The number of sumsets in a finite field

Noga Alon * Andrew Granville [†] Adrián Ubis [‡]

Abstract

We prove that there are $2^{p/2+o(p)}$ distinct sumsets A+B in \mathbb{F}_p where $|A|, |B| \to \infty$ as $p \to \infty$.

1 Introduction

For any subsets A and B of a group G we define the sumset

$$A + B := \{a + b : a \in A, b \in B\}$$

There are 2^n subsets of an *n* element additive group *G* and every one of them is a sumset, since $A = A + \{0\}$ for every $A \subset G$. However if we restrict our summands to be slightly larger, then something surprising happens when $G = \mathbb{F}_p$: there are far fewer sumsets:

Theorem 1. Let $\psi(x)$ be any function for which $\psi(x) \to \infty$ and $\psi(x) \leq x/4$ as $x \to \infty$. There are exactly $2^{p/2+o(p)}$ distinct sumsets in \mathbb{F}_p with summands of size $\geq \psi(p)$; that is, exactly $2^{p/2+o(p)}$ distinct sets of the form A + B with $|A|, |B| \geq \psi(p)$ where $A, B \subset \mathbb{F}_p$.

Green and Ruzsa [GrRu] proved that there are only $2^{p/3+o(p)}$ distinct sumsets A + A in \mathbb{F}_p . The count in Theorem 1 cannot be decreased by restricting the size of one of the sets:

Theorem 2. For any given prime p and integer k satisfying k = o(p), there exists $A \subset \mathbb{F}_p$ with |A| = k for which there are at least $2^{p/2+o(p)}$ distinct sumsets of the form A + B with $B \subset \mathbb{F}_p$.

These results do not give a good idea of the number of distinct sumsets of the form A+B, as B varies through the subsets of \mathbb{F}_p when A has a given small size.

^{*}Tel Aviv University, Tel Aviv 69978, Israel and IAS, Princeton, NJ, 08540, USA. Research supported by the Israel Science Foundation, by a USA-Israel BSF grant, and by the Ambrose Monell Foundation. Email: nogaa@tau.ac.il

[†]Université de Montréal, Montréal QC H3C 3J7, Canada. L'auteur est partiellement soutenu par une bourse de la Conseil de recherches en sciences naturelles et en génie du Canada. Email: andrew@DMS.UMontreal.CA

[‡]Universidad de La Rioja, Logroño 26004, Spain. Supported by a Spanish MEC grant and by a Comunidad de Madrid-Univ. Autónoma Madrid grant. Email: adrian.ubis@gmail.com

Theorem 3. For each fixed integer $k \ge 1$ there exists a constant $\mu_k \in [\sqrt{2}, 2]$ such that

$$\max_{A \subset \mathbb{F}_p, |A|=k} \ \#\{A+B: \ B \subset \mathbb{F}_p\} = \mu_k^{p+o(p)}.$$
(1)

We have $\mu_1 = 2$, $\mu_2 := 1.754877666...$, the real root of $x^3 - 2x^2 + x - 1$ and, for each fixed integer $k \ge 3$, we have

$$\sqrt{2} + \frac{1}{3^k} \le \mu_k \le \sqrt{2} + O\left(\sqrt{\frac{\log k}{k}}\right). \tag{2}$$

Moreover $\mu_k \leq (5^5/2^2 3^3)^{1/5} = 1.960131704...$ for all $k \geq 2$, so that if $|A| \geq 2$ then

$$\#\{A+B: B \subset \mathbb{F}_p\} \le 1.9602^{p+o(p)}.$$

Remark: With a more involved method the constant 1.9602 in the last bound can be improved to 1.9184 (see [Ubi]).

We immediately deduce the following complement to Theorem 1:

Corollary 1. Fix integer $k \ge 1$. Let $\mu_k^* = \max_{\ell \ge k} \mu_\ell$. There are exactly $(\mu_k^*)^{p+o(p)}$ distinct sumsets in \mathbb{F}_p with summands of size $\ge k$.

The existence of μ_k is deduced from the following result involving sumsets over the integers. Define S(A, G) to be the number of distinct sumsets A + B with $B \subset G$; above we have looked at $S(A, \mathbb{F}_p)$, but now we look at $S(A, \{1, 2, \ldots, N\})$:

Proposition 1. For any finite set of non-negative integers A with largest element L, there exists a constant μ_A such that $S(A, \{1, 2, ..., N\}) = \mu_A^{N+O(L)}$. Moreover

$$\mu_k = \sup_{\substack{A \subset \mathbb{Z}_{\ge 0} \\ |A| = k}} \mu_A$$

By Theorem 3 (or by Theorems 1 and 2 taken together) we know that $\mu_k \to \sqrt{2}$ as $k \to \infty$. In fact we believe that it does so monotonically:

Conjecture 1. We have $\mu_1 = 2 > \mu_2 > \mu_3 > \ldots > \mu_k > \ldots > \sqrt{2}$.

If this is true then $\mu_k^* = \mu_k$, evidently.

One can ask even more precise questions, for example for the number of distinct sumsets A + B where the sizes of A and B are given: Define

$$S_{k,\ell}(G) = \#\{A + B : A, B \subset G, |A| = k, |B| = \ell\}.$$

for any integers $k, \ell > 1$. By Theorem 1 we know that if $k, \ell \to \infty$ as $p \to \infty$ then $S_{k,\ell}(\mathbb{F}_p) \leq 2^{p/2+o(p)}$. We wish to determine for which values of k and ℓ we have that $S_{k,\ell}(\mathbb{F}_p) \geq 2^{p/2+o(p)}$. The Cauchy-Davenport Theorem [Cau] says that for any $A, B \subset \mathbb{F}_p$ we have $|A + B| \geq \min(p, |A| + |B| - 1)$, hence $S_{k,\ell}(\mathbb{F}_p) = O(1)$ whenever $k + \ell > p - O(1)$. Let us see what we can say otherwise **Theorem 4.** Let $\phi = \frac{1+\sqrt{5}}{2}$ and let $\psi(x)$ be any function for which $\psi(x) \to \infty$ as $x \to \infty$.

(i) If
$$k + \ell \leq \sqrt{p}$$
 then $S_{k,\ell}(\mathbb{F}_p) \gg {\binom{[p/2]}{k+\ell-2}}/{\sqrt{\min\{k,\ell\}}}$
If $k + \ell \leq p/2\phi$ then $S_{k,\ell}(\mathbb{F}_p) \geq p^{O(1)} {\binom{[p/2]}{k+\ell}}$
If $\phi p/3 + O(1) > k + \ell > p/2\phi$ then $S_{k,\ell}(\mathbb{F}_p) \gg \phi^{p-k-\ell}/p$.
If $p \geq k + \ell \geq \phi p/3 + O(1)$ then $S_{k,\ell}(\mathbb{F}_p) \gg p\phi^{p-k-\ell}/(p+1-k-\ell)$.
In summary, if $k + \ell \leq p$ then $S_{k,\ell}(\mathbb{F}_p) \geq p^{O(1)} \max_h {\binom{[(p-h)/2]}{k+\ell-h}}$

(ii) For any integers with $k, \ell \geq \psi(p)$ and $p-k-\ell \gg p$, we have $S_{k,\ell}(\mathbb{F}_p) \ll {\binom{x}{k+\ell}}^{1+o(1)}$ with x such that $2^{p-x} \sim {\binom{x}{k+\ell}}$.

In particular, if $k, \ell \geq \psi(p)$ then

$$S_{k,\ell}(\mathbb{F}_p) = 2^{p/2 + o(p)} \tag{3}$$

if and only if $k + \ell \sim p/4$.

Note that Theorem 4(ii) cannot hold for $k + \ell$ very close to p by the last estimate in Theorem 4(i)

The structure of sumsets has a rich history, from Cauchy [Cau] onwards, and has been studied from several different perspectives. Most important are lower bounds on the size of the sumset, the lattice structure of A and B when the size of the sumset A + B is not much larger than that of A and B (i.e. the Freiman-Ruzsa theorem), and the discovery of long arithmetic progressions in the sumset A + B when it is fairly small.

From our problem, many questions naturally arise:

- Give a precise asymptotic for the number of sumsets in F_p as well as for the number of sumsets A + A in F_p.
- Which sets S have at least 2^{cp} representations as A + B for a given c > 0, and in particular for c = 1/2?
- Can one quickly identify a sumset S in \mathbb{F}_p , where S = A + B with $|A|, |B| \ge k$? Perhaps (though this seems unlikely) any sumset contains enough structure that is quickly identifiable? Perhaps most non-sumsets are easily identifiable in that they lack certain structure? We do know [Al] that any complement of a set of size $\le c \frac{\sqrt{p}}{\sqrt{\log p}}$ is a sumset A + A for some $A \subset \mathbb{F}_p$, for some absolute constant c > 0.
- Given a set S for which there exist sets A, B with |A| = k, $|B| = \ell$ such that A + B = S, can one find such a pair A, B quickly?
- Can one quickly identify those sumsets in \mathbb{F}_p which have many representations as A+B?

- Estimate the size of the smallest possible collection \mathcal{C}_k of sets in \mathbb{F}_p such that if S = A + Bwhere $|A|, |B| \ge k$ then there exist $A, B \in \mathcal{C}_k$ for which S = A + B
- Perhaps even something stronger than Conjecture 1 is true: for any $A \subset \mathbb{Z}$ of size $1 < k < \infty$, does there exist $a \in A$ such that $\mu_{A \setminus \{a\}} > \mu_A$?

2 Lower bounds

For a given integer k let

$$A = \{0, [(p-k)/2] + 1, [(p-k)/2] + 2, \dots, [(p-k)/2] + k - 1\}.$$

For any subset B of $\{0, 1, 2, \dots, [(p-k)/2]\}$, we see that $A + B \subset [0, p-1]$ and

$$B = (A + B) \cap \{0, 1, \dots 2, [(p - k)/2]\},\$$

and thus the sets A + B are all distinct. Hence there are at least $2^{[(p-k)/2]+1} \ge 2^{(p-k)/2}$ distinct sets A + B as B varies over the subsets of \mathbb{F}_p . This implies Theorem 2, hence the lower bound in Theorem 1 when $\psi(p) = o(p)$, and it also implies the lower bound $\mu_k \ge \sqrt{2}$ in Theorem 3.

Let
$$A = \{0\} \cup [x+1, \dots, x+k-u-1] \cup (x+k-u-1+A_1)$$

and $B = B_1 \cup [x+1, \dots, x+\ell-v-1] \cup \{x+\ell-v-1+y\}$

where $A_1 \subset [1, y]$ with $|A_1| = u$, and $B_1 \subset [1, x]$ with $|B_1| = v$, where u < k, y, and $v < \ell, x$. Therefore $B_1 = (A+B) \cap [1, x]$ and $N+A_1 = (A+B) \cap (N+[1, y])$ for $N = 2x+y+k+\ell-u-v-2$. Also $A + B \subset [0, p-1]$ provided $2x + 2y + k + \ell - u - v - 2 < p$. Therefore $S_{k,\ell} \ge {y \choose r} {x \choose r}$.

If $k+\ell \leq p/2\phi$ then we select u = k-1, $v = \ell-1$, $y = [p(k-1)/2(k+\ell-2)]$, x = (p-1)/2-y. This gives $S_{k,\ell} \geq p^{O(1)} {[p/2] \choose k+\ell}$ by Stirling's formula; $S_{k,\ell} \gg {[p/2] \choose k+\ell-2}/\sqrt{\min\{k,\ell\}}$ if $k+\ell \leq \sqrt{p}$.

If $k + \ell > p/2\phi$ then we select $u = [k(p + 1 - k - \ell)/\sqrt{5}(k + \ell)]$, $v = [\ell(p + 1 - k - \ell)/\sqrt{5}(k + \ell)]$, $y = [\phi u]$, $x = [\phi v]$ to obtain $S_{k,\ell} \gg \phi^{p-k-\ell}/(p+1-k-\ell)$ by Stirling's formula. If $k + \ell \ge \phi p/3 + O(1)$ then we change the above construction slightly: If instead we take $B_1 \subset [0, x-1]$ then there is a unique block of $\ge k + \ell - u - v - 3$ consecutive integers in A + B starting with 2x + 2. Now we can also consider the sums (r + A) + B, for any $r \pmod{p}$; notice that we can identify the value of r from A + B, since the longest block of consecutive integers in A + B starts with 2x + 2 + r. Hence $S_{k,\ell} \gg p\phi^{p-k-\ell}/(p+1-k-\ell)$.

These last three paragraphs together imply the first part of Theorem 4.

Now, given $k \leq p/4$, select $\ell = [p/4] - k$ so that, by the above, there are $\geq p^{O(1)} {\binom{[p/2]}{[p/4]}} = 2^{p/2} p^{O(1)}$ distinct sumsets A + B as A and B vary over the subsets of \mathbb{F}_p of size k and ℓ respectively. This implies the lower bound in Theorem 1.

3 First upper bounds

In this section we shall use a combinatorial argument to bound the number of sumsets A + Bwhenever A is small, in which case we can consider A fixed. Throughout we let $r_{C+A}(n)$ (and $r_{C-A}(n)$) denote the number of representations of n as c + a (respectively, c - a) with $a \in A$ and $c \in C$.

Proposition 2. Let G be an abelian group of order n and let $A \subset G$ be a subset of size $k \ge 2$. Then

$$\#\{A+B: B \subset G\} \le n \min_{2 \le \ell \le k} \sum_{j=0}^{n} \binom{n}{[j/\ell]} \min\{2^{n-j}, 2^{[jk/(k-\ell+1)]}\}.$$
(4)

Proof. Given a set B we order the elements of B by greed, selecting any $b_1 \in B$, and then $b_2 \in B$ so as to maximize $(A + \{b_2\}) \setminus (A + \{b_1\})$, then $b_3 \in B$ so as to maximize $(A + \{b_3\}) \setminus (A + \{b_1, b_2\})$, etc. Let B_ℓ be the set of b_i such that $A + \{b_1, b_2, \ldots, b_i\}$ contains at least ℓ more elements than $A + \{b_1, b_2, \ldots, b_{i-1}\}$, and suppose that $|B_\ell + A| = j$. By definition $j = |B_\ell + A| \ge \ell |B_\ell|$, so that $|B_\ell| \le [j/\ell]$ and so there are no more than $\sum_{i \le [j/\ell]} {n \choose i}$ choices for B_ℓ . Note that $j/\ell \le n/2$, for $\ell \ge 2$, and so $\sum_{i \le [j/\ell]} {n \choose i} \le n {n \choose j/\ell}$. Next we have to determine the number of possibilities for A + B given B_ℓ (and hence $B_\ell + A$):

Our first argument: Since $B_{\ell} + A \subset B + A \subset G$, the number of such sets A + B is at most the total number of sets H for which $B_{\ell} + A \subset H \subset G$, which equals 2^{n-j} .

Our second argument: Let $C = B_{\ell} + A$, and let D be the set of $d \in G$ for which $r_{C-A}(d) \ge k + 1 - \ell$. If $b \in B \setminus B_{\ell}$ then $r_{C-A}(b) = |(b+A) \cap (B_{\ell} + A)| \ge k + 1 - \ell$, so that $b \in D$. Hence $(B \setminus B_{\ell}) \subset D$, and so there are $\le 2^{|D|}$ possible sets $B \setminus B_{\ell}$, and hence B, and hence A + B. Now

$$|D|(k+1-\ell) \le \sum_{d \in G} r_{C-A}(d) = |A||C| = kj,$$

so that $|D| \leq kj/(k+1-\ell)$, and the result follows.

Simplifying the upper bound: The upper bound in Proposition 2 is evidently

$$\leq n^2 \min_{2 \leq \ell \leq k} \max_{0 \leq j \leq n} \binom{n}{[j/\ell]} \min\{2^{n-j}, 2^{[jk/(k-\ell+1)]}\}.$$

Now $\binom{n}{[j/\ell]} 2^{[jk/(k-\ell+1)]}$ is a non-decreasing function of j, as $\ell \geq 2$, and so the above is

$$\leq n^2 \min_{2 \leq \ell \leq k} \max_{\frac{(k-\ell+1)}{(2k-\ell+1)}n \leq j \leq n} \binom{n}{\lfloor j/\ell \rfloor} 2^{n-j}$$

The $(j + \ell)$ th term equals the *j*th term times $(n - [j/\ell])/2^{\ell}([j/\ell] + 1)$. This is < 1 if and only if $n < (2^{\ell} + 1)[j/\ell] + 2^{\ell}$. Now

$$(2^{\ell}+1)[j/\ell] + 2^{\ell} > \frac{(2^{\ell}+1)}{\ell} j \ge \frac{(2^{\ell}+1)}{\ell} \cdot \frac{(k-\ell+1)}{(2k-\ell+1)} n,$$

and this is $\geq n$ unless $\ell = k \leq 4$. Hence one minimizes by taking $j = \frac{(k-\ell+1)}{(2k-\ell+1)}n + O(1)$ at a cost of a factor of at most n. Therefore our bound becomes $\ll n^{O(1)}\nu_k^n$ where $\nu_k := \min_{2 \leq \ell \leq k} \nu_{k,\ell}$ and

$$\nu_{k,\ell} := \left(\frac{2^k (\ell(2k-\ell+1))^{2k-\ell+1}}{(k-\ell+1)^{\frac{k-\ell+1}{\ell}} (\ell(2k-\ell+1)-(k-\ell+1))^{2k-\ell+1-\frac{k-\ell+1}{\ell}}}\right)^{\frac{2k-\ell+1}{\ell}}$$

,

using Stirling's formula. A brief Maple calculation yields that $\nu_k > 2$ for all $k \leq 7$ and $\nu_8 = 1.982301294$, $\nu_9 = 1.961945316$, $\nu_{10} = 1.942349376$,..., with $\nu_k < 1.91$ for $k \geq 12$, and ν_k decreasing rapidly and monotonically (e.g. $\nu_k < 1.9$ for $k \geq 13$, $\nu_k < 1.8$ for $k \geq 23$, $\nu_k < 1.7$ for $k \geq 45$, and $\nu_k < 1.6$ for $k \geq 117$). In general taking ℓ so that $\ell^2 \sim k \log k / \log 2$, one gets that

$$\nu_k = \sqrt{2} \exp\left(\left(\frac{1}{2} + o(1)\right)\sqrt{\frac{\log 2 \cdot \log k}{k}}\right),$$

which implies the upper bound in (2) of Theorem 3, as well as the upper bound implicit in Theorem 1 when $\min\{|A|, |B|\} = o(p)$.

4 Upper bounds on $S_{k,\ell}(\mathbb{F}_p)$ using combinatorics

The value of x in Theorem 4(ii) must always lie in the range [p/2, p] since $\binom{x}{k+\ell} \leq 2^x$. Therefore if $k + \ell = o(p)$ then the number of sumsets A + B is smaller than the number of possibilities for A and B so that

$$S_{k,l}(\mathbb{F}_p) \le \binom{p}{k} \binom{p}{\ell} = \binom{p}{k+\ell} 2^{O(k+\ell)} = \binom{x}{k+\ell} 2^{O(k+\ell)} = \binom{x}{k+\ell}^{1+o(1)}$$

The Cauchy-Davenport Theorem states that $|A + B| \ge \min\{|A| + |B| - 1, p\}$, so that

$$S_{k,l}(\mathbb{F}_p) \le \sum_{j=k+\ell-1}^p {p \choose j} \ll {p \choose k+\ell-1}$$

for $k+\ell > (1/2+\epsilon)p$. For the last part of Theorem 4, note that this is $< 2^{8p/17}$ for $k+\ell \ge 9p/10$.

Now we consider the case $\ell, p - k - \ell \gg p$ with k < o(p) and $k \to \infty$. For each fixed A of cardinality k and B of cardinality ℓ , we proceed as in Proposition 2 (taking ℓ there as m here, and choosing m = o(k) with $m \to \infty$): Hence there exists a subset $B_m \subset B$ with $|A + B_m| = j$ and $|B_m| \leq j/m \leq p/m$, and a subset D, determined by A and B_m , with $|D| \leq \frac{kj}{k+1-m} \leq j(1+O(m/k))$ and $B \setminus B_m \subset D$. Now $A + B = (A + B_m) \cup (A + (B \setminus B_m))$ so the number of possibilities for $(A + B) \setminus (A + B_m)$ is bounded above by the number of subsets of $\mathbb{F}_p \setminus (A + B_m)$, which is 2^{p-j} , and also by the number of subsets of D with cardinality in the range $[\ell - [j/m], \ell]$, which is

$$\leq \sum_{i=\ell-[j/m]}^{\ell} \binom{|D|}{i} \leq 2^{o(p)} \binom{j}{\ell+k},$$

since $|D| \leq j + o(p)$ and $i = \ell + k + o(p)$. Hence the number of possible sumsets A + Bis bounded by $\binom{p}{k} \leq 2^{o(p)}$, the number of possibilities for A, times $\sum_{i \leq [p/m]} \binom{p}{i} \leq 2^{o(p)}$, the number of possibilities for B_m , times $2^{o(p)} \min\{\binom{j}{\ell+k}, 2^{p-j}\}$, the number of possibilities for $(A+B) \setminus (A+B_m)$. This gives us the upper bound

$$S_{k,\ell}(\mathbb{F}_p) \le 2^{o(p)} \min\{\binom{j}{\ell+k}, 2^{p-j}\} = 2^{(1+o(1))(p-x)}$$
(5)

where x is chosen as in Theorem 4(ii), noting that $p - x \gg p$ as $\ell + k \gg p$.

5 Sumsets from big sets

We modify, simplify and generalize Green and Ruzsa's argument [GrRu], which they used to bound the number of sumsets A + A in \mathbb{F}_p : For a given set S, define $dS := \{ds : s \in S\}$. Let $G = \mathbb{Z}/m\mathbb{Z}$. For any $A \subset G$ define $\hat{A}(x) = \sum_{a \in A} e(ax/m)$. For a given positive integer L < m let H be the set of integers in the interval [-(L-1), L-1]. For a given integer d with 1 < dL < m we partition the integers in [1, m] as best as we can into arithmetic progressions with difference d and length L. That is for $1 \le i \le d$ we have the progressions

$$I_{i,k} := \{i + jd : kL \le j \le \min\{(k+1)L - 1, [(m-i)/d]\}\}$$

for $0 \le k \le [(m-i)/Ld]$. We then let $A_{L,d}$ be the union of the $I_{i,k}$ that contain an element of A (so that $A \subset A_{L,d}$). Note that there are $\le [m/L] + d$ such intervals $I_{i,k}$.

Our goal is to prove the following analogy to Proposition 3 in [GrRu]:

Proposition 3. If $A, B \subset \mathbb{Z}/m\mathbb{Z}$, with $\alpha = |A|/m$ and $\beta = |B|/m$ and

$$m > (4L)^{1+16\alpha\beta L^4 \epsilon_2^{-2} \epsilon_3^{-1}}, \quad with \ L \ge 3,$$
 (6)

then there exists an integer d, with $1 \le d \le m/4L$, such that A + B contains all those values of n for which $r_{A_{L,d}+B_{L,d}}(n) > \epsilon_2 m$, with no more than $\epsilon_3 m$ exceptions.

In this paragraph we follow the proof of Proposition 3 in [GrRu] (with the obvious modifications):

Lemma 1. If $A \subset \mathbb{Z}/m\mathbb{Z}$ then there exists $1 \leq d \leq m/4L$ such that

$$|\hat{A}(x)|^2 \left| 1 - \left(\frac{\hat{H}(dx)}{2L - 1}\right)^2 \right|^2 \le \frac{\log 4L}{\log(m/4L)} \ |A|m, \quad \text{with } L \ge 3$$

for all $x \in \mathbb{Z}/m\mathbb{Z}$.

Proof. (Sketch) Fix δ so that the right side above equals $(\delta m)^2$, and hence $\delta \geq 2/m$. Let R be the set of $r \in \mathbb{Z}/m\mathbb{Z}$ such that $|\hat{A}(r)| \geq \delta m$; the result follows immediately for any $x \notin R$. By Parseval's inequality we have

$$|R|(\delta m)^2 \le \sum_{r \in R} |\hat{A}(r)|^2 \le \sum_r |\hat{A}(r)|^2 = m|A|,$$

so that $|R| \leq \delta^{-2} |A|/m$. Moreover, by the arithmetic-geometric mean inequality, we have

$$\prod_{r \in R} |\hat{A}(r)|^2 \le \left(\frac{1}{|R|} \sum_{r \in R} |\hat{A}(r)|^2\right)^{|R|} \le \left(\frac{1}{|R|} \sum_r |\hat{A}(r)|^2\right)^{|R|} = \left(\frac{m|A|}{|R|}\right)^{|R|}$$

Consider the vectors $v_i \in [0,1)^{|R|}$ with rth coordinate $ri/m \pmod{1}$ for each $r \in R$. If we partition the unit interval for the rth coordinate into intervals of roughly equal length, all $\leq (\delta m)^{1/2}/(4L-1)|\hat{A}(r)|^{1/2}$ (which is $\leq 1/(4L-1)$), then, by the pigeonhole principle, two such vectors, with $0 \leq i < j \leq m/4L$, lie in the same intervals since

$$\begin{split} \prod_{r \in R} \left(1 + (4L - 1) \left| \frac{\hat{A}(r)}{\delta m} \right|^{1/2} \right) &\leq \prod_{r \in R} 4L \left| \frac{\hat{A}(r)}{\delta m} \right|^{1/2} \leq \left(\frac{4L}{(\delta m)^{1/2}} \right)^{|R|} \left(\frac{m|A|}{|R|} \right)^{|R|/4} \\ &= \left(4L \left(\frac{|A|/m}{\delta^2 |R|} \right)^{1/4} \right)^{|R|} \leq (4L)^{|A|/\delta^2 m} = \frac{m}{4L}, \end{split}$$

using the last displayed equation. Therefore for d = j - i we have

$$\left\|\frac{rd}{m}\right\| \leq \frac{1}{4L-1} \left(\frac{\delta m}{|\hat{A}(r)|}\right)^{1/2}$$

for all $r \in R$, where ||t|| is the shortest distance from t to an integer. Now $\operatorname{Re}(1 - e(t)) \leq 2\pi^2 ||t||^2$ and $||jt|| \leq |j| ||t||$, so that

$$1 - \frac{\hat{H}(dx)}{2L - 1} = \frac{1}{2L - 1} \sum_{j = -(L-1)}^{L-1} \left(1 - e\left(\frac{jdx}{m}\right) \right)$$
$$\leq \frac{2\pi^2}{2L - 1} \sum_{j = -(L-1)}^{L-1} \left\| \frac{jdx}{m} \right\|^2 \leq \frac{2\pi^2 L^2}{3} \left\| \frac{dx}{m} \right\|^2.$$

If $x \in R$ then, by combining the last two displayed equations, this is

$$\leq \frac{2\pi^2 L^2}{3} \frac{1}{(4L-1)^2} \cdot \frac{\delta m}{|\hat{A}(x)|} \leq \frac{\delta m}{2|\hat{A}(x)|}$$

The result follows since $1 + \frac{\hat{H}(dr)}{2L-1} \le 2$ as $|\hat{H}(dx)| \le 2L - 1$.

Proof of Proposition 3. By Parseval's formula, and then Lemma 1 we have

$$\sum_{n} \left| r_{A+B}(n) - \frac{r_{A+dH+B+dH}(n)}{(2L-1)^2} \right|^2 = \frac{1}{m} \sum_{x} |\hat{A}(x)|^2 |\hat{B}(x)|^2 \left| 1 - \left(\frac{\hat{H}(dx)}{2L-1}\right)^2 \right|^2$$
$$\leq \frac{\log 4L}{\log(m/4L)} |A| \sum_{x} |\hat{B}(x)|^2 = \frac{\log 4L}{\log(m/4L)} |A| |B| m \leq \frac{\epsilon_2^2 \epsilon_3 m^3}{16L^4}$$

in this range for m. (Here $r_{A+dH+B+dH}(n)$ denotes the number of representations of n as a + di + b + dj with $a \in A$, $b \in B$ and $i, j \in H$.) Now if $g \in A_{L,d}$ then there exists $j \in H$ such that $g + dj \in A$, by definition, and hence $r_{A+dH}(g) \ge 1$. Therefore $r_{A+dH}(g) \ge r_{A_{L,d}}(g)$ for all $g \in G$, so that

$$r_{A+dH+B+dH}(n) \ge r_{A_{L,d}+B_{L,d}}(n)$$

for all n. Therefore if N is the set of $n \notin A + B$ such that $r_{A_{L,d}+B_{L,d}}(n) > \epsilon_2 m$, then $r_{A+dH+B+dH}(n) > \epsilon_2 m$ and the above yields

$$|N| \frac{(\epsilon_2 m)^2}{(2L-1)^4} \le \frac{\epsilon_2^2 \epsilon_3 m^3}{16L^4}$$

so that $|N| \leq \epsilon_3 m$.

Next we prove a combinatorial lemma based on Proposition 5 of [GrRu]:

Proposition 4. For any subsets C, D of \mathbb{F}_p , and any $m \leq r \leq \min(|C|, |D|)$, there are at least $\min(|C| + |D|, p) - r - (m-1)p/r$ values of $n \pmod{p}$ such that $r_{C+D}(n) \geq m$.

Proof. Pollard's generalization of the Cauchy-Davenport Theorem [Pol] states that

$$\sum_{n} \min\{r, r_{C+D}(n)\} \ge r \min(p, |C| + |D| - r) \ge r[\min(p, |C| + |D|) - r]$$

The left hand side here is $\leq (m-1)(p-N_m) + rN_m$ where N_m is the number of $n \pmod{p}$ such that $r_{C+D}(n) \geq m$. The result follows since $p - N_m \leq p$.

Proof of upper bounds on $S_{k,\ell}(\mathbb{F}_p)$ using Fourier analysis:

Suppose that L is given and $d \leq p/4L$, and that M and N are unions of some of the arithmetic progressions $I_{i,j}$. Note that there are $\leq 2^{p/L+d}$ such sets M (given d), and hence a total of $e^{O(p/L)}$ possibilities for d, M and N.

We now bound the number of distinct sumsets A + B for which $A_{L,d} = M$ and $B_{L,d} = N$ in two different ways:

First, since $A \subset M$ and $B \subset N$ there can be no more than $\binom{|M|}{k}\binom{|N|}{\ell} \leq \binom{|M|+|N|}{k+\ell} \leq 2^{|M|+|N|}$ such pairs.

Second, select $2\epsilon_1 p \leq \min(|M|, |N|)$ and $2\epsilon_3 p \leq \max(|M|, |N|)$. Let Q be the values of $n \pmod{p}$ such that $r_{M+N}(n) \geq \epsilon_1^2 p$. Taking $r = \epsilon_1 p$ and $m = \epsilon_1^2 p$ in Proposition 4, we have $|Q| \geq R := \min(|M| + |N|, p) - 2\epsilon_1 p$. By Proposition 3, A + B is given by Q less at most $\epsilon_3 p$ elements, union some subset of $\mathbb{F}_p \setminus Q$. Hence the number of distinct sumsets A + B is

$$\leq 2^{p-|Q|} \sum_{i=0}^{[\epsilon_3 p]} \binom{|Q|}{i} \leq p 2^{p-|Q|} \binom{|Q|}{[\epsilon_3 p]} \leq p 2^{\max(p-|M|-|N|,0)+2\epsilon_1 p} \binom{p}{[\epsilon_3 p]}$$

as $|Q| \ge R > 2\epsilon_3 p$.

If $|M| + |N| \leq p/2$ then the number of sumsets is $\leq 2^{p/2}$ by the first argument. Let $L = [(\log p)^{1/10}]$ and $\epsilon_1 = \epsilon_3 = 1/2L$. If |A|, |B| > p/L then $|M| \geq |A| > 2\epsilon_1 p$ and $|N| \geq |B| > 2\epsilon_1 p$, so the second argument is applicable; therefore if |M| + |N| > p/2 then the number of sumsets is $\leq 2^{p/2} L^{O(p/L)}$. Hence the total number of sumsets A + B with |A|, |B| > p/L is at most $2^{p/2} L^{O(p/L)}$ which implies the upper bound in Theorem 1 (taken together with the argument, for min $\{|A|, |B|\} = o(p)$, given at the end of section 3).

Assume that $\ell \ge k \ge p/(\log p)^{1/4}$ with $p - k - \ell \gg p$. We select $\epsilon_1 = k/2p \log \log p$, $\epsilon_3 = \ell/2p \log \log p$ and $L = [(\log p)^{1/20}]$, so that the second argument above is applicable. Taking x = |M| + |N| we have that

$$S_{k,\ell}(\mathbb{F}_p) \le \max_{0 \le x' \le 2p} \min\left\{ \binom{x'}{k+\ell}, 2^{\max(p-x',0)} \right\} \ (1/\epsilon_3)^{O(\epsilon_3 p)} = 2^{(1+o(1))(p-x)} 2^{o(p)}$$

as in (5). This completes the proof of Theorem 4(ii), combined with the results of the previous section.

Finally, (3) follows noting that $x \gtrsim p/2$ unless $k + \ell \sim p/4$, in which case $x \sim p/2$.

6 Sumsets in finite fields and the integers

Let $A \subset \mathbb{F}_p$ be of given size $k \geq 2$, and let $d = [p^{1-1/k}]$. Consider the sets iA, the least residues of $ia, a \in A$, for $0 \leq i \leq p-1$. Two, say iA and jA with $i \not\equiv j \pmod{p}$, must have those least residues between the same two multiples of $p^{1-1/k}$ for each $a \in A$ (since there are $\langle (p/p^{1-1/k})^k = p$ possibilities), and so the least residues of $\ell a, a \in A$, with $\ell = i - j$ are all $\leq d$ in absolute value. Hence the elements of $d + \ell A$ are all integers in [0, 2d]; and $S(A, \mathbb{F}_p) = S(d + \ell A, \mathbb{F}_p)$ as may be seen by mapping $A + B \to (d + \ell A) + (\ell B)$. Hence we may assume, without loss of generality, that A is a set of integers in [0, L] where $L \leq 2p^{1-1/k}$.

The case k = 2 is of particular interest since then $S(A, \mathbb{F}_p) = S(\{0, 1\}, \mathbb{F}_p)$ by taking $\ell = 1/(b-a), \ d = -a\ell$ when $A = \{a, b\}.$

We now compare $S(A, \mathbb{F}_p)$ with $S(A, \{1, 2, ..., p\})$. When we reduce A + B, where $A \subset \{0, ..., L\}$ and $B \subset \{0, ..., p - 1\}$ are sets of integers, modulo p, the reduction only affects the residues in $\{0, ..., L - 1\} \pmod{p}$. Hence

$$S(A, \{1, 2, \dots, p\})2^{-L} \le S(A, \mathbb{F}_p) \le S(A, \{1, 2, \dots, p\}).$$
(7)

Now suppose $A \subset \{0, \ldots, L\}$ is a set of integers. Suppose that $Mr \leq N < M(r+1)$ for positive integers M, r, N. We see that

$$S(A, \{1, 2, \dots, N\}) \le S(A, \{1, 2, \dots, M(r+1)\}) \le S(A, \{1, 2, \dots, M\})^{r+1},$$

the last inequality coming since the sumsets A + B with $B \subset \{1, 2, ..., M(r+1)\}$ are the union of the sumsets $A + B_i$ with $B_i \subset \{Mi + 1, 2, ..., M(i+1)\}$ for i = 0, 1, 2, ..., r. In particular for $m_A(N) := S(A, \{1, 2, ..., N\})^{1/N}$ we have $m_A(N) \leq m_A(M)^{1+1/r}$. This implies that $\limsup_N m_A(N) \leq m_A(M)$ for any fixed M, and then $\limsup_N m_A(N) = \liminf_N m_A(N)$ so the limit, say μ_A , exists and satisfies

$$S(A, \{1, 2, \dots, M\}) \ge \mu_A^M.$$
 (8)

In the other direction we note that if $B = \bigcup_i B_i$ where $B_i \subset \{(M+L)i+1, (M+L)i+2, \ldots, (M+L)i+M\}$ then distinct $\{A+B_i\}_{0 \leq i \leq r-1}$ give rise to distinct A+B. Hence $S(A, \{1, 2, \ldots, M\})^r \leq S(A, \{1, 2, \ldots, r(M+L)\})$ and letting $r \to \infty$ we have

$$S(A, \{1, 2, \dots, M\}) \le \mu_A^{M+L}.$$
 (9)

Finally, by the inequalities (7), (8) and (9) we arrive at

$$S(A, \mathbb{F}_p) = \mu_A^p e^{O(L)} = \mu_A^p e^{O(p^{1-1/k})} = \mu_A^{p+o(p)}.$$

This proves Proposition 1, as well as the first part of Theorem 3.

6.1 Precise bounds when k = 2

By the previous section we know that $\mu_2 = \mu_{\{0,1\}}$. Now S is a sumset of the form $\{0,1\} + B$ if and only if, when one writes the sequence of 0's and 1's given by $s_n = 1$ if $n \in S$, otherwise $s_n = 0$ if $n \notin S$, there are no isolated 1's.

Let C_n be the number of sequences of 0's and 1's of length n such that there are no isolated 1's, so that $S(\{0,1\},\{1,2,\ldots,N\}) = C_{N+1}$. We can determine C_{n+1} by induction: If the (n + 1)th element added is a 0 then it can be added to any element of C_n . If the (n + 1)th element added is a 1 then the *n*th digit must be a 1, and then we either have an element of C_{n-1} or the next two digits are 1 and 0 followed by any element of C_{n-3} . Hence $C_{n+1} = C_n + C_{n-1} + C_{n-3}$ with $C_1 = 1, C_2 = 2, C_3 = 4, C_4 = 7$. In fact it is easily checked, by induction, that $C_{n+1} = 2C_n - C_{n-1} + C_{n-2}$ (which is explained by the fact that $x^4 - x^3 - x^2 - 1 = (x+1)(x^3 - 2x^2 + x - 1)$, where the higher degree polynomials are characteristic polynomials for the recurrence sequence), and hence $C_n \sim c\mu_2^n$ for some constant c > 0, with μ_2 as in Theorem 3, implying a strong form of the first part of Theorem 3 for k = 2.

By a more precise analysis we could even estimate the number of sets $C = \{0, 1\} + B$ with either C or B of given size.

6.2 Precise bounds when k = 3

It is not hard to generalize the procedure for the case $\{0, 1\}$ to any $A \subset \mathbb{Z}$ finite, namely to prove that μ_A is the root of a polynomial with integer coefficients (and degree smaller than 2^{2L+1} when $A \subset \{0, 1, \ldots, L\}$).

In the special case of three elements is enough to deal with $A = \{0, a, b\}$ for a, b coprime positive integers. We can show that $\mu_{\{0,a,b\}} \to \mu_*$ as $a + b \to \infty$, where we define

$$\mu_* = \lim_{p \to \infty} \# \{ B + \{ (0,0), (1,0), (0,1) \} : B \subset \mathbb{F}_p \times \mathbb{F}_p \}^{1/p^2}$$

which one can prove exists, and is $\langle \mu_2 \rangle$. Therefore either $\mu_3 = \mu_{\{0,a,b\}}$ for some *a* and *b* or $\mu_3 = \mu_*$. Maple experimentation leads us to guess that $\mu_3 = \mu_{\{0,1,4\}} = 1.6863...$, a root of an irreducible polynomial of degree 21. All this is detailed in Chapter 3 of the third author's PhD. thesis [Ubi].

6.3 Lower bounds on μ_k

That $\mu_k \geq \sqrt{2}$ follows by choosing $A = 1 \cup 2A'$ with $A' \subset \mathbb{Z}$ any finite set. Let $A_k = \{1, 3, \ldots, 3^{k-1}\}$, and write $B \subset \{1, 2, \ldots, 3n\}$ as $B = 3B_0 \cup (3B_1 - 1)$ with $B_0, B_1 \subset \{1, 2, \ldots, n\}$. Since $A_{k+1} = 1 \cup 3A_k$ we have

$$(B + A_{k+1}) \setminus 3\mathbb{Z} = (3(B_1 + A_k) - 1) \cup (3B_0 + 1),$$

which shows that $S(A_{k+1}, \{1, 2, ..., 3n\}) \ge S(A_k, \{1, 2, ..., n\}) 2^n$, and so

$$\mu_{A_{k+1}} \ge 2^{\frac{1}{3}} \mu_{A_k}^{\frac{1}{3}}$$

Since $\mu_{A_1} = 2$, an induction argument implies $\mu_k \ge \mu_{A_k} \ge 2^{1/2+3^{1-k}/2}$, which gives the lower bound for μ_k in (2).

7 A non-trivial bound for fixed $k \ge 2$

Let A be any set of given size $k \ge 2$ in \mathbb{F}_p . For any two distinct elements $a, b \in A$ we can map $x \to (x-a)/(b-a)$ so that $0, 1 \in A$, and this will not effect the count of the number of sumsets containing A.

The number of sumsets C = A + B with $B \subset \mathbb{F}_p$ is obviously bounded above by

$$\# \left\{ B: |B| \le \frac{2p}{5} \right\} + \# \left\{ C: |C| \ge \frac{3p}{5} \right\}$$
$$+ \# \left\{ C: \exists B: \frac{2p}{5} < |B| < |C| < \frac{3p}{5} \text{ and } B + \{0,1\} \subset C \right\}.$$

The first two terms have size $\leq 2p \binom{p}{[2p/5]}$, the third requires some work: We observe that such *C* must have at least 2p/5 pairs of consecutive elements; so if *c* is the smallest integer ≥ 1 that belongs to *C* then we suppose that $C = \bigcup_{k=1}^{m} (c + I_k)$ and $\overline{C} = \bigcup_{k=1}^{m} (c + J_k)$ where $I_1, J_1, I_2, J_2, \ldots, I_m, J_m$ is a partition of $\{0, \ldots, p-1\}$ into non-empty set of integers from intervals taken in order. Any such set partition will do provided, for $i_k = |I_k|$ and $j_k = |J_k|$, we have each $i_k, j_k \geq 1$,

$$\frac{3p}{5} \ge \sum_{k=1}^m i_k \ge m + \frac{2p}{5},$$

since $|C| = \sum_{k=1}^{m} i_k$ and $\sum_{k=1}^{m} (i_k - 1) \ge |B|$, and $\sum_{k=1}^{m} i_k + \sum_{k=1}^{m} j_k = p$. Now there are $\le p$ possible values for c, and the number of possible sets of values of i_k such that $\sum_{k=1}^{m} i_k = x$ is $\binom{x-1}{m-1}$, and of j_k is $\binom{p-x-1}{m-1}$. Therefore the number of possible such C is

$$\leq p \sum_{m \leq p/5} \sum_{2p/5+m \leq x \leq 3p/5} {\binom{x-1}{m-1} \binom{p-x-1}{m-1}}.$$
$$\leq p^2 \sum_{m \leq p/5} {\binom{p-2}{2m-2}} \leq p^3 {\binom{p-2}{[2p/5-2]}} \ll p^3 {\binom{p}{[2p/5]}}.$$

(Note that $\binom{a}{b}\binom{c}{d} \leq \binom{a+c}{b+d}$ follows from defining $\binom{a}{b}$ to be the number of ways of choosing b elements from a.) Hence the number of sumsets A + B is $\ll p^3\binom{p}{[2p/5]} = c^{p+o(p)}$ where $c = (5^5/2^23^3)^{1/5} = 1.960131704...$ This implies the bound $\mu_k \leq c$ for all $k \geq 2$ of Theorem 3; and we deduce the last part of Theorem 3 immediately from this taken together with Theorem 1.

References

- [Al] N. Alon. Large sets in finite fields are sumsets. J. Number Theory, 126, 110–118, 2007.
- [Cau] A. Cauchy. Recherches sur les nombres. J. École Polytech, 9 99–116, 1813.
- [GrRu] B. Green, I. Z. Ruzsa. Counting sumsets and sum-free sets modulo a prime. Studia Sci. Math. Hungar., 41 285–293, 2004.
- [Pol] J. M. Pollard. A generalisation of the theorem of Cauchy and Davenport. J. London Math. Soc. (2), 8 460–462, 1974.
- [Ubi] A. Ubis. *Cuestiones de la Aritmética y del Análisis Armónico*. PhD. thesis, Universidad Autónoma de Madrid, Madrid, 2006 (English translation available at the web address http://www.uam.es/gruposinv/ntatuam/downloads/phdubis.pdf).