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Abstract

Many randomized algorithms run successfully even when the random choices
they utilize are not fully independent. For the analysis some limited amount of
independence, like k-wise independence for some fixed k, often suffices. In these
cases, it is possible to replace the appropriate exponentially large sample spaces
required to simulate all random choices of the algorithms by ones of polynomial
size. This enables one to derandomize the algorithms, that is, convert them into
deterministic ones, by searching the relatively small sample spaces deterministi-
cally. If a random variable attains a certain value with positive probability, then
we can actually search and find a point in which it attains such a value.

The observation that n−1 pairwise independent nontrivial random variables
can be defined over a sample space of size n has been mentioned already long ago,
see [11], [23]. The pairwise independent case has been a crucial ingredient in the
construction of efficient hashing schemes in [14], [17]. A more general construc-
tion, of small sample spaces supporting k-wise independent random variables,
appeared in [19]. For the case of binary, uniform random variables this is treated
under the name orthogonal arrays in the Coding Theory literature, see, e.g., [27].
Most constructions are based on some simple properties of polynomials over a
finite field or on certain explicit error correcting codes.

Several researchers realized that constructions of this type are useful for
derandomizing parallel algorithms, since one may simply check all points of the
sample space in parallel. Papers pursuing this idea include [1], [22], [24], and
papers dealing with the properties of the constructions in which the sample
spaces are not necessarily uniform include [20], [21]. It can be shown that for
fixed k, the minimum size of a sample space supporting n k-wise independent
random variables is Ω(nbk/2c). For the binary uniform case this is essentially the
Rao bound [30] (see also [12], [16]), whereas for the general case it is shown in
[1], where it is also observed this is tight for the binary uniform case. It follows
that polynomial size sample spaces suffice only for handling k-wise independence
for fixed k. There are, however, several ways to achieve a higher amount of
independence. One method, developed in [9] and [26], (see also [25] for related
ideas), starts with a construction of relatively small spaces which support k-wise
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independent random variables for k = (log n)O(1), and proceeds by searching
in these spaces using the conditional expectations method of [32], [29]. Another
method, suggested in [31], is based on constructing spaces in which only certain
prescribed sets of random choices are independent. The third method, initiated
in [28] and improved in [3] (see also [2], [8], [13], [15]) constructs sample spaces
that support random variables any k of which are nearly independent.

The above techniques have been applied in numerous papers dealing with
derandomization, and we make no attempt to list all of them here. Examples
include parallelization of derandomized geometric algorithms in [10], [18], and
various parallel graph algorithms [1], [9], [22], [24], [28]. It turned out that some
variants of the techniques are also useful in derandomizing sequential algorithms
[5], [7] and in designing space efficient on-line algorithms for estimating some
statistical properties of a given input sequence [4].

In the talk I will survey the basic ideas in the constructions of small sample
spaces and discuss some of the applications, focusing on various recent results
that illustrate the somewhat surprising relevance of the techniques to the solu-
tions of several algorithmic problems.
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