
Large sets in finite fields are sumsets

Noga Alon ∗

Abstract

For a prime p, a subset S of Zp is a sumset if S = A+A for some A ⊂ Zp. Let f(p) denote the
maximum integer so that every subset S ⊂ Zp of size at least p− f(p) is a sumset. The question
of determining or estimating f(p) was raised by Green. He showed that for all sufficiently large
p, f(p) ≥ 1

9 log2 p and proved, with Gowers, that f(p) < cp2/3 log1/3 p for some absolute constant
c. Here we improve these estimates, showing that there are two absolute positive constants c1, c2

so that for all sufficiently large p,

c1

√
p

√
log p

≤ f(p) < c2
p2/3

log1/3 p
.

The proofs combine probabilistic arguments with spectral techniques.

1 The main result

For a prime number p > 2, let Zp denote the abelian group with p elements. A subset S of Zp is
called a sumset if there is a set A ⊂ Zp so that A + A = {a1 + a2 : a1, a2 ∈ A} = S. Trivially, Zp

itself is a sumset, as Zp = Zp + Zp (and in fact Zp = A + A for many other choices of A ⊂ Zp.) It
is also not difficult to check that if p ≥ 7, then every subset S ⊂ Zp of cardinality p− 1 is a sumset.
Indeed, if S = Zp − {x} then S = A + A for

A = { x + 2
2

,
x + 4

2
, . . . ,

x + p− 5
2

,
x + p− 3

2
,
x + p + 1

2
},

(where the operations are modulo p). Similarly, for p ≥ 3 every S ⊂ Zp of cardinality p− 2 is also a
sumset. To see this, note that S = Zp −{0, 1} is A + A for A = {1, 2, . . . , p−1

2 }, and every set of size
p− 2 is an affine image of this S. Ben Green (see [5], [4]) showed that if p is large then every subset
S of Zp that consists of nearly all elements is a sumset. Let f(p) denote the maximum integer f so
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that every S ⊂ Zp of size at least p − f is a sumset. In this notation, Green proved that there is a
p0 so that for all p > p0

f(p) ≥ 1
9

log2 p,

and further proved, with Gowers, (see [5]) that there is an absolute constant c so that for all p

f(p) ≤ c p2/3 log1/3 p.

Green raised the problem of determining or estimating this function more accurately. In this note
we improve the above estimates, as follows.

Theorem 1.1 There exist two positive constants c1, c2 and an integer p0 so that for all p > p0

c1

√
p√

log p
≤ f(p) < c2

p2/3

log1/3 p
.

Therefore, for large p, every subset of cardinality at least p− c1

√
p√

log p
of Zp is a sumset, whereas

there exists a subset of cardinality at least p − c2
p2/3

log1/3 p
which is not a sumset. We suspect that

f(p) = p1/2+o(1), where the o(1)-term tends to zero as p tends to infinity.
The rest of this note is organized as follows. In Section 2 we prove the lower bound in Theorem

1.1 using probabilistic arguments. Section 3 contains the proof of the upper bound, which is based
on some properties of random Cayley sum graphs, derived from their spectral properties. Section 4
contains several comments on variants and extensions of the main result, that support the belief that
the correct asymptotic behaviour of f(p) is p1/2+o(1). Throughout the paper, we make no attempt to
optimize the absolute constants and omit all floor and ceiling signs whenever these are not crucial.
All logarithms are in the natural base e, unless otherwise specified.

2 Large sets are sumsets

In this section we prove the following result, which provides the lower bound in Theorem 1.1.

Theorem 2.1 Let p be a large prime, and let F ⊂ Zp satisfy |F | ≤ 1
4000

√
p

log p . Then there exists an
A ⊂ Zp so that Zp − F = A + A, that is, S = Zp − F is a sumset.

Proof: Throughout the proof we assume, whenever this is needed, that p is sufficiently large. Given

F as above, consider the following procedure for generating a random set A ⊂ Zp. Set P = 10
√

log p√
p .

Let C ⊂ Zp be a random set obtained by letting each y ∈ Zp for which 2y 6∈ F be a member of C

with probability P , where all choices are independent. Now define

A = C − {y ∈ C : ∃z ∈ C so that y + z ∈ F }.
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By definition, A+A contains no element of F . (Note that to ensure this property it suffices to omit,
while defining A using C, only one element from each pair of members of C whose sum lies in F ,
but since we are not optimizing the constants here, we actually omit both.) In order to complete the
proof it suffices to show that with positive probability A + A does contain all elements of S. To do
so, it suffices to show that for each fixed g 6∈ F , the probability that g does not lie in A + A is less
than 1/p. We thus fix g 6∈ F and prove three simple lemmas leading to the required conclusion.

Lemma 2.2 The probability that there are less than 17 log p disjoint pairs yi, zi ∈ C so that yi+zi = g

is o(1
p).

Proof: Fix a set of p/4 pairs y, z in Zp satisfying y + z = g and 2y, 2z 6∈ F . (Since p is large
and |F | <

√
p there are certainly that many pairs, recalling our convention of omitting floor and

ceiling signs). The number of these pairs that lie in C is a binomial random variable with parameters
p/4 and P 2 = 100 log p

p , and hence its expectation is 25 log p. By the known standard estimates for
binomial distributions (c.f., e.g., [3], Theorem A.1.13, page 268), the probability that there are less
than 17 log p pairs in C is at most e−82 log2 p/(50 log p) = o(1

p), as needed. 2

Lemma 2.3 The probability that C contains 9 distinct elements x, y1, z1, y2, z2, . . . , y4, z4 so that for
all 1 ≤ i ≤ 4, x + yi ∈ F and yi + zi = g is o(1

p).

Proof: There are p choices for x, then less than |F |4 choices for x + y1, x + y2, x + y3, x + y4 ∈ F

and this determines the elements yi as well as zi since yi + zi = g for all i. Thus, the probability that
there is such a configuration of 9 elements in C is less than

p|F |4P 9 ≤ p
( 1
4000

√
p

log p

)4(10
√

log p
√

p

)9
= o(

1
p
),

as required. 2

Lemma 2.4 The probability that C contains at least s = 1.7 log p pairwise disjoint triples xi, yi, zi

so that for all i, xi + yi ∈ F and yi + zi = g is o(1
p).

Proof: The number of triples x, y, z in Zp so that x + y ∈ F and y + z = g is at most p|F |, hence
the probability that C contains s pairwise disjoint triples of this type is at most(

p|F |
s

)
P 3s ≤ (

ep|F |P 3

s
)s ≤ (

ep
√

p

4000
√

log p

1000(log p)3/2

p3/2s
)s = (

e · 1000
1.7 · 4000

)1.7 log p = o(
1
p
),

as claimed. 2

Returning to the proof of Theorem 2.1, we next observe that the three lemmas together imply
that the probability that g does not lie in A + A is o(1

p). Indeed, with probability at least 1 − o(1
p)

none of the events described in the three lemmas happens. We claim that in this case g does lie
in A + A. To prove this claim note that as the event in Lemma 2.2 does not happen, there are at
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least 17 log p disjoint pairs yi, zi of elements in C so that yi + zi = g. If this is the case and yet g

is not in A + A, it means that at least one element in each of these pairs has been omitted in the
process of generating A from C. Therefore, for each of the pairs yi, zi there is some element xi ∈ C

so that (possibly after swapping yi and zi), xi + yi ∈ F , where, by the construction of C, xi 6= yi, zi.
However, the same element of Zp cannot serve as xi for more than 3 such pairs, as the event in
Lemma 2.3 fails to occur. It follows that every triple {xi, yi, zi} can intersect at most 9 other triples
of this kind (as each of its elements can serve as xj at most 3 times and as yj or zj at most once).
Hence there is a set of at least 17 log p

10 > 1.7 log p pairwise disjoint triples {xi, yi, zi} of elements of C,
so that for all i, xi + yi ∈ F and yi + zi = g, contradicting the assumption that the event in Lemma
2.4 does not occur. This proves the claim, and completes the proof of the theorem. 2

3 Sets which are not sumsets

This section contains the proof of the upper bound in Theorem 1.1. There is a somewhat simpler
variant of this proof, but as it provides a weaker bound by a log p factor, we prefer the proof
below. The basic idea is simple. Our objective is to prove the existence of a set F ⊂ Zp of size
|F | ≤ O( p2/3

log1/3 p
) so that S = Zp − F is not a sumset. It is convenient to choose F as the disjoint

union of two sets, F = T ∪ T ′, where each of the sets T, T ′ is of size O( p2/3

log1/3 p
). The set T is chosen

first. Once it is chosen, it already follows that, for any T ′, if S = Zp−(T ∪T ′) is a sumset of the form
A+A, then A+A cannot intersect T . This gives an upper bound for the number of sets A which are
possible candidates. It is convenient to establish this bound using an appropriate Cayley sum graph.
Let G = G(Zp, T ) be the graph whose vertices are all elements of Zp, where two are adjacent iff their
sum lies in T . Note that A satisfies (A + A) ∩ T = ∅ iff A is an independent set in G. Therefore,
we need to bound the number of independent sets in G. This can be done using the eigenvalues of
G. These eigenvalues can be expressed in terms of the characters of Zp, and the resulting character
sums for a random choice of T can be estimated using standard large deviation inequalities. This
enables us to prove the existence of a set T of the required size, so that all nontrivial eigenvalues
of G = G(Zp, T ) are, in absolute value, at most O(

√
|T | log p). In [2] the authors obtain an upper

estimate for the number of independent sets in a regular graph provided all its nontrivial eigenvalues
are, in absolute value, considerably smaller than its degree. Using this bound we get that the number
of possible sets A is at most

I = eO(p2/3 log2/3 p).

We can now choose an additional set T ′ of size t′ = c p2/3

log1/3 p
to define the final set S = Zp − (T ∪T ′).

There are
(p−|T |

t′
)

possible choices for T ′, and for an appropriately large constant c, this number
exceeds I. Hence there are more sets S than potential sets A, and thus at least one of these sets S is
not a sumset, implying the desired result. The detailed proof is described in the rest of this section.
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3.1 Cayley sum graphs and their spectra

For an abelian group B and a subset T ⊂ B, the Cayley sum graph G = G(B, T ) of B with respect
to T is the graph whose set of vertices is B, in which yz is an edge for each y, z ∈ B satisfying
y + z ∈ T . Clearly, this is a |T |-regular graph (which may contain up to one loop at each vertex).
Let D be the adjacency matrix of G. It is well known that the eigenvalues of D (which are also
called the eigenvalues of G) can be expressed in terms of T and the characters of B. Indeed, for
every character χ of B and every y ∈ B, the entry indexed by y of the product of D with the
vector χ = χ(z)z∈B is

∑
s∈T χ(s− y) = (

∑
s∈T χ(s))χ(y). Applying D again, it follows that the entry

indexed by y of D2χ is |
∑

s∈T χ(s)|2χ(y). Therefore, the eigenvalues of the symmetric matrix D2 are
precisely the expressions |

∑
s∈T χ(s)|2, where the characters are the corresponding eigenvectors, and

as the characters are orthogonal, these are all eigenvalues. It follows that each nontrivial eigenvalue
of the graph G = G(B, T ) is, in absolute value, |

∑
s∈T χ(s)| for some nontrivial character χ of B (it

is not difficult to determine the signs as well, but these are not needed here). In particular, if p is a
prime and T ⊂ Zp, then every nontrivial eigenvalue of the Cayley graph of Zp with respect to T is,
in absolute value, |

∑
s∈T ωs|, where ω is a nontrivial p-th root of unity.

A (p, t, λ)-graph is a t-regular graph on p vertices, in which the absolute value of each nontriv-
ial eigenvalue is at most λ. This notion was introduced by the author in the 80s, motivated by
the observation that such graphs in which λ is much smaller than t exhibit strong pseudo-random
properties.

An old result of Hoffman [7] implies that the maximum independent set in any (p, t, λ)-graph is
of size at most pλ

t+λ . Note that this already suffices to provide a nontrivial bound for the number of
independent sets in such a graph, namely, the number of all subsets of vertices of cardinality at most
the above bound. One can give, however, a better upper bound, as proved in [2].

Lemma 3.1 ([2]) Let G be a (p, t, λ)-graph, and suppose m ≥ 2p log p
t . Then, the number of inde-

pendent sets of size m in G is at most

( emt2

4λp log p

) 2p log p
t
(2eλp

mt

)m
.

3.2 Cayley sum graphs with small nontrivial eigenvalues

In this subsection we prove the existence of a Cayley sum graph G = G(Zp, T ) with a relatively small
number of independent sets. We need the following.

Lemma 3.2 For every integer t ≤ p2/3 there exists a subset T ⊂ Zp of cardinality t so that for every
nontrivial p− th root of unity ω

|
∑
s∈T

ωs| ≤ 3
√

t
√

log(10p).
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Proof: Let (s1, s2, . . . , st) be a random sequence of not necessarily distinct elements of Zp obtained
by choosing each si randomly, uniformly and independently among all elements of Zp. For each fixed
nontrivial root of unity ω, the real part of the sum

∑t
i=1 ωsi is a sum of t mutually independent

random variables, each having expectation 0 and each bounded in absolute value by 1. Therefore, by
a standard Chernoff type inequality (c.f., e.g., [3], Theorem A.1.16, page 269), the probability that
the absolute value of such a sum exceeds a is bounded by 2e−a2/(2t). Setting a =

√
2t
√

log(10p) we
conclude that the probability that the absolute value of the real part of the sum exceeds a is at most
2

10p . As the same reasoning applies to the imaginary part of the sum, it follows that with probability
at least 1− 2(p− 1) 2

10p > 0.6 all these absolute values are at most a. The expected number of pairs

of equal elements in the sequence is
(t
2

)
/p < t2

2p ≤
√

t
2 , where here we used the fact that t ≤ p2/3.

Thus, by Markov’s Inequality, with probability at least 0.5 there are at most
√

t such pairs. Hence,
with positive probability, there are at most

√
t such pairs, and all real and imaginary parts of all

the sums above are, in absolute value, at most a, implying that the absolute value of each of these
sums is at most

√
2a = 2

√
t
√

log(10p). Fix a sequence satisfying these properties, omit an element
from each pair of equal elements, and replace the omitted elements by arbitrary other elements of
Zp. This yields a set T of t distinct elements of Zp. By the triangle inequality, for each nontrivial
p− th root of unity ω

|
∑
s∈T

ωs| ≤ 2
√

t
√

log(10p) + 2
√

t ≤ 3
√

t
√

log(10p).

This completes the proof. 2

Corollary 3.3 There exists a Cayley sum graph G = G(Zp, T ) with |T | = t = 9 p2/3

log1/3 p
, that has at

most
e(2+o(1))p2/3 log2/3 p

independent sets.

Proof: Put t = 9 p2/3

log1/3 p
, and let T ⊂ Zp be a set of cardinality t satisfying the assertion of Lemma

3.2. Let G = G(Zp, T ) be the corresponding Cayley graph. By the discussion in subsection 3.1
and by Lemma 3.2, G is a (p, t, λ)-graph with λ = 3

√
t
√

log(10p). By Lemma 3.1, the number of
independent sets of cardinality m in G, for each m ≥ 2p log p

t , is at most

( emt2

4λp log p

) 2p log p
t
(2eλp

mt

)m
≤ pO(p1/3 log4/3 p)

(2e3 · 3p1/3
√

log(10p)p log1/3 p

m9(log1/6 p)p2/3

)m
= eO(p1/3 log7/3 p)Fp(m),

where

Fp(m) =
((2e + o(1))p2/3 log2/3 p

m
)m.
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Differentiating the logarithm of the function f(x) = (r/x)x, where r is a positive real, it is easy to
check that its maximum for x > 0 is er/e, attained at x = r/e. It follows that for every m ≥ 2p log p

t ,

Fp(m) ≤ e(2+o(1))p2/3 log2/3 p.

Summing over all values of m (and observing that the number of independent sets of size m ≤
2p log p

t = O(p1/3 log4/3 p) is trivially at most pO(p1/3 log4/3 p) ), the desired result follows. 2

3.3 The proof of the upper bound

The following result implies the upper bound in Theorem 1.1.

Theorem 3.4 For all sufficiently large p there exists an F ⊂ Zp of cardinality 16 p2/3

log1/3 p
so that

S = Zp − F is not a sumset.

Proof: Let T ⊂ Zp, G = G(Zp, T ) and t be as in Corollary 3.3. Put t′ = 7 p2/3

log1/3 p
. There are

(
p− t

t′

)
= e(7/3−o(1))p2/3 log2/3 p

subsets T ′ of cardinality t′ in Zp − T . As this number exceeds the number of independent sets A

in G, it follows that there exists such a set T ′ so that there is no independent set A in G for which
A+A = Zp−(T ∪T ′). As explained in the beginning of the section this implies that S = Zp−(T ∪T ′)
is not a sumset, as needed. 2

4 Concluding remarks

Theorem 1.1 can be extended to other abelian groups. A set S in an abelian group B is called a
sumset if there is an A ⊂ B so that S = A+A. The proof of Theorem 1.1, with essentially no changes,
implies that for every finite abelian group B of odd order n, the maximum possible cardinality of a
subset of B which is not a sumset is at least n−O( n2/3

log1/3 n
) and at most n− Ω(

√
n√

log n
). For (some)

abelian groups of even order the situation is a bit different, because of the existence of elements
of order 2. Consider, for example, B = Zk

2 , where n = 2k. Here every element is of order 2, and
hence every nonempty sumset must contain 0. The proof of Theorem 2.1, with essentially no change,
implies that for every set F of at most 1

4000

√
n√

log n
nonzero elements of Zk

2 , Zk
2 − F is a sumset.

Moreover, here it is easy to see that the exponent 1/2 cannot be improved. Indeed, let F consist of
all nonzero vectors of B = Zk

2 in which the first bk/2c coordinates are 0. For every set A of more
than 2bk/2c members of B, A+A must contain a member of F , by the pigeonhole principle. However,
if B − F is a sumset of the form A + A, then |A|(|A| − 1)/2 + 1 ≥ |A + A| ≥ 2k − |F | implying that
A must be of size exceeding 2bk/2c. Thus B − F is not a sumset.
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Call a subset S of an abelian group B a diffset if S = A−A for some A ⊂ B. (We do not use the
term difference set as this has another meaning). Clearly every nonempty diffset must satisfy 0 ∈ S

and S = −S. The proof of Theorem 2.1 can be easily modified to prove the following.

Theorem 4.1 There exists an absolute positive constant c so that for every abelian group B of order
n and every subset S ⊂ B satisfying |S| ≥ n− c

√
n√

log n
, 0 ∈ S and S = −S, S is a diffset.

Here, too, the exponent 1/2 cannot be improved, as stated in the following simple claim.

Proposition 4.2 Every abelian group B of order n contains a subset S satisfying 0 ∈ S, S = −S

and |S| ≥ n− 4
√

n which is not a diffset.

Proof: Suppose B = Zd1 ⊕Zd2 ⊕· · ·⊕Zdk
, with d1|d2|d2 · · · |dk. Let i be the minimum index so that

d1 · d2 · · · di ≥
√

n. Let F be the set of all nonzero elements of B whose representation in the above
direct sum has 0 in the first i− 1 coordinates, and has absolute value at most d1d2···di

b
√

nc in coordinate
number i. By the pigeonhole principle, for every set A of at least b

√
nc elements of B, A− A must

intersect F , implying that B − F is not a diffset.
For two functions f(n) and g(n) we write f(n) = Θ̃(g(n)) if there are two (not necessarily

positive) reals c1, c2 and an integer n0 so that g(n)(log n)c1 ≤ f(n) ≤ g(n)(log n)c2 for all n > n0.
The following conjecture seems plausible.

Conjecture 4.3 The function f(p) considered in this paper satisfies f(p) = Θ̃(p1/2).

A similar conjecture should hold for all abelian groups of odd order. A stronger conjecture is the
following.

Conjecture 4.4 There are constants c1, c2 so that the following holds. Let B be an abelian group
of odd order n. Then for every integer t between 1 and n there is a subset T ⊂ B of size t so that
the independence number of the Cayley sum graph G = G(B, T ) is at most c1

n
t (log n)c2.

This is trivial for t ≤ (log n)O(1) and is essentially proved in [1] (with c2 = 2) for t = Ω(n), and in
[6] with the optimal c2 = 1 for cyclic groups and t = Ω(n). The proof in [1] deals, in fact with usual
Cayley graphs, and not with sum graphs, but can be easily modified for this case as well. The proof
in [6] deals with t around n/2 but the same proof works for a wider range of t. The validity of this
conjecture for t =

√
n(log n)c3 for some c3 > c2 would imply the assertion of Conjecture 4.3 (and

its analog for any abelian group of odd order n) by the reasoning in the previous paragraphs. Note
that the assertion of the conjecture may well hold for a random choice of T . This would mean that
the independence number of random Cayley sum graphs is similar to that of random regular graphs,
discussed in [8].
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