
Generalized Sum Graphs

Noga Alon∗

Department of Mathematics
Raymond and Beverly Sackler Faculty of Exact Sciences

Tel Aviv University
Ramat Aviv , Tel Aviv 69978 Israel

Edward R. Scheinerman†

Department of Mathematical Sciences
The Johns Hopkins University

Baltimore, Maryland 21218 USA

ABSTRACT

Harary [8] calls a finite, simple graph G a sum graph if one
can assign to each vi ∈ V (G) a label xi so that {vi, vj} ∈ E(G) iff
xi + xj = xk for some k. We generalize this notion by replacing
“xi + xj” with an arbitrary symmetric polynomial f(xi, xj). We
show that for each f , not all graphs are “f -graphs”. Furthermore,
we prove that for every f and every graph G we can transform G
into an f -graph via the addition of |E(G)| isolated vertices. This
result is nearly best possible in the sense that for all f and for
all m ≤ 1

2

(
n
2

)
, there is a graph G with n vertices and m edges

which, even after the addition of m−O(n log n) isolated vertices,
is not an f -graph.
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1 Introduction

Harary [8] makes the following definition: Let G be a (finite, simple) graph
with vertex set V = {v1, . . . , vn}. Such a graph is called a sum graph if one
can assign a positive integer xi to each vertex vi so that {vi, vj} ∈ E(G)
if and only if xi + xj = xk for some k. Other authors (see, for example,
[3, 6, 10]) have considered variants of this definition. We propose the following
generalization:

Given a symmetric polynomial of two variables, f : R2 → R, we say
G is an f -graph if one can assign real numbers x1, x2, . . . , xn to its vertices
v1, v2, . . . , vn (respectively) so that {vi, vj} ∈ E(G) iff f(xi, xj) = xk for some
k.

When f(x, y) = x+y this gives us (a slight generalization of) sum graphs.
Sum graphs (and their generalizations) can be very efficiently stored in

a computer. An array holds the vertex labels. Adjacency can be tested by
simple computations followed by a table look-up.

Ideally one would like to characterize f -graphs for each given f . In this
paper we consider the following two problems. First, we show that not all
graphs are f -graphs by estimating the number of f -graph on n vertices.
Second, we consider the problem of how to transform a given graph with n
vertices and m edges into an f -graph by the addition of isolated vertices. We
show that this is always possible by the addition of m isolates and that this
result is essentially best possible.

The f -graph idea provides a wide latitude for graph representations. Fur-
thermore, our methods can be readily extended beyond the f -graph paradigm
to more general representation schemes.

2 Some Graphs are not f-Graphs

Our main result in this section is an approximate count of the number of
f -graphs for any symmetric polynomial f . This estimate shows that for any
f , not all graphs are f -graphs. However, there is no “universal” non-f -graph:
For every graph G we show there is a polynomial f such that G is an f -graph.

Theorem 1 If f is a non-constant, symmetric polynomial and Xf (n) is the
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number of labelled f -graphs on the vertex set {1, 2, . . . , n}, then

logXf (n) = Θ(n log n).

The key to proving this theorem is the following result due to Warren
[11]. Let p1, p2, . . . , pr be polynomials in ` variables of degree at most d. For
x ∈ R` the sign pattern of p1(x), p2(x), . . . , pr(x) is the vector

(sgn p1(x), sgn p2(x), . . . , sgn pr(x)) ∈ {−1, 0,+1}r.

As x ranges over R`, the above vector changes values. Since each coordinate
may have one of three values, a simple upper bound on the number of sign
patterns is 3r. However, since the pi’s are polynomials, Warren’s theorem
(see [2, 11]) gives the following sharper result:

Theorem 2 (Warren) Let p1, . . . , pr : R` → R be polynomials of degree at
most d. If r ≥ ` then the number of sign patterns of the pi’s is at most(

8edr

`

)`
.2

Proof of Theorem 1. Let f be a symmetric polynomial in two variables
of degree d. Consider the polynomials pijk : Rn → R defined by

pijk(x) = f(xi, xj)− xk

where 1 ≤ i, j, k ≤ n and i < j. There are
(
n
2

)
n < 1

2
n3 such polynomials.

Observe that the number of different f -graphs on n vertices is bounded above
by the number of sign patterns of the pijk. [The vector x = (x1, . . . , xn)
indicates a labeling of the vertices. Two labelings which result in the same
sign patterns for the pijk’s necessarily give the same f -graph. Thus different
f -graphs must give different sign patterns.] Thus by Warren’s theorem,

Xf (n) ≤
(

8ed1
2
n3

n

)n
≤ (Kn)2n (1)

for some constant K.
To establish the lower bound, let m = bn/ log nc and choose values

x1, . . . , xm so that the
(
m
2

)
values f(xi, xj) are all distinct and none are equal

to xk for any 1 ≤ k ≤ m.
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[We can construct such a sequence inductively. We can always choose
x1, . . . , xs such that there are only finitely many x’s such that either f(xi, x) =
f(xj, x) or f(xi, xj) = x. Thus we have infinitely many choices for xs+1 sat-
isfying the specified conditions. Indeed, we can do this even if we were to
restrict the x’s to be integers. Furthermore, the choice of m is not crucial;
we just need a sublinear function which grows sufficiently quickly.]

For xm+1, . . . , xn we choose distinct values among f(xi, xj) with 1 ≤ i, j ≤
m. Note that by varying the choices of (xm+1, . . . , xn) we can form any
(n−m)-edge graph on vertices 1, . . . ,m we please. Thus,

Xf (n) ≥
( (

m
2

)
n−m

)
= n[1−o(1)]n (2)

Hence, by (1) and (2) we have logXf (n) = Θ(n log n).2

Since there are 2(n2) graphs on n vertices, it is an immediate corollary
that for any symmetric polynomial f , there exists a graph G which is not an
f -graph. Likewise, we can conclude that there are bipartite graphs or regular
graphs which are not f -graphs, etc.

One may wonder if there is some graph G which is not an f -graph for
any polynomial f . This is not the case, as shown in the following simple
proposition.

Theorem 3 Let G be a graph. There exists a symmetric polynomial f so
that G is an f -graph.

Proof. Suppose the vertex set of the given graph is V (G) = {0, 1, . . . , n−1}.
Let

f(x, y) =
∏

{i,j}∈E(G)

[
(x+ i)2 + (y + j)2

] [
(y + i)2 + (x+ j)2

]
.

Note that f(x, y) is symmetric and is zero exactly when x = −i, y = −j
(or vice versa) and {i, j} ∈ E(G); f is positive otherwise. To show that
G is an f -graph we must assign a labeling to its vertices. We do this by
letting the label at vertex i be xi = −i. Note that if {i, j} ∈ E(G) then
f(xi, xj) = 0 = x0, but if {i, j} 6∈ E(G) then f(xi, xj) > 0 which cannot be
the value of any xk since they are all non-positive. Hence G is an f -graph.2
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3 Every Graph is an f-Graph...

..once one adds to it sufficiently many isolated vertices.
Given an arbitrary graph G, one can transform it into a sum graph by

the addition of sufficiently many isolated vertices [4, 5, 8]. (For example,
label each vertex of G with distinct powers of 3. Add m = |E(G)| vertices
corresponding to the edges ofG and label each with the sum of the labels of its
corresponding endpoints. One checks that the resulting graph is G+mK1.)
Harary [8] asked: What is the minimum number of isolated vertices which
one must add to G to make it into a sum graph?

For a symmetric polynomial f and a graph G, let sf (G) denote the small-
est integer s such that G+sK1 is an f -graph. We show that sf (G) ≤ |E(G)|.

Theorem 4 If G is a graph and f is a non-constant symmetric polynomial,
then sf (G) ≤ |E(G)|.

Proof. Suppose V (G) = {1, 2, . . . , n} and m = |E(G)|. Suppose the coef-
ficients of the polynomial f are c1, . . . , ct. Having chosen labels x1, . . . , xi−1

for vertices 1 through i− 1, let the label for vertex i be any real number xi
such that xi is transcendental over the field Fi−1 = Q(c1, . . . , ct, x1, . . . , xi−1).
(Since Fi−1 is countable, there are only countably many real values which are
algebraic over Fi−1.) Now we add m additional vertices uij corresponding to
{i, j} ∈ E(G). Let the label on uij be xij = f(xi, xj). We must show that
this labeling represents G+mK1.

It is immediate that each edge {i, j} ∈ E(G) is properly represented.
What remains to be checked is that (1) no further edges between vertices of
G are represented and (2) the additional vertices, uij, are isolated. Let

X = {xi : 1 ≤ i ≤ n} ∪ {xij : {i, j} ∈ E(G)} .

We must prove:

1. For all 1 ≤ i < j ≤ n with {i, j} 6∈ E(G) we have f(xi, xj) 6∈ X, and

2. For all {i, j} ∈ E(G) we have f(xij, xk) 6∈ X and f(xij, xab) 6∈ X for
any k and any {a, b} ∈ E(G).

For (1) suppose f(xi, xj) = xk or f(xi, xj) = xab = f(xa, xb). But in
either equation we violate the transcendentality of the x with the largest
subscript. Likewise for (2) we would have
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• f [f(xi, xj), xk] = xa, or

• f [f(xi, xj), xk] = f(xa, xb), or

• f [f(xi, xj), f(xa, xb)] = xc, or

• f [f(xi, xj), f(xa, xb)] = f(xc, xd).

As before, each of these polynomial relations would violate the transcenden-
tality of the x with the largest subscript.2

If the coefficients in f are integers then it is possible to choose the xi’s in
the above proof to be integers as well (and completely avoid transcendental
numbers). Put

F1 =
∏
i6=j

(xi − xj)

F2 =
∏

{i,j}6={k,`}
[f(xi, xj)− f(xk, x`)]

F3 =
∏
i6=j

[f(xi, xj)− xk]

F4 =
∏
i6=j

[f(f(xi, xj), xk)− xa]

F5 =
∏

i6=j, a 6=b
[f(f(xi, xj), xk)− f(xa, xb)]

F6 =
∏

i6=j, k 6=`
[f (f(xi, xj), f(xk, x`))− xa]

F7 =
∏

i6=j, k 6=`, a 6=b
[f (f(xi, xj), f(xk, x`))− f(xa, xb)]

F = F1 · F2 · F3 · F4 · F5 · F6 · F7

where indicies run between 1 and n inclusive subject to the conditions shown.
Now one checks that since F is not identically zero one can choose integer
values for the xi’s so that F 6= 0. Having done this we let {x1, . . . , xn} be
the labels for the original vertices in G and {f(xi, xj) : ij ∈ E(G)} be the
labels for the added isolated vertices.

Moreover, applying the method in [9], random substitutions into the vari-
ables xi (with, say, integers between 1 and kn7 for some constant k) will yield
a non-zero value for F with high probability. This can be converted into a
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deterministic polynomial time labelling algorithm (or even a deterministic
efficient parallel algorithm) using the methods in [1].

Note that for graphs with n vertices and m edges, the above theorem
implies that sf (G) ≤ m = O(n2). One may suspect that for some f there
is a sub-quadratic upper bound, however, we can apply Theorem 1 to show
that a much better bound cannot be obtained. If one compares the number
of graphs on n vertices with the number of f -graphs on n + x vertices, one
gets the existence of a graph for which sf (G) ≥ cn2/ lg n for any c < 1

4
. (Here

and below, lg denotes the base-2 logarithm.) However, a more careful use of
Warren’s theorem gives us the following result.

Theorem 5 Let f be a non-constant, symmetric polynomial. There exists a
constant C > 0 (depending only on f) such that for all n and all m ≤ 1

2

(
n
2

)
there is a graph G with n vertices and m edges such that

sf (G) > m− 3n lg n− Cn.

Proof. For convenience we put N =
(
n
2

)
. Suppose m ≤ 1

2
N and suppose

that for all graphs G with n vertices and m edges we have sf (G) ≤ m − a
where a = 3n lg n + Cn. Clearly, we may assume that m ≥ a. Suppose
V (G) = {1, 2, . . . , n} and let x = (x1, . . . , xn) denote the corresponding
labels we give to these vertices. Consider the (fewer than) n4 polynomials

qijkl(x) = f(xi, xj)− f(xk, xl).

Note that if the labels on vertices of G are given in x and qijkl(x) = 0, then
{i, j} ∈ E(G) ⇐⇒ {k, l} ∈ E(G). Now these (fewer than) n4 polynomials
in n variables have degree d = deg(f), and by Warren’s theorem, the number
of sign patterns for the qijkl is at most(

8edn4

n

)n
≤ (Kn)3n

for some constant K.
Now suppose the sign pattern for the q’s is fixed. We claim there are

at most
∑m+n−a
j=0

(
N+n−a

j

)
graphs with n vertices, m edges that are f -graphs

upon the addition of m− a (isolated) vertices:
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To prove this claim observe that the sign pattern of the q’s induced by
a given x creates a partition on the set of pairs of vertices so that {i, j}
and {k, l} are in the same block of the partition iff qijkl(x) = 0. Suppose
there are t blocks in this partition and the block sizes are r1, . . . , rt where
r1 + · · ·+ rt = N . Note that the pairs in one block are either all edges or all
non-edges in G. Moreover, at most m+n−a of the blocks can be used. Thus
there are at most

∑m+n−a
j=0

(
t
j

)
graphs G we can form given the sign pattern

of the q’s.
Now if no subset of the r’s sums to m, it is impossible to make an f -graph

with m edges on the vertices 1, . . . , n regardless of how many additional
vertices we add. Thus, without loss of generality, suppose r1 + · · ·+ rj = m
with 1 ≤ j < t, where j is the minimum number of r’s whose sum is m. If
j > n + m − a we cannot make G into an f -graph where the total number
of vertices is at most n + m − a. Thus, j ≤ n + m − a. Since each ri ≥ 1,
t− j ≤ rj+1 + · · ·+ rt = N −m and therefore

t ≤ (N −m) + j ≤ (N −m) + (n+m− a) = N + n− a.

Thus there are at most
∑m+n−a
j=0

(
N+n−a

j

)
graphs G we can represent for each

sign pattern of the q’s. This completes the justification of the claim.
Finally, since we supposed that all graphs with n vertices and m edges

have sf ≤ m− a, we have(
N

m

)
≤ (Kn)3n

m+n−a∑
j=0

(
N + n− a

j

)
(3)

When C is large enough, n ≤ a giving, m+ n− a ≤ 1
2
(N + n− a). Thus we

have
m+n−a∑
j=0

(
N + n− a

j

)
≤ N

(
N + n− a
m+ n− a

)

Since a = 3n lg n+ Cn, if C is a sufficiently large constant then(
N+n−a
m+n−a

)
(
N
m

) =
m(m− 1) · · · (m+ n− a+ 1)

N(N − 1) · · · (N + n− a+ 1)

≤
(
m

N

)a−n
≤
(

1

2

)a−n
<

1

N(Kn)3n
,
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contradicting the inequality (3) above. This completes the proof.2
Note that we have not used the fact that the added vertices should be

isolated. Regardless of the structure of the vertices we add to G, we must
add at least m−O(n log n) vertices to make some graphs G into an f -graph.

In the specific case of sum graphs, the authors of [5] prove a similar result,
namely: for all n, there is a graph G with n vertices, m = cn2 edges (for
some constant c) and s(G) ≥ m−O(n log n).

4 Further Generalization

We can generalize the notion of f -graphs in several ways. For example, we
can assume the labels on the vertices are complex numbers zi. Or we may
wish to assign a t-vector xi = (xi1, . . . , xit) to vertex vi and have the edge
{vi, vj} precisely when f(xi,xj) = xk for some k (where each coordinate
function in f : R2t → Rt is a polynomial). Finally, we can postulate that
given a polynomial f : R3t → Rs, we have {vi, vj} ∈ E(G) iff for some k we
have f(xi,xj,xk) = 0s. Note that this last generalization encompasses the
previous two. In this case we can apply Warren’s theorem to show that the
number of f -graphs on n vertices is bounded by (Kn)2tn for some constant K
(depending on f). Thus, even under this most liberal definition of f -graphs,
almost all graphs are not f -graphs .

The results above depend heavily on the polynomial nature of f (both
in our application of Warren’s theorem and in our transcendental trickery in
Theorem 4). If we were to let f be an arbitrary symmetric function of two
variables we could easily contrive an f for which all graphs were f -graphs.
Trenk [10] investigated “gcd-graphs” in which the label xi on vertex vi is a
positive integer and {vi, vj} is an edge iff gcd(xi, xj) = xk for some k. The
conclusion of Theorem 1 fails miserably in this case as all bipartite graphs
are gcd-graphs, and therefore there are at least 2n

2/4 labelled gcd-graphs on
n vertices.
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