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Abstract

We determine the maximum possible number of edges of a graph with n vertices,

matching number at most s and clique number at most k for all admissible values of

the parameters.

1 The main result

The clique number of a graph G is the maximum number of vertices in a complete sub-

graph of it. The matching number of G is the maximum cardinality of a matching in G.

Two classical results in Extremal Graph Theory are Turán’s Theorem [5] determining the

maximum number of edges t(n, k) of a graph on n vertices with clique number at most k,

and the Erdős-Gallai Theorem [2], determining the maximum possible number of edges of

a graph with n vertices and matching number at most s.

In this note we prove a common generalization. Call a graph complete k-partite if its

vertex set consists of k pairwise disjoint sets and two vertices are adjacent iff they belong

to distinct classes. Note that we allow some vertex classes to be empty. Let T (n, k) denote

the complete k-partite graph with n vertices in which the sizes of the vertex classes are

as equal as possible, and let t(n, k) denote its number of edges. Let G(n, k, s) denote the

complete k-partite graph on n vertices consisting of k − 1 vertex classes of sizes as equal

as possible whose total size is s, and one additional vertex class of size n−s. Let g(n, k, s)

denote the number of its edges.

Our main result is the following.

Theorem 1.1. For all n ≥ 2s+ 1 and every k, the maximum possible number of edges of

a graph on n vertices with clique number at most k and matching number at most s is the

maximum between the Turán number t(2s + 1, k) and the number g(n, k, s) defined above.

(For n ≤ 2s + 1 the maximum is clearly t(n, k)).
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Note that for s ≥ (n − 1)/2 the assumption about the matching number holds auto-

matically and the statement for this case is equivalent to Turán’s Theorem. Similarly, for

k ≥ n ≥ 2s + 1 the statement is equivalent to the Erdős-Gallai Theorem that asserts that

the maximum possible number of edges of an n-vertex graph with matching number at

most s is the maximum between
(
2s+1
2

)
and s(n− s) +

(
s
2

)
.

2 Proof

Let G = (V,E) be a graph on n ≥ 2s + 1 vertices with matching number at most s and

clique number at most k having the maximum possible number of edges. By the Tutte-

Berge Theorem or the Edmonds-Gallai Theorem, cf., e.g. [3], there is a set of vertices B,

|B| = b so that each of the connected components A1, A2, . . . , Am of G−B is odd, and so

that if the sizes of these components are

|A1| = a1 ≥ |A2| = a2 ≥ · · · ≥ |Am| = am ≥ 1

then

b +

m∑
i=1

(ai − 1)/2 = s

and

b +
m∑
i=1

ai = n.

(For the readers with no access to [3] we note that one way to obtain the existence of

the decomposition above proceeds by defining, for each set of vertices S, f(S) to be the

number of odd components of G−S minus |S|. Then B is a set of vertices that maximizes

f(S) and is of maximum cardinality among all such B.)

Note that a partition as above exists even if the size of the maximum matching in G

is smaller than s, since it is possible to shift vertices from some sets Ai to B, if needed.

Among all such graphs with the maximum possible number of edges and all such

choices of B, Ai assume that G,B,Ai is one for which the sum
∑m

i=1 a
2
i is maximum.

We use the following standard notation. For any vertex v of G, N(v) denotes its set

of neighbors. If C is a set of vertices of G, put NC(v) = N(v) ∩ C and let GC denote the

induced subgraph of G on C.

We first prove the following lemma, which is a simple consequence of the Zykov sym-

metrization method introduced in [6]. For completeness we include a short proof.

Lemma 2.1. Without loss of generality we may assume that every two non-adjacent

vertices of B have the same neighborhood.

Proof. We first show that non-adjacency is an equivalence relation on B. Indeed, this

relation is trivially reflexive and symmetric. Suppose it is not transitive, then there are

2



three distinct vertices u, v, w in B so that uv, uw are non-edges but vw is an edge. If the

degree d(u) of u is smaller than d(v), then replacing the neighborhood of u by that of v

the number of edges increases. The clique number does not increase, as any new clique K

must contain u, but then it cannot contain v, and (K −{u})∪ {v} is a clique of the same

size before the replacement. The matching number also stays at most s, as demonstrated

by the set of vertices B after the replacement which shows that the matching number is

at most b+
∑m

i=1(ai−1)/2 = s. Thus, by the assumption that G has a maximum possible

number of edges it follows that d(u) ≥ d(v). The same argument shows that d(u) ≥ d(w).

But in this case the graph obtained by replacing the neighborhood of v by that of u and

the neighborhood of w by that of u provides the desired contradiction. Indeed, it has more

edges than G, clique number at most that of G, and matching number at most s. This

shows that the induced subgraph of G on B is a complete k-partite graph with vertex

classes B1, . . . , Bk (some of which may be empty). For each nonempty Bi let ui be a

vertex of Bi of maximum degree. Replacing the neighborhood of each other vertex of Bi

by that of ui, the number of edges can only increase, the clique number does not increase

and the matching number stays at most s. This completes the proof of the lemma.

Lemma 2.2. ai = 1 for all 2 ≤ i ≤ m.

Proof. By Lemma 2.1 every two non-adjacent vertices of B have the same neighborhood.

Since G contains no clique of size k + 1 this means that GB is a complete k-partite graph.

Let B1, B2, . . . , Bk be the vertex classes of this induced subgraph, with |B1| ≥ |B2| ≥
. . . ≥ |Bk| (where some of these classes may be empty).

Claim 2.3. Without loss of generality we may assume that for every 1 ≤ i ≤ m there is

a vertex vi ∈ Ai which has no neighbor in Bk.

Proof of Claim: If Bk = ∅ this is surely true. We can thus assume that |B1| ≥ |B2| ≥
. . . ≥ |Bk| ≥ 1. Since the size w(G) of the largest clique of G is at most k, no vertex in Ai

is adjacent to a member of each Bj , 1 ≤ j ≤ k. If all vertices of Ai are adjacent to Bk (to

all of it, as all vertices in Bk have the same neighborhood), choose j so that some vertex

v ∈ Ai has no neighbors in Bj . We can now swap Bj and Bk in the neighborhood of each

v ∈ Ai. This is done as follows. If v is connected to both Bj and Bk, leave it connected

to both, and if it is connected to Bk but not to Bj remove all its edges to Bk and connect

it to all members of Bj . This can only increase the number of edges, as |Bk| ≤ |Bj |. Note

also that swapping Bj and Bk as above cannot increase the size of the maximum clique

as any new clique created this way includes a vertex of Bj , some vertices of Ai, and no

vertex of Bk. Replacing the vertex from Bj by any one of Bk gives a clique of the same

size in the graph before the swap. Since the matching number also stays at most s, as

shown by B, this completes the proof of the claim. �
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Returning to the proof of the lemma assume it is false and a1 ≥ a2 ≥ 3. Let v1 ∈ A1

and v2 ∈ A2 be as in the claim. Now modify G into G′ by defining A′1 = A1∪A2\{v2}, A′2 =

{v2}, keeping B′ = B and only changing the edges incident with v1 and v2 as follows. The

new neighborhood of v1 is

N ′(v1) = NA1(v1) ∪NA2(v2) ∪ (NB(v1) ∩NB(v2)).

The new neighborhood of v2 is NB(v1) ∪NB(v2). Note that GA′1
is connected.

The total number of edges is unchanged, and (a1, a2) changed to (a1+a2−1, 1) implying

that the matching number stays at most s, as both a1 + a2 − 1 and 1 are odd. The clique

number stays at most k. Indeed, any new clique containing v2 is of size at most k since

neither v1 nor v2 are adjacent to Bk in G. Any new clique K in G′ containing v1 contains

in A′1 either only vertices of A1 or only vertices of A2 − {v2} (in addition to v1). In the

first case, since N ′B(v1) ⊂ NB(v1), the same clique appears also in G. In the second case,

since N ′B(v1) ⊂ NB(v2), (K − {v1}) ∪ {v2} is a clique in G, of the same size as K. Since

(a1 + a2 − 1)2 + 12 > a21 + a22 this yields a contradiction and completes the proof of the

lemma.

By the lemma it follows that a1 = 2s− 2b + 1. We consider several possible cases, as

follows.

Case 1: b = 0. In this case a1 = 2s + 1 and all other vertices of G are isolated, showing

that the number of edges is at most t(2s + 1, k).

Case 2: b = s. In this case a1 = 1 and all the components of G−B are isolated vertices.

The induced subgraph of G on the union of B with arbitrarily chosen additional bs/(k−1)c
components (each of size 1) has at most t(s+ bs/(k− 1)c, k) edges. Any other vertex can

be connected only to the vertices of B, namely has degree at most s. Therefore the total

number of edges e(G) of G satisfies

e(G) ≤ t(s + bs/(k − 1)c, k) + (n− s− bs/(k − 1)c)s.

This suffices for the proof since

g(n, k, s) = t(s, k − 1) + s(n− s) = t(s + bs/(k − 1)c, k) + (n− s− bs/(k − 1)c)s (1)

Case 3: |B|+ a1 = 2s− b + 1 ≤ s + bs/(k − 1)c. This is similar to Case 2. The induced

subgraph of G on the union of B with A1 and with additional components having total

size s+ bs/(k− 1)c spans at most t(s+ bs/(k− 1)c, k) edges. Any other vertex has degree

at most b ≤ s and the desired estimate follows as before.

Case 4: |B|+ a1 = 2s− b + 1 ≥ s + bs/(k − 1)c. In this case 0 ≤ b ≤ s− bs/(k − 1c+ 1.

Define

f(b) = t(2s− b + 1, k) + b(n− 2s + b− 1).
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The number of edges of G is clearly at most f(b). Indeed, the induced subgraph on B∪A1

spans at most t(2s− b+ 1, k) edges, and all remaining vertices have degrees at most b. We

claim that in the relevant range of b, f(b + 1)− f(b) is an increasing function of b. Note

that the claim here is not that the function f(b) itself is increasing (in general it is not),

but that its (discrete) derivative is increasing, that is, it is a discrete convex function. To

prove the claim note that

f(b + 1)− f(b) = n− 2s + 2b− [t(2s− b + 1, k)− t(2s− b, k)]

When b increases by 1, the term (n− 2s + 2b) increases by 2, and the term

t(2s− b + 1, k)− t(2s− b, k)

can only decrease (as it is the difference in the total size of the largest k−1 classes among

the k nearly equal classes of the corresponding Turán graphs, and this quantity can only

decrease (by at most 1) when decreasing the number of vertices 2s− b by 1). This shows

that f(b+1)−f(b) is increasing in the range above. Therefore, if f(b) obtains a maximum

at some b > 0 in this range, that is, f(b) ≥ f(b− 1), then it must be that the maximum is

obtained at the largest possible b in this range, which is b = s− bs/(k − 1c+ 1. But this

is covered by Case 3, completing the proof. �

3 Extension

It may be interesting to extend Theorem 1.1 by replacing the forbidden clique Kk+1 by

other forbidden subgraphs. This means to determine the maximum possible number of

edges of an H-free graph on n vertices with matching number at most s. An old known

result of Abbott, Hanson and Sauer [1] settles the case that H is a star with s + 1 edges.

Recall that a graph H is color-critical if it contains an edge whose deletion decreases

its chromatic number. It is not difficult to prove the following, combining the initial part

of our proof here with the known result of Simonovits [4] about the Turán numbers of

color-critical graphs. Here we include a slightly simpler proof which avoids the application

of the Tutte-Berge or the Gallai-Edmonds Theorems.

Proposition 3.1. For every fixed color-critical graph H of chromatic number k + 1 > 2,

any s > s0(H) and any n > n0(s), the maximum possible number of edges of an H-free

graph on n vertices with matching number at most s is g(n, k, s).

Proof. The graph G(n, k, s) described before the statement of the main theorem is k

chromatic and hence H-free. Since its matching number is s this implies that the number

of edges of this graph, which is g(n, k, s), is a lower bound for the maximum considered

in the proposition. To prove the upper bound, let H, k, s be as above and let G be an

H-free graph on n vertices with matching number at most s having the maximum possible
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number of edges. Assume, further, that s is sufficiently large as a function of H and that

n is sufficiently large as a function of s.

Note, first, that G cannot contain more than s vertices of degrees exceeding 2s. Indeed,

otherwise let {x1, x2, . . . xs+1} be s + 1 such vertices. For each xi, in order, let yi be an

arbitrarily chosen neighbour of xi which differs from all xj and all previously chosen yj .

As there are only s+i−1 ≤ 2s such forbidden vertices (we do not have to count the vertex

xi itself) there is always a choice for yi. This gives a matching of size s+ 1, contradicting

the assumption.

Let X be the set of all vertices of degree exceeding 2s. By the paragraph above |X| ≤ s.

Put Y = V −X. In the induced subgraph of G on Y every degree is at most 2s and thus,

by Vizing’s Theorem, its chromatic index is at most 2s + 1. As there is no matching

of size s + 1, it follows that the number of edges in this induced subgraph is at most

(2s + 1)s. As the total number of edges incident with the vertices in X is smaller than

|X|n (with room to spare) it follows that if |X| < s then the number of edges of G is

smaller than (s− 1)n + (2s + 1)s. This is smaller than g(n, k, s) for n exceeding, say, 3s2

(we make no attempt to optimize n0(s)), showing that we may assume that |X| = s. Put

X = {x1, x2, . . . , xs}.
We claim that Y = V −X is an independent set in G. Indeed, if it contains an edge

z1z2 we can, as before, use the fact that the degree of each vertex of X exceeds 2s to

pick distinct yi ∈ Y − {z1, z2} so that xiyi is an edge for each i, contradicting again the

assumption about the matching number. Thus Y is indeed independent.

Let Z be an arbitrary subset of Y = V − X of size m = bs/(k − 1)c. By the result

of Simonovits, for s > s0(H) the induced subgraph of G on X ∪ Z contains at most

t(s+m, k) edges. In addition, all other edges of G are incident with the vertices of X, as Y is

independent. Therefore, the total number of edges of G is at most t(s+m, k)+(n−s−m)s =

g(n, k, s) where the last equality follows from (1). This completes the proof.
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