \geq a$. Suppose $V(G)=\{1,2, \ldots, n\}$ and let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ denote the corresponding labels we give to these vertices. Consider the (fewer than) $n^{4}$ polynomials

$$
q_{i j k l}(\mathbf{x})=f\left(x_{i}, x_{j}\right)-f\left(x_{k}, x_{l}\right)
$$

Note that if the labels on vertices of $G$ are given in $\mathbf{x}$ and $q_{i j k l}(\mathbf{x})=0$, then $\{i, j\} \in E(G) \Longleftrightarrow\{k, l\} \in E(G)$. Now these (fewer than) $n^{4}$ polynomials in $n$ variables have degree $d=\operatorname{deg}(f)$, and by Warren's theorem, the number of sign patterns for the $q_{i j k l}$ is at most

$$
\left(\frac{8 e d n^{4}}{n}\right)^{n} \leq(K n)^{3 n}
$$

for some constant $K$.
Now suppose the sign pattern for the $q$ 's is fixed. We claim there are at most $\sum_{j=0}^{m+n-a}\binom{N+n-a}{j}$ graphs with $n$ vertices, $m$ edges that are $f$-graphs upon the addition of $m-a$ (isolated) vertices:

To prove this claim observe that the sign pattern of the $q$ 's induced by a given $\mathbf{x}$ creates a partition on the set of pairs of vertices so that $\{i, j\}$ and $\{k, l\}$ are in the same block of the partition iff $q_{i j k l}(\mathbf{x})=0$. Suppose there are $t$ blocks in this partition and the block sizes are $r_{1}, \ldots, r_{t}$ where $r_{1}+\cdots+r_{t}=N$. Note that the pairs in one block are either all edges or all non-edges in $G$. Moreover, at most $m+n-a$ of the blocks can be used. Thus there are at most $\sum_{j=0}^{m+n-a}\binom{t}{j}$ graphs $G$ we can form given the sign pattern of the $q$ 's.

Now if no subset of the $r$ 's sums to $m$, it is impossible to make an $f$-graph with $m$ edges on the vertices $1, \ldots, n$ regardless of how many additional vertices we add. Thus, without loss of generality, suppose $r_{1}+\cdots+r_{j}=m$ with $1 \leq j<t$, where $j$ is the minimum number of $r$ 's whose sum is $m$. If $j>n+m-a$ we cannot make $G$ into an $f$-graph where the total number of vertices is at most $n+m-a$. Thus, $j \leq n+m-a$. Since each $r_{i} \geq 1$, $t-j \leq r_{j+1}+\cdots+r_{t}=N-m$ and therefore

$$
t \leq(N-m)+j \leq(N-m)+(n+m-a)=N+n-a .
$$

Thus there are at most $\sum_{j=0}^{m+n-a}\binom{N+n-a}{j}$ graphs $G$ we can represent for each sign pattern of the $q$ 's. This completes the justification of the claim.

Finally, since we supposed that all graphs with $n$ vertices and $m$ edges have $s_{f} \leq m-a$, we have

$$
\begin{equation*}
\binom{N}{m} \leq(K n)^{3 n} \sum_{j=0}^{m+n-a}\binom{N+n-a}{j} \tag{3}
\end{equation*}
$$

When $C$ is large enough, $n \leq a$ giving, $m+n-a \leq \frac{1}{2}(N+n-a)$. Thus we have

$$
\sum_{j=0}^{m+n-a}\binom{N+n-a}{j} \leq N\binom{N+n-a}{m+n-a}
$$

Since $a=3 n \lg n+C n$, if $C$ is a sufficiently large constant then

$$
\begin{aligned}
\frac{\binom{N+n-a}{m+n-a}}{\binom{N}{m}} & =\frac{m(m-1) \cdots(m+n-a+1)}{N(N-1) \cdots(N+n-a+1)} \\
& \leq\left(\frac{m}{N}\right)^{a-n} \leq\left(\frac{1}{2}\right)^{a-n}<\frac{1}{N(K n)^{3 n}},
\end{aligned}
$$

contradicting the inequality (3) above. This completes the proof. $\square$
Note that we have not used the fact that the added vertices should be isolated. Regardless of the structure of the vertices we add to $G$, we must add at least $m-O(n \log n)$ vertices to make some graphs $G$ into an $f$-graph.

In the specific case of sum graphs, the authors of [5] prove a similar result, namely: for all $n$, there is a graph $G$ with $n$ vertices, $m=c n^{2}$ edges (for some constant $c$ ) and $s(G) \geq m-O(n \log n)$.

## 4 Further Generalization

We can generalize the notion of $f$-graphs in several ways. For example, we can assume the labels on the vertices are complex numbers $z_{i}$. Or we may wish to assign a $t$-vector $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i t}\right)$ to vertex $v_{i}$ and have the edge $\left\{v_{i}, v_{j}\right\}$ precisely when $f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{k}$ for some $k$ (where each coordinate function in $f: \mathbf{R}^{2 t} \rightarrow \mathbf{R}^{t}$ is a polynomial). Finally, we can postulate that given a polynomial $f: \mathbf{R}^{3 t} \rightarrow \mathbf{R}^{s}$, we have $\left\{v_{i}, v_{j}\right\} \in E(G)$ iff for some $k$ we have $f\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right)=\mathbf{0}_{s}$. Note that this last generalization encompasses the previous two. In this case we can apply Warren's theorem to show that the number of $f$-graphs on $n$ vertices is bounded by $(K n)^{2 t n}$ for some constant $K$ (depending on $f$ ). Thus, even under this most liberal definition of $f$-graphs, almost all graphs are not $f$-graphs .

The results above depend heavily on the polynomial nature of $f$ (both in our application of Warren's theorem and in our transcendental trickery in Theorem 4). If we were to let $f$ be an arbitrary symmetric function of two variables we could easily contrive an $f$ for which all graphs were $f$-graphs. Trenk [10] investigated "gcd-graphs" in which the label $x_{i}$ on vertex $v_{i}$ is a positive integer and $\left\{v_{i}, v_{j}\right\}$ is an edge iff $\operatorname{gcd}\left(x_{i}, x_{j}\right)=x_{k}$ for some $k$. The conclusion of Theorem 1 fails miserably in this case as all bipartite graphs are gcd-graphs, and therefore there are at least $2^{n^{2} / 4}$ labelled gcd-graphs on $n$ vertices.

## References

[1] Alon, N. L. Babai and A. Itai, "A fast and simple randomized parallel algorithm for the maximal independent set problem" J. Algorithms 7 (1986) 567-583.
[2] Alon, N. and E.R. Scheinerman, "Degrees of freedom versus dimension for containment orders" Order 5 (1988) 11-16.
[3] Boland, J., G. Domke, R. Laskar and C. Turner, "Mod sum graphs", preprint.
[4] Ellingham, M., "Sum graphs from trees", preprint.
[5] Gould, R.J. and V. Rödl, "Bounds on the number of isolated vertices in sum graphs", Technical Report No. 77, Department of Mathematics and Computer Science, Emory University (1988).
[6] Grimaldi, R., "Graphs from rings", preprint.
[7] Hao, T. "On sum graphs", Mathematical Preprint No. 1988-7, Queen's University, Kingston, Ontario, Canada (1988).
[8] Harary, F., "Sum graphs and difference graphs", talk at the Nineteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton Rouge (1988).
[9] Schwartz, J.T., "Fast probabilistic algorithms for verification of polynomial identities" SIAM J. Comput. 27 (1980) 701-717.
[10] Trenk, A., personal communication.
[11] Warren, H.E., "Lower bounds for approximation by nonlinear manifolds" Trans. AMS 133 (1968) 167-178.


[^0]:    *Research supported in part by a U.S.A.-Israel Binational Science Foundation and by a Bergmann Memorial Grant.
    ${ }^{\dagger}$ Research supported in part by the Office of Naval Research contract number N00014-85-K0622.

