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Abstract

Let G be a graph on n vertices and suppose that at least εn2 edges have to be deleted from
it to make it k-colorable. It is shown that in this case most induced subgraphs of G on ck ln k/ε2

vertices are not k-colorable, where c > 0 is an absolute constant. If G is as above for k = 2,
then most induced subgraphs on (ln(1/ε))b

ε are non-bipartite, for some absolute positive constant
b, and this is tight up to the poly-logarithmic factor. Both results are motivated by the study
of testing algorithms for k-colorability, first considered by Goldreich, Goldwasser and Ron in [3],
and improve the results in that paper.

1 Introduction

Suppose that for a fixed integer k and a small ε > 0, a graph G = (V,E) on n vertices is such
that at least εn2 edges should be deleted to make G k-colorable. Clearly G contains many non-k-
colorable subgraphs. Some of them are probably quite small in order. What is then the smallest
non-k-colorable subgraph of G? How many small non-k-colorable subgraphs are there?

In order to address the above questions quantitatively, we introduce a suitable notation. First, we
call a graph G on n vertices ε-robustly non-k-colorable or alternatively ε-far from being k-colorable,
if after deleting any subset of less than εn2 edges of G the remaining graph is still not k-colorable.
Of course, it follows that G itself is not k-colorable. Define

fk(G) = min{|V0| : V0 ⊆ V (G), G[V0] is non-k-colorable} ,

where G[V0] denotes the subgraph of G induced by V0. If χ(G) ≤ k, we set fk(G) = ∞. For an
integer n and 0 < ε < 1/(2k) let

fk(n, ε) = max{fk(G) : G is an ε-robustly non-k-colorable graph on n vertices} .
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(Note that the assumption ε < 1/(2k) can be made without loss of generality as every graph on n

vertices is at most n2/(2k) edges far from being k-colorable). Similarly, let

gk(G) = min{t : if R ⊆ V (G) is chosen uniformly at random from all subsets of V of size t,

then Pr[χ(G[R]) > k] ≥ 1/2} .

Again, gk(G) =∞ if χ(G) ≤ k. Let

gk(n, ε) = max{gk(G) : G is an ε-robustly non-k-colorable graph on n vertices} .

Obviously, fk(G) ≤ gk(G) for any graph G, thus implying fk(n, ε) ≤ gk(n, ε).
A few comments on the above definitions are in order. The function fk(n, ε) represents a very

natural extremal graph theory problem, seeking to link the size of a smallest non-k-colorable subgraph
of a non-k-colorable graph with its distance from the set of k-colorable graphs. For example, for
k = 2 one can say that if the odd girth (i.e. the minimal length of an odd cycle) of a graph G on n

vertices is more than f2(n, ε) for some ε > 0, then G can be made bipartite by deleting less than εn2

edges. The function gk(n, ε) says that if G is ε-robustly non-k-colorable, then it contains not only
one, but very many non-k-colorable subgraphs on gk(n, ε) vertices. The somewhat artificially looking
definition of gk(n, ε) has actually a very natural algorithmic background in terms of graph property
testing, as considered by Goldreich, Goldwasser and Ron in [3]. Applied to the particular problem
of testing k-colorability, their approach reads as follows. Suppose our aim is to design an algorithm,
which for a given (large enough) integer n and a (small enough) parameter ε > 0, distinguishes with
high probability between an input graph on n vertices, which is k-colorable, and that in which at least
εn2 edges should be deleted to create a k-colorable graph. The algorithm can query whether or not a
specific pair of vertices of the input graph is connected by an edge. In general, it is NP-complete to
check k-colorability for any k ≥ 3. However, given the assumption that the input is either k-colorable
or very far from being such, one may hope to devise very efficient randomized algorithms. We refer
the reader to [3] for a general discussion of graph property testing.

Returning to the definition of the function gk(n, ε), one can propose the following very simple
algorithm for testing k-colorability. Given an input graph G = (V,E), choose uniformly at random
gk(n, ε) vertices of G and denote the chosen set by R. Now, check whether the induced subgraph
G[R] is k-colorable. If it is, output ”G is k-colorable”, otherwise output ”G is not-k-colorable”. Note
that if G is k-colorable, then every subgraph of it is k-colorable as well. Thus, in this case we always
output a correct answer. On the other hand, if G is ε-far from being k-colorable, it follows from the
definition of gk(n, ε) that a sample of size gk(n, ε) induces a non-k-colorable graph with probability
at least 1/2. Therefore, in this case we output a correct answer with probability at least 1/2. Having
in mind the above discussion, sometimes we will refer to bounding the function gk(n, ε) as to testing
k-colorability.
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The problem of estimating fk(n, ε) and gk(n, ε) will be treated in this paper as an asymptotic one.
This means that whenever needed, we will assume that the number of vertices n is large enough, and
that the robustness parameter ε is small enough, but fixed as n is growing.

It is important to observe that the values of the functions defined above are of interest only
for graphs with a quadratic number of edges. Indeed, if G has n vertices and is ε-far from being
k-colorable, it contains at least εn2 edges. This observation, together with the asymptotic nature of
the problem, prompts the use of graph theoretic methods designed for dense graphs, most notably
the well known Regularity Lemma of Szemerédi [6].

Let us now survey the previous research on these problems. Somewhat surprisingly it turned
out that the above defined function gk(n, ε) can be bounded from above by a function of ε only.
This has been proven by Bollobás, Erdős, Simonovits and Szemerédi [2] for the case k = 2 and by
Rödl and Duke [5] for every k ≥ 3. Both papers rely on the Regularity Lemma. As is the case
with most applications of the Regularity Lemma, the resulting bounds are extremely fast growing
functions of 1/ε (towers of height polynomial in 1/ε), thus making the results hardly applicable from
the practical point of view. Note that both papers [2] and [5] formulate their results in a somewhat
different language and do not define the function gk(n, ε) explicitly.

For k = 2, Komlós showed in [4] that f2(n, ε) = O(1/ε1/2). This result is easily seen to be tight
by considering a blow-up of an odd cycle of length about 1/ε1/2. (A graph G on n vertices is a
blow-up of a graph H on m vertices with vertex set V (H) = {v1, . . . , vm} if the vertex set of G can
be partitioned into m disjoint sets V1, . . . , Vm, each of size |Vi| = n/m, so that Vi and Vj are joined
completely if (vi, vj) ∈ E(H) and are not joined by any edge otherwise.)

Motivated by testing k-colorability, Goldreich, Goldwasser and Ron [3] came up with a completely
different approach for bounding gk(n, ε). Using direct combinatorial arguments (and thus avoiding
the Regularity Lemma), they were able to prove that g2(n, ε) = O(log(1/ε)/ε2) – a tremendous
progress compared to the bound of [2]. Similarly, they proved that for every fixed k ≥ 3 one has
gk(n, ε) = O(k2 log k/ε3). The difference between the cases k = 2 and k ≥ 3 can be intuitively
explained by the fact that for k = 2 the family of minimal non-2-colorable graphs coincides with
the family of odd cycles and is thus very simple to describe. For every k ≥ 3 the family of minimal
non-k-colorable graphs (usually called (k + 1)-color-critical graphs) is very complicated. Goldreich
et al. did not discuss the function fk(n, ε) and did not provide any separate bounds for it.

The purpose of the present paper is to provide improved bounds for both functions fk and gk.
We prove the following results.

Theorem 1

1. For all ε ≤ 1/9, g2(n, ε) ≥ 1
6ε .
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2. For every fixed k ≥ 3 and every small enough ε > 0, for infinitely many n one has

gk(n, ε) ≥ fk(n, ε) ≥
1

110

(
1

330 ln k

) 2
k−2 1

ε
.

.

Theorem 2

g2(n, ε) ≤
34 ln4

(
1
ε

)
ln ln

(
1
ε

)
ε

.

Theorem 3 For every fixed k ≥ 3,

gk(n, ε) ≤
36k ln k
ε2

.

These results improve upon the above mentioned bounds of Goldreich et al. Still, for every k ≥ 3,
the gap between the lower and the upper bounds, given by Theorems 1 and 3 respectively, remains
quite substantial.

The rest of the paper is organized as follows. In Section 2 we discuss lower bounds for the
functions fk, gk and prove Theorem 1. In Section 3 we prove Theorem 2. Section 4 is devoted to
proving Theorem 3. The final Section 5 contains some concluding remarks and open problems.

During the course of the proof we make no serious attempts to optimize the constants involved.
Also, we omit routinely floor and ceiling signs to simplify the presentation. Given a graph G = (V,E)
and a vertex v ∈ V , we denote by N(v) the set of all neighbors of v in G. The degree of v in G

is denoted by d(v). For a vertex v ∈ V and a subset U ⊂ V , we denote by d(v, U) the number of
neighbors of v in U . The number of edges of G spanned by U , i.e. having both endpoints in U , is
denoted by e(U). A vertex v ∈ V (G) is dominated by a subset S ⊆ V (G) if v has a neighbor inside
S in G. Recall that, whenever needed, the number of vertices n is assumed to be large enough, while
ε > 0 is small enough.

2 Lower bounds

In this section we prove lower bounds for the functions fk, gk. For many graph testing problems,
the lower bound of order 1/ε is very natural and can be proven quite easily. The property of k-
colorability is not an exception, and the bound gk(n, ε) ≥ c(k)/ε can be obtained by considering a
complete (k+ 1)-partite graph with one part of size Θ(εn) and the other k of equal size. This is how
we prove Theorem 1, Part 1. For every k ≥ 3 we prove a stronger statement. Namely, we show the
existence of an ε-robustly non-k-colorable graph on n vertices, in which, for a fixed constant c = c(k),
not only does a typical subset of size c/ε induce a k-colorable graph, but every subgraph of this order
is k-colorable. This is done by considering a random graph with a linear number of edges and then

4



blowing it up to get an ε-robustly non-k-colorable graph which is locally k-colorable. This supplies
a lower bound for the function fk(n, ε). It is worth noting here that the case k = 2 is different, as it
follows from the result of Komlós [4] that f2(n, ε) = Θ(1/ε1/2).
Proof of Theorem 1, Part 1. Given n, ε, let G be a complete tripartite graph with parts V0, V1, V2

of sizes |V0| = 3εn, |V1| = |V2| = 1−3ε
2 n. Notice that each edge of G participates in at most (1−3ε)n/2

triangles. As the total number of triangles in G is 3ε(1 − 3ε)2n3/4, at least 3ε(1 − 3ε)n2/2 ≥ εn2

edges should be deleted to destroy all the triangles of G. Therefore, G is ε-robustly non-2-colorable.
In order to estimate g2(G), note that if R ⊂ V (G) is such that R ∩ V0 = ∅, then the subgraph G[R]
is bipartite. Thus in order to have χ(G[R]) = 3, the set R has to hit V0. If R is chosen uniformly at
random from all subset of V (G) of size r, then

Pr[R ∩ V0 6= ∅] ≤
|V0|

(n−1
r−1

)(n
r

) =
|V0|r
n

= 3εr .

Thus, requiring Pr[χ(G[R]) = 3] ≥ 1/2 implies 3εr ≥ 1/2, which in turn gives r ≥ 1/(6ε). As G is
ε-robustly non-bipartite, the statement follows. 2

Proof of Theorem 1, Part 2. Let us define

c1 = c1(k) =
(

1
3

) 2
k−2

(
1

40e ln k

) k
k−2

,

c2 = c2(k) = 2 ln k ,

c3 = c3(k) = 40k ln k .

The key ingredient of the proof is the following lemma.

Lemma 2.1 For every fixed k ≥ 3 and a sufficiently large integer m, there exists a graph H = Hk,m

on m vertices, having the following properties:

1. Every subset of c1m vertices of H spans a k-colorable graph;

2. Every subset U ⊂ V (H) of size |U | > m/(2k) spans at least c2|U | edges;

3. At least c2m/2 edges need to be deleted from H to create a k-colorable graph.

Proof. Set p = p(m) = c3/m and consider the random graph G(m, p). This is a random graph
with vertex set {1, . . . ,m} in which every pair 1 ≤ i < j ≤ m is an edge independently and with
probability p. We will prove that almost surely G(m, p) has the desired properties. In this proof the
term ”almost surely” (or a.s. for short) means that the probability that all desired properties hold
tends to 1 as m→∞.

In order to prove that the first assertion of the lemma holds a.s. for the random graph G(m, p),
note that a non-k-colorable graph contains a subgraph in which all degrees are at least k. Thus, if
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the first assertion fails, the random graph contains a subset U of size |U | ≤ c1m, spanning at least
(k/2)|U | edges. The probability of this event can be bounded from above by the following expression:

c1m∑
i=k+1

(
m

i

)((i
2

)
k
2 i

)
p
k
2
i <

c1m∑
i=k+1

(
em

i

)i (ei
k

) ki
2

p
ki
2 =

c1m∑
i=k+1

[
em

i

(
eip

k

) k
2

]i
.

Denote the i-th summand of the last sum by ai. Then, if m1/2 ≤ i ≤ c1m we have:

ai ≤
[
em

c1m

(
ec1c3m

km

) k
2

]i
=

[
e

c1

(
ec1c3

k

) k
2

]i
=

[
e

(
ec3

k

) k
2

c
k
2
−1

1

]i

=

[
e(40e ln k)

k
2

1
3

(
1

40e ln k

) k
2

]i
=
(
e

3

)i
= o(m−1) .

If 4 ≤ i < m1/2, we get

ai <

[
em1/2

(
ec3

km1/2

) k
2

]4

=

(
e
k
2

+1(40 ln k)
k
2

m
k
4
− 1

2

)4

= o(m−1/2) .

Thus,
∑c1m
i=k+1 ai = o(1), showing that the first part of the lemma holds with high probability in

G(m, p).
For the second part of the lemma, note that for a fixed subset U ⊆ V (G(m, p)) of size |U | = i, the

number of edges spanned by U in G(m, p) is a binomial random variable with parameters
(i
2

)
and p.

Using the well known Chernoff bounds on the tails of binomial distribution (cf., e.g., [1], Appendix
A), we get Pr[|E(G[U ])| <

(i
2

)
p− a] < exp{−a2/(2

(i
2

)
p)}. Therefore, the probability of existence of

a subset U , violating the assertion of the second part of the lemma, can be bounded from above by

∑
i>m/2k

(
m

i

)
exp

{
−

(
(i
2

)
p− c2i)2

2
(i
2

)
p

}
<

∑
i>m/2k

(
em

i

)i
exp

−
(
i−1

2 p− c2

)2
i

(i− 1)p


<

∑
i>m/2k

(2ek)i exp

−
m
(
c3
2
i−1
m − c2

)2

c3

 .

Denote the i-th summand in the sum above by bi. Notice that c2 = c3/(20k) ≤ (1/5)(i− 1)c3/(2m)
for i > m/(2k). Hence

bi < (2ek)ie
−m
c3

(
2c3(i−1)

5m

)2

< eln(2ek)i− 4c3(i−1)2

25m < e3i ln k−3.2(i−1) ln k = o(m−1) .

Finally, we prove the third part of the lemma. Let V (H) = C1 ∪ . . . ∪ Ck be a k-partition of the
vertex set of H. Then by Part 2 of the lemma,∑

j:|Cj |>m
2k

|{(u, v) ∈ E(H) : u, v ∈ Cj}| ≥
∑

j:|Cj |>m
2k

c2 · |Cj |

= c2m−
∑

j:|Cj |≤m
2k

c2 · |Cj | ≥
c2m

2
.
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We have thus proven that the random graph G(m, p), with p as defined above, has almost surely
the desired properties. 2

In order to prove Theorem 1, Part 2, we take the output of Lemma 2.1 and blow it up to show
the existence of a graph with the desired properties. Set

m =
⌊
c2

2ε

⌋
=
⌊

ln k
ε

⌋
.

Assume that ε > 0 is such that the conclusion of Lemma 2.1 holds for m = m(ε) as defined above.
Let H = Hk,m be the graph from Lemma 2.1. Label the vertices of H by the integers 1, . . . ,m. For
an integer n divisible by m, define a graph G = (V,E) on n vertices as follows. The vertex set V (G)
is a union of m disjoint subsets V1, . . . , Vm, each of size n/m. For each pair 1 ≤ i 6= j ≤ m, vertices
u ∈ Vi, u ∈ Vj are connected by an edge in G if and only if (i, j) ∈ E(H).

Let us now state some properties of the obtained graph G. First, G is easily seen to be homo-
morphic to H. (We say that G1 is homomorphic to G2 if there exists a mapping φ : V (G1)→ V (G2)
so that for every edge (u, v) ∈ E(G1), (φ(u), φ(v)) ∈ E(G2)). Therefore every subgraph of G is
homomorphic to a subgraph of H. As a homomorphism does not decrease the chromatic number,
we derive from Lemma 2.1 that every subgraph of G on at most c1m vertices is k-colorable.

Next, we need to estimate the distance from G to the set of k-colorable graphs on n vertices. Let
V = C1∪ . . .∪Ck be a k-partition of V (G) with a minimal number of monochromatic edges. Denote
the latter by s. Consider a random k-partition of V (H) induced by assigning a color j, 1 ≤ j ≤ k,
to a vertex i, 1 ≤ i ≤ m, with probability |Cj ∩ Vi|/|Vi|. The expected number of monochromatic
edges of H under such a partition is

∑
(i1,i2)∈E(H)

k∑
j=1

|Cj ∩ Vi1 |
|Vi1 |

|Cj ∩ Vi2 |
|Vi2 |

=
1

(n/m)2

k∑
j=1

∑
(i1,i2)∈E(H)

|Cj ∩ Vi1 ||Cj ∩ Vi2 |

=
m2

n2

k∑
j=1

|{(u, v) ∈ E(G) : u, v ∈ Cj}| =
m2s

n2
.

As by our assumption on H we have that the distance from H to the family of k-colorable graphs
on m vertices is at least c2m/2, we get s ≥ c2n

2/(2m).
Recalling now the definitions of m and of the constants c1, c2, we conclude that G has the following

properties:

1. G is ε-robustly non-k-colorable;

2. every subgraph of G on at most c1m = c1c2
2ε = 1

40e(
1

120e ln k )
2

k−2 1
ε vertices is k-colorable.

This implies Theorem 1, Part 2. 2
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3 Testing bipartiteness

In this section we prove Theorem 2. Our proof exploits the basic elegant idea of Goldreich, Goldwasser
and Ron [3]. It is however far more involved technically.

Let us first describe briefly the main idea of the argument of Goldreich et al. for testing bipar-
titeness. Let G = (V,E) be an ε-robustly non-bipartite graph on n vertices. We need to show that
a random sample R of size |R| = Õ(1/ε2) contains a non-two-colorable subgraph (i.e. an odd cycle)
with probability at least 1/2. The set R will be generated in two stages: R = S ∪ T , where S is
a random subset of size |S| = Õ(1/ε) and T is a random subset of size |T | = Õ(1/ε2). First, it is
easy to see that with probability at least 3/4 such S as above will dominate most of the vertices of
G of degree at least εn/2. We assume that S indeed has this property. For a partition S = S1 ∪ S2,
denote by U1 the set of vertices of G of degree at least εn/2, dominated by S1, let also U2 be the
remaining vertices of degree at least εn/2, dominated by S. We call any edge e ∈ E(G) spanned by
U1 or by U2 a witness for the partition S = S1 ∪ S2. If a random set T contains a witness for every
partition S = S1 ∪ S2, then the union S ∪ T is easily seen to span a non-bipartite subgraph.

Recall that G is ε-robustly non-bipartite. Therefore, for every partition S = S1 ∪S2, dominating
most of the vertices of degree at least εn/2, at least one of the sets U1, U2 should span at least εn2/4
edges, each of them being a witness for S1 ∪ S2. If we choose the vertices of T of size |T | = Õ(1/ε2)
pair after pair, then the probability that T does not contain a witness for a fixed partition S1∪S2 is at
most 2−Ω̃(1/ε) << 2−|S|. As S has 2|S| partitions, by the union bound we obtain that the probability
that T does not contain a witness for one of the partitions is much less than 2|S| · 2−|S| = 1. This
implies that the probability that G[S ∪ T ] is non-bipartite is at least 1/2.

How tight is the above analysis? At the first stage, Ω̃(1/ε) random vertices are needed indeed
to dominate most of the vertices of G of degree at least εn/2. As for the second stage, an example
of a complete bipartite subgraph K εn

2
,n
2

(for the induced subgraph on U1, say) shows that Ω̃(1/ε2)

random vertices are necessary to catch one of its edges with probability 1− 2−Ω̃(1/ε). Note however
that the subgraph K εn

2
,n
2

has εn/2 vertices of degree n/2. As this degree is much larger than εn/2,
we need to sample only O(1) vertices to dominate most of those high degree vertices. Thus in this
case the set S of the first stage does not need to be that large. This in turn reduces the number of
partitions of S and makes the requirement for the success probability for a fixed partition of S much
less severe.

Our idea will be to represent the first random subset S of size |S| = Õ(1/ε) as a union of several
subsets S = S1 ∪ . . . ∪ St with t = Õ(ln(1/ε)), where each Si dominates most of the vertices of G of
degree about n/ei (we denote this set by Ui). Each partition S = S1 ∪ S2 induces then partitions of
the subsets: Si = S1

i ∪S2
i and corresponding partitions Ui = U1

i ∪U2
i of the dominated subsets Ui of

V (G). Then if G is an ε-robustly non-bipartite graph on n vertices, for each partition S = S1 ∪ S2,
one of the sets U li , l = 1, 2, will span Ω̃(εn2) edges. Catching any of them will provide a desired
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witness for this partition of S. As all degrees in U li are at most n/ei, this will allow us to apply
the so called generalized Janson Inequality to show that if |T | = Õ(1/ε), then T catches one of the
edges inside U li with probability at least 1−O(2|Si|). Then applying the union bound will prove the
desired result.

The actual proof will deviate somewhat from the above outline as we will need to overcome some
further complications.

In the course of the proof we will need the following lemma.

Lemma 3.1 Let G = (V,E) be a graph on n vertices and let 0 < δ2 < δ1 < 1/2 be constants.
Suppose A,B are disjoint subsets of V . Then with probability at least 1/2 a random subset R ⊂ V

of size |R| = (6/δ2) ln2(1/δ1) contains a subset T ⊂ A having the following properties:

1. |T | ≤ 1
δ1

;

2. Denote
B∗ = {v ∈ B : N(v) ∩ T = ∅} . (1)

Then ∑
v∈A: d(v,B∗)>δ1n

d(v,B∗) ≤ δ2n
2 . (2)

The lemma asserts the existence of a set T such that if we remove T from A and the neighbors
of T from B, most vertex degrees from A to B will be bounded from above by δ1n.
Proof of Lemma 3.1. We will generate a random subset R in several steps, each time choosing
a random subset Ri of V , where the cardinality of Ri may vary from step to step. At each step we
will update the value of T until we will reach T with the desired properties. Then R will be a union
of all chosen random subsets Ri.

Denote s = ln(1/δ1). Initially we set T = ∅, i = 1. Define B∗ by (1). As long as condition (2) is
not satisfied we do the following. For 1 ≤ j ≤ s define Aj = {v ∈ A : ej−1δ1n < d(v,B∗) ≤ ejδ1n}.
If for all 1 ≤ j ≤ s one has |Aj | < δ2n

ejδ1s
, then

∑
v∈A:d(v,B∗)>δ1n

d(v,B∗) =
s∑
j=1

∑
v∈Aj

d(v,B∗)

≤
s∑
j=1

δ2n

ejδ1s
· ejδ1n

= δ2n
2

– a contradiction. Therefore, there exists an index 1 ≤ j0 = j0(i) ≤ s for which |Aj0 | ≥ δ2n
ej0δ1s

.
Choose a random subset Ri ⊂ V of size |Ri| = (ej0δ1s/δ2) ln(2/δ1). The probability that Ri does
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not intersect Aj0 is

Pr[Ri ∩Aj0 = ∅] =

(n−|Aj0 |
|Ri|

)( n
|Ri|
) ≤

(
1− |Aj0 |

n

)|Ri|
≤ e−

|Aj0 ||Ri|
n ≤ δ1

2
.

We call step i successful if Ri ∩Aj0 6= ∅. In this case we choose an arbitrary vertex vi ∈ Ri ∩Aj0 and
denote di = d(vi, B∗). Note that di > ej0−1δ1n, implying |Ri|/di ≤ (es/(δ2n)) ln(2/δ1). We then add
vi to T , update B∗ according to (1), and repeat the above described procedure.

Note that after a successful step has been performed, the size of B∗ is decreased by at least
δ1n. Hence at most 1/δ1 successful steps were executed. Consider the event where all steps were
successful until the end of the above described iterative procedure. The probability of this event is
at least 1 − (1/δ1)(δ1/2) = 1/2. As the size of T is equal to the number of successful steps, we get
|T | ≤ 1/δ1.

Define now R =
⋃|T |
i=1Ri. As

∑|T |
i=1 di ≤ |B| ≤ n, the size of R can be bounded by

|R| =
|T |∑
i=1

|Ri| ≤
|T |∑
i=1

es

δ2n
ln
(

2
δ1

)
di ≤

es

δ2
ln
(

2
δ1

)
≤ e

δ2
ln
(

1
δ1

)
ln
(

2
δ1

)
<

6
δ2

ln2
(

1
δ1

)
. 2

Now we briefly outline the proof of Theorem 2. A random setR of size |R| = 34 ln4(1/ε) ln ln(1/ε)/ε
will be generated in three stages, with each stage producing its own set of random vertices Rj ,
j = 1, 2, 3. At the first stage we construct inside R1 a family of sets {Si}, where each Si has size
about ei ln(1/ε) and dominates most of the vertices of G with degrees about n/ei. We denote by Ui
the set of vertices of G of degree about n/ei, dominated by Si. Note that Ui is not a subset of R1, in
fact, with high probability most of Ui will be outside R1. At the second stage we use R2 to adjust the
families {Si}, {Ui} in such a way that each Si still dominates Ui, and for each Ui almost all vertices
of
⋃i−1
j=1 Uj have their degrees into Ui bounded from above by n/ei. This is a crucial stage which

enables us to complete the union of Si to a non-bipartite subgraph by choosing a random subset R3

at the third stage.
Let us now introduce some notation. From now till the end of the section we assume that

G = (V,E) is an ε-robustly non-2-colorable graph on n vertices. Let

t = ln
(

1
ε

)
.

Let also, for each 1 ≤ i ≤ t+ 2,

Ii =
(
n

ei
,
n

ei−1

]
.

Stage 1: defining Si’s, Ui’s.

10



Proposition 3.1 With probability at least 5/6 a random subset R1 of V of size |R1| = 55t/ε contains
t + 2 disjoint subsets S1, . . . , St+2 of cardinalities |Si| = ei+1t, i = 1, . . . , t + 2, so that for each
1 ≤ i ≤ t + 2 the number of vertices of G with degrees in Ii, not dominated by Si, does not exceed
εn

4(t+2) .

Proof. For each 1 ≤ i ≤ t + 2 we choose a subset Si ⊂ V of size |Si| = ei+1t uniformly at random
and then take R1 to be the union of the sets Si. Note that with probability 1− o(1) the sets Si are
pairwise disjoint. Also,

t+2∑
i=1

|Si| =
t+2∑
i=1

ei+1t ≤ tet+4 = e4 ln
(

1
ε

)
eln( 1

ε
) <

55 ln
(

1
ε

)
ε

.

Let Xi be a random variable, counting the number of vertices of G with degrees in Ii, not
dominated by Si. If v ∈ V has its degree in Ii, then the probability that v is not dominated by Si

can be estimated from above by:(n−d(v)
|Si|

)( n
|Si|
) <

(
1− d(v)

n

)|Si|
< e
− |Si|n

ein = e
− e

i+1t

ei = e−et = εe.

By linearity of expectation we get

E[Xi] < nεe <
εn

80(t+ 2)2
.

By the Markov inequality Pr[Xi >
εn

4(t+2) ] < 1/(20(t+ 2)). Therefore the probability that the family
{Si}t+2

i=1 does not satisfy the claim of the lemma is less than (t+ 2) 1
20(t+2) + o(1) < 1/6. 2

Suppose now that the first stage is successful and the family {Si}t+2
i=1 has the property described

in the above proposition. For 1 ≤ i ≤ t+ 2 we define

Ui = {v ∈ V : d(v) ∈ Ii, N(v) ∩ Si 6= ∅} .

It follows from Proposition 3.1 that

∑
v 6∈
⋃t+2

i=1
Ui

d(v) ≤
t+2∑
i=1

∑
v∈V :d(v)∈Ii,N(v)∩Si=∅

d(v) +
∑

v∈V :d(v)≤n/et+2

d(v)

≤
t+2∑
i=1

εn

4(t+ 2)
· n

ei−1
+ n · εn

e2

<
εn2

2(t+ 2)
+
εn2

e2

<
εn2

2
.

11



Stage 2: adjusting Si’s, Ui’s.
The purpose of this stage is to achieve the situation, in which for all 2 ≤ i ≤ t + 2 most of

the degrees of vertices from
⋃i−1
j=1 Uj to Ui are bounded from above by n/ei−1. We also want Si to

dominate Ui and the size of Si to remain basically unchanged. Our main technical tool is Lemma
3.1.

For i = t + 2 down to 2 we repeat the following procedure. Denote A = U1 ∪ . . . Ui−1, B = Ui,
δ1 = 1/ei−1, δ2 = ε/(8(t+ 2)). Applying Lemma 3.1 2 ln t times we get that with probability at least
1− 1/(6(t+ 1)) a random subset R2

i ⊂ V of size |R2
i | = 12 ln t ln2(1/δ1)/δ2 = 96(t+ 2) ln t(i− 1)2/ε

contains a subset Ti of size |Ti| = ei−1 having property (2) with A, B, δ1 and δ2 as defined above.
Now we update

Si−1 := Si−1 ∪ Ti ,

Ui−1 := Ui−1 ∪ {v ∈ Ui : N(v) ∩ Ti 6= ∅} ,

Ui := Ui \ Ui−1 .

Proposition 3.2 After having executed the above loop, with probability at least 5/6, the families
{Si}t+2

i=1, {Ui}t+2
i=1 have the following properties:

1. for every 2 ≤ i ≤ t+ 2

∑
v∈
⋃i−1

j=1
Uj , d(v,Ui)>

n

ei−1

d(v, Ui) ≤
εn2

8(t+ 2)
; (3)

2. for every 1 ≤ i ≤ t+ 2
|Si| ≤ tei+2 ; (4)

3. for every 1 ≤ i ≤ t+ 2 and for every vertex v ∈ Ui,

d(v) ≤ n

ei−1
; (5)

4. Still ∑
v 6∈
⋃t+2

i=1
Ui

d(v) ≤ εn2

2
. (6)

Proof. Note that before starting Stage 2, all vertices in Ui have their degrees bounded from above
by n/ei−1. Therefore, moving some of them to Ui−1 cannot create vertices v ∈

⋃i−1
j=1 Uj for which

d(v, Ui) > n/ei−1. Also, as we proceed downwards from i = t + 2 to i = 2, once we have moved
vertices from Ui to Ui−1, the set Ui remains unchanged. Therefore, (3) follows from Lemma 3.1.
Similarly, (4) follows from the estimate |Si| ≤ tei+1 before the execution of Stage 2 and the fact
|Ti+1| = ei. Note that the new Ui is a subset of the union of the old Uj , j = i, . . . , t + 2. As before

12



Stage 2 we have d(v) ≤ n/ei−1 for all v ∈
⋃t+2
j=i Uj , (5) follows. Finally, as the union

⋃t+2
i=1 Ui remains

the same after Stage 2, (6) follows from the corresponding property of the old sets Ui. 2

Let R2 =
⋃t+2
i=2 R

2
i be the random vertices consumed at Stage 2. We have

|R2| =
t+2∑
i=2

|R2
i | =

t+2∑
i=2

96(t+ 2) ln t(i− 1)2

ε
<

33t4 ln t
ε

.

Stage 3: Completing
⋃t+2
i=1 Si to a non-bipartite subgraph.

Assume now that the graph G on n vertices is ε-far from being bipartite. Our aim is to show
that with probability at least 11/12 the union of

⋃t+2
i=1 Si, with Si as defined in the end of Stage 2,

and a random subset R3 ⊂ V of an appropriately chosen size forms a non-bipartite subgraph of G.
This will follow easily from the proposition below.

Proposition 3.3 Let G = (V,E) be an ε-robustly non-bipartite graph on n vertices. Let the subsets
{Si}t+2

i=1, {Ui}t+2
i=1 satisfy (3)–(6). Denote S =

⋃t+2
i=1 Si. Then with probability at least 5/6 a random

subset R3 of size |R3| = 2700t2/ε has the following property. For every partition S = S1 ∪ S2 of S
there exists an edge e = (u, v) ∈ E(G) with u, v ∈ R3 and both u, v having neighbors in the same Sl

for some l ∈ {1, 2}.

Proof. For a fixed partition S = S1 ∪ S2 we denote, for 1 ≤ i ≤ t + 2, l = 1, 2, Sli = Sl ∩ Si. We
also set U1

i = {v ∈ Ui : N(v)∩S2
i 6= ∅}, U2

i = Ui \U1
i . Let Gli be the following graph. The vertex set

of Gli is
⋃i
j=1 U

l
j ; an edge e = (u, v) ∈ E(G) is an edge of Gli if and only if u, v ∈ U li or u ∈ ∪i−1

j=1U
l
j ,

v ∈ U li and d(u, U li ) ≤ n/ei−1. Note that by (5) all degrees in Gli are at most n/ei−1.
As the graph G is at least εn2 edges far from any bipartite graph, we get, recalling (6), that

either U1 or U2 span at least εn2/4 edges. Therefore, for some 1 ≤ i ≤ t+ 2, l ∈ {1, 2} we have:

e(
i−1⋃
j=1

U lj , U
l
i ) + e(U li ) ≥

εn2

4(t+ 2)
.

A partition (S1, S2) of S is called (i, l)-bad, if |E(Gli)| ≥ εn2/(8(t+ 2)) and |E(Gl
′
j )| < εn2/(8(t+ 2))

for all j < i, l′ ∈ {1, 2}. From the definition of Gli we get, using (3), that any partition (S1, S2) is
(j, l)-bad for some 1 ≤ j ≤ t+ 2, l ∈ {1, 2}.

Two (j, l)-bad partitions (S1, S2), ((S1)′, (S2)′) are called equivalent if S1
i = (S1

i )′ for 1 ≤ i ≤ j

(and thus U1
i = (U1

i )′). By (4) for a fixed 1 ≤ j ≤ t + 2, the total number of equivalence classes of
(j, l)-bad partitions, where l ∈ {1, 2}, is at most

2 · 2
∑j

i=1
|Si| ≤ 21+

∑j

i=1
ei+2t ≤ eej+3t .

Note crucially that two (j, l)-bad partitions in the same equivalence class have the same graph
Glj . It follows easily from this observation that it is enough to prove that with probability at least
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5/6 the random subset R3 spans an edge of Glj , for every 1 ≤ j ≤ t + 2, every l ∈ {1, 2} and every
equivalence class of (j, l)-bad partitions.

In this proof it is convenient to generate R3 by choosing each vertex v ∈ V independently with
probability p = 2700t2/εn. This will allow us to use the so called Generalized Janson Inequality (see,
e.g. [1], Ch. 8) to estimate the probability that R3 misses all edges of Glj for some fixed equivalence
class of (j, l)-bad partitions.

Consider some fixed equivalence class of (j, l)-bad partitions and its graph Glj . Note that |E(Glj | ≥
εn2/(8(t+ 2)) and also that the maximal degree of Glj is bounded from above by n/ej−1. Denote by
Y the random variable counting the number of edges of Glj , spanned by R3. Then E[Y ] = |E(Glj)|p2.
Our aim is to estimate from above the probability that R3 spans no edges of Glj , i.e. Pr[Y = 0]. A
naive analysis performed by choosing the vertices of R3 pair after pair and requiring that each pair
does not coincide with an edge of Glj gives only Pr[Y = 0] ≤ (1− |E(Glj)|/

(n
2

)
)|R

3|/2. We will get a
better estimate, using the assumption on the maximal degree in Glj . Let

∆ = 2
∑

e6=e′∈E(Gl
j
)

e∩e′ 6=∅

Pr[e, e′ ⊂ R3] .

Then

∆ =
∑

e∈E(Glj)

∑
e6=e′∈E(Gl

j
)

e′∩e6=∅

Pr[e, e′ ⊂ R3]

=
∑

e=(u,v)∈E(Glj)

((dGlj (u)− 1) + (dGlj (v)− 1))p3

<
∑

e∈E(Glj)

2np3

ej−1
=

2|E(Glj)|np3

ej−1
.

By the Generalized Janson Inequality,

Pr[Y = 0] ≤ e−
(E[Y ])2

3∆ = e−
|E(Gl

j
)|ej−1p

6n ≤ e−
εnej−1p
48(t+2) <

e−e
j+3t

6(t+ 2)
.

Recalling the estimate on the number of equivalence classes of (j, l)-bad partitions, we conclude that
the probability that R3 does not contain an edge of Glj for some equivalence class is at most

t+2∑
j=1

ee
j+3t e

−ej+3t

6(t+ 2)
= 1/6 . 2

Assume now that Stages 1 and 2 were successful and the set R3 has the property stated in
Proposition 3.3. Then it is easy to see that the spanned subgraph G[S ∪ R3] is not bipartite.
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Indeed, let c : S ∪ R3 → {1, 2} be a 2-coloring of S ∪ R. Define a partition S = S1 ∪ S2 of S by
S1 = {v ∈ S : c(v) = 1}, S2 = {v ∈ S : c(v) = 2}. Then R3 contains an edge e = (u, v) ∈ E(G)
with both endpoints u, v connected to one color class, say, S1. If c colors u or v in color 1, we get a
monochromatic edge connecting u or v, respectively, with S1. Otherwise, c(u) = c(v) = 2, but then
e is monochromatic under c. By the above analysis with probability at least 2/3 the random sets R1

and R2 define a subset S ⊂ R1 ∪ R2 with the properties stated in Proposition 3.2. Therefore, with
probability at least 1/2 the union S ∪R3 spans a non-bipartite subgraph of G.

It remains only to estimate the size of the random set R = R1 ∪R2 ∪R3. We have

|R| = |R1|+ |R2|+ |R3| = 55t
ε

+
33t4 ln t

ε
+

2700t2

ε
<

34 ln4
(

1
ε

)
ln ln

(
1
ε

)
ε

.

The proof of Theorem 2 is complete. 2

4 Testing k-colorability

In this section we prove Theorem 3. It will be convenient to generate a random subset R ⊂ V (G)
of size |R| = s = 36k ln k/ε2 in s rounds, each time choosing uniformly at random a single vertex
rj ∈ V (G). This in principle may result in choosing one vertex several times and thus getting a set of
cardinality less than s. However, the probability of this event is o(1), and therefore the approach for
generating R we take here is asymptotically equivalent to choosing a subset of V of size s uniformly
at random.

Our basic approach is similar to the one of Goldreich et al. [3]. At the end of the section we
explain the main differences and the reason our argument saves a factor of Θ(1/ε) in the number of
vertices sampled.

Let G be an ε-robustly non-k-colorable graph on n vertices. Suppose we are given a subset
S ⊂ V (G) (of the sample set R), and its k-partition φ : S → [k], our aim is to find with high
probability inside the next several random vertices a succinct witness to the fact that φ can not be
extended to a proper coloring of the sample. If a k-coloring c : V (G)→ [k] of G is to coincide with
φ on S, then for every vertex v ∈ V \S, the colors of neighbors of v in S under φ are forbidden for v
in c. The rest of the colors are still feasible for v. It could be that v has no feasible colors left at all.
Such a vertex will be called colorless with respect to S and φ. If the number of colorless vertices is
large, then there is a decent chance that between the next few random vertices of R there will be one
such colorless vertex v∗. Obviously, adding v∗ to S provides the desired witness for non-extendibility
of φ.

If the set of colorless vertices is small, then one can show that, as G is ε-far from being k-colorable,
there is a relatively large subset W of vertices (which will be called restricting) such that adding
any vertex v ∈ W to S and coloring it by any feasible color with regard to φ excludes this color
from the lists of feasible colors of at least Ω(ε)n neighbors of v. If such v is caught in the next few
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vertices of the random sample R, then adding v to S and coloring it by any of its feasible colors
reduces substantially the total length of the lists of feasible colors for the vertices of V , thus helping
to approach the first situation, i.e. the case when there are many colorless vertices. As the reader
can guess, the above described process can be represented by a tree in which every node corresponds
to a colorless or restricting vertex v and each edge corresponds to a feasible color for v. As the degree
of such a node can be as large as k, the size of the tree grows quickly as we proceed with choosing
vertices from R, and can reach size exponential in 1/ε. We therefore will need the probability of
success (i.e. the probability of catching a colorless/restricting vertex) along several consecutive steps
to be exponentially close to 1.

Now we present a formal description of the above argument. First we need to introduce some
notation. We denote the set {1, . . . , k} by [k]. Suppose G = (V,E) is a graph on n vertices. Given
a subset S ⊆ V and its k-partition φ : S → [k], for every v ∈ V \ S let

Lφ(v) = [k] \ {1 ≤ i ≤ k : ∃u ∈ S ∩N(v), φ(u) = i} .

If S = ∅, we set Lφ(v) = [k] for every v ∈ V . If a k-coloring c : V → [k] of G coincides with φ on S,
then for every v ∈ V \ S the color of v in c belongs to L(v). For this reason, the set Lφ(v) is called
the list of feasible colors for v. A vertex v ∈ V \ S is called colorless if Lφ(v) = ∅. We denote by U
the set of all colorless vertices under (S, φ).

For every vertex v ∈ V \ (S ∪ U) define

δφ(v) = min
i∈Lφ(v)

|{u ∈ N(v) \ (S ∪ U) : i ∈ L(u)}| .

Thus coloring v by one of the colors from Lφ(v) and then adding it to S results in deleting this color
and thus shortening the lists of feasible colors of at least δφ(v) neighbors of v outside S.

Claim 4.1 For every set S ⊂ V and every k-partition φ of S, the graph G is at most (n − 1)|S ∪
U |+

∑
v∈V \(S∪U) δφ(v) edges far from being k-colorable.

Proof. For every v ∈ S, color v according to φ(v). For every v ∈ U we color v in an arbitrary
color from [k]. For every v ∈ V \ (S ∪ U) we color v in color i ∈ Lφ(v) for which δφ(v) = |{u ∈
N(v)\(S∪U) : i ∈ Lφ(u)}|. Let us estimate the number of monochromatic edges under this coloring.
The number of monochromatic edges incident with S ∪ U is at most (n − 1)|S ∪ U |. Every vertex
v ∈ V \ (S ∩U) has exactly δφ(v) neighbors u ∈ V \ (S ∪U), whose color list Lφ(v) contains the color
chosen for v. Therefore, v will have at most δφ(v) neighbors in V \ (S ∪U) colored in the same color.
Hence the total number of monochromatic edges is at most (n − 1)|S ∪ U | +

∑
v∈V \(S∪U) δφ(v), as

claimed. 2
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Corollary 4.1 If G is an ε-robustly non-k-colorable graph on n vertices, then for any pair (S, φ),
where S ⊂ V (G), φ : S → [k], one has:∑

v∈V \(S∪U)

δφ(v) > εn2 − n(|S|+ |U |) ,

where U is the set of colorless vertices for the pair (S, φ).

Given a pair (S, φ), a vertex v ∈ V \ (S ∪ U) is called restricting if δφ(v) ≥ εn/2. We denote by
W the set of all restricting vertices.

Claim 4.2 If G is an ε-robustly non-k-colorable graph on n vertices, then for every pair (S, φ), where
S ⊂ V (G) and φ : S → [k], one has:

|U ∪W | > εn

2
− |S| .

Proof. By Corollary 4.1,

εn2 − n(|S|+ |U |) <
∑

v∈V \(S∪U)

δφ(v) ≤ |W |(n− 1) +
∑

v∈V \(S∪U∪W )

δφ(v) < |W |n+
n · εn

2
.

This implies |S|+ |U |+ |W | ≥ εn/2. As U and W are disjoint, the result follows. 2

Let now G be an ε-robustly non-k-colorable graph on n vertices. While choosing random vertices
r1, . . . , rs of R we construct an auxiliary k-ary tree T . To distinguish between the vertices of G and
those of T we call the latter nodes. Each node of T is labeled either by a vertex of G or by the
special symbol #, whose meaning will be explained soon. If a node t of T is labeled by #, then t is
called a terminal node. The edges of T are labeled by integers from [k].

Let t be a node of T . Consider the path from the root of T to t, not including t itself. The labels
of the nodes along this path form a subset S(t) of V (G). The labels of the edges along the path
define a k-partition φ(t) of S(t) in the natural way: the label of the edge following a node t′ in the
path determines the color of its label v(t′). The labeling of the nodes and edges of T will have the
following property: if t is labeled by v and v has a neighbor in S(t) whose color in φ(t) is i, then the
son of v along the edge labeled by i is labeled by #. This label indicates the fact that in this case
color i is infeasible for v, given (S(t), φ(t)).

At each step of the construction of T we will maintain the following: all leafs of T are either
unlabeled or are labeled by #. Also, only leafs of T can be labeled by #. We start the construction
of T from an unlabeled single node, the root of T .

Suppose that j − 1 vertices of T have already been chosen, and we are about to choose vertex rj
of R. Consider a leaf t of T . If t is labeled by #, we do nothing for this leaf. (That is the reason
such a t is called a terminal node; nothing will ever grow out of this node.) Assume now that t is
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unlabeled. Define the pair (S(t), φ(t)) as described above. Now, for the pair (S(t), φ(t)) we define
the set U(t) of colorless vertices and the set W (t) of restricting vertices as described before. Round
j is called successful for the node t if the random vertex rj satisfies: rj ∈ U(t) ∪W (t). If round j is
indeed successful for t, then we label t by rj , create k sons of t and label the corresponding edges
by 1, . . . , k. Now, if color i is infeasible for rj , given (S(t), φ(t)), we label the son of t along the edge
with label i by #, otherwise we leave this son unlabeled. Note that if rj ∈ U(t), then none of the
colors from [k] is feasible for rj , and thus all the sons of t will be labeled by #. This completes the
description of the process of constructing T .

Now we state some properties of T .

Claim 4.3 The depth of T is bounded from above by 2k
ε .

Proof. Let t∗ be a leaf of T . Notice that if the label of a node t of T belongs to U(t), then all sons
of t in T are labeled by # and are terminal nodes. Therefore all nodes on the path from the root
of T to t∗, but possibly the node immediately preceding t∗, have their labels in the corresponding
sets W (t). Since each vertex in W (t) is restricting with respect to (S(t), φ(t)), coloring v in any
feasible color decreases the total size of the lists of feasible colors for all vertices of G by at least
εn/2. Therefore, each time when on the path from the root of T to t∗ we leave a node t, whose label
belongs to W (t), the total length of the list of feasible colors shrinks by at least εn/2. As initially all
k colors are feasible for all vertices, we start with lists of feasible colors of total length nk. Thus we
cannot make more than nk/(εn/2)) = 2k/ε steps down from the root of T to t∗. This implies that
the depth of T is at most 2k/ε. 2

Claim 4.4 If a leaf t∗ of T is labeled by #, then φ(t∗) is not a proper k-coloring of S(t∗).

Proof. By the definition of the labeling procedure: let t′ be the father of t∗ in T . Let v be the label
of t′, and let i be the label of the edge of T connecting t′ and t∗. Since t∗ is labeled by ’#’, i is not a
feasible color for v, given (S(t′), φ(t′)). As φ(t∗) colors v in color i, we get the existence of an edge
spanned by S(t∗), incident with v and monochromatic under φ(t∗). 2

Claim 4.5 If after round j all leafs of the tree T are terminal nodes, then the subgraph G[{r1, . . . , rj}]
is not k-colorable.

Proof. Notice first that the labels of all nodes of T are either # or vertices from {r1, . . . , rj}.
Let c : {r1, . . . , rj} → [k] be a k-partition of {r1, . . . , rj}. In order to show that c creates some
monochromatic edges in the induced subgraph of G on {r1, . . . , rj}, we start with the root t0 of T
and traverse T guided by c as follows: while at a node t of T , labeled by v(t) ∈ {r1, . . . , rj}, we move
from t to its son along the edge of T labeled by c(v(t)). Once we reach a terminal node t∗ of T ,
we have then S(t∗) ⊆ {r1, . . . , rj} and φ(t∗) coincides with c on S(t∗). As t∗ is a terminal node, it
follows from Claim 4.4 that c is not a proper k-coloring of S(t∗). 2
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Claim 4.6 If G is ε-robustly non-k-colorable graph on n vertices, then after 36k ln k/ε2 rounds with
probability at least 1/2 all leaves of T are terminal nodes.

Proof. As every non-leaf node of T has k sons and by Claim 4.3 T has depth at most 2k/ε, it can be
embedded naturally in the k-ary tree Tk, 2k

ε
of depth 2k/ε. Moreover, this embedding can be prefixed

even before exposing R and T . Note that the number of vertices of Tk, 2k
ε

is 1+k+ . . .+k
2k
ε ≤ k

2k
ε

+1.
Recall that during the construction of the random sample R and the tree T , a successful round

for a leaf t of T results in creating k sons of T . Fix some node t of Tk, 2k
ε

. If after 36k ln k/ε2

rounds t is a leaf of T , then the total number of successful rounds for the path from the root of T
to t is equal to the depth of t. As S(t) ⊆ R and thus |S(t)| = O(1), by Claim 4.2 each round has
probability of success at least ε/3. Therefore, the probability that t is a non-terminal leaf of T after
36k ln k/ε2 steps can be bounded from above by the probability that the Binomial random variable
B(36k ln k/ε2, ε/3) is less than 2k/ε. The latter probability is at most

exp

−
(

12k ln k
ε − 2k

ε

)2

24k ln k
ε

 < exp

−
(

9k ln k
ε

)2

24k ln k
ε

 = e−
27k ln k

8ε < k−
3k
ε .

Thus by the union bound we conclude that the probability that some node of Tε, 2k
ε

is a leaf of T ,

non labeled by ’#’, is at most |(V (Tk, 2k
ε

)|k−
3k
ε < 1

2 . 2

Proof of Theorem 3. Follows immediately from Claims 4.5 and 4.6. 2

Note that our proof here is similar to the basic argument of Goldreich et al. in [3]. They also
construct (implicitly) the tree T constructed in the course of our proof. Their argument can be
briefly described as follows: given a current tree T , Goldreich et al. require that the next subset Ri
of a random sample R contains, with high probability, for every leaf t ∈ T , a vertex v ∈ U(t)∪W (t).
As each random vertex rj hits U(t)∪W (t) with probability at least ε/3 by Claim 4.2, the probability
that for a fixed t ∈ T the next Θ̃(1/ε2) random vertices will not hit the set U(t) ∪W (t) is at most
(1 − 1/ε)Θ̃(1/ε2) = 2−Θ̃(1/ε). The number of leafs of T is at most 2O(1/ε). Therefore, by the union
bound the set Rj ⊂ R of |Rj | = Õ(1/ε2) random vertices hits the set U(t) ∪W (t) for every leaf
t ∈ T with probability 1− 2O(1/ε)2−Θ̃(1/ε) = 1−O(1/ε). Thus, representing R = R1 ∪ . . .∪R 2k

ε
with

|Rj | = Õ(1/ε2), they ensure that almost surely each time after having chosen the next piece Rj of
random vertices, all non-terminal leaves of T will get k sons each. As by Claim 4.3 the depth of T is
bounded by 2k/ε, after having chosen all 2k/ε random pieces R1, . . . , R 2k

ε
, almost surely all leaves of

T are terminal nodes. In contrast, in our proof we only require that along each path in the tree Tk, 2k
ε

sufficiently many steps will be successful, not insisting on the regularity of appearance of successful
steps. This results in saving a factor of Θ̃(1/ε).
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5 Concluding remarks and open problems

As mentioned in the introduction, the study of the function gk(n, ε) is motivated by its relevance to
the design of efficient testing algorithms for k-colorability. Thus, Theorem 2 shows that bipartiteness
can be tested by choosing randomly some Õ(1/ε) random vertices, and by checking if the induced
subgraph on them is 2-colorable. Here, as usual, Õ(1/ε) denotes (log(1/ε))O(1)

ε . Moreover, by Theorem
1, part 1, any bipartiteness testing algorithm that checks induced subgraphs and is a one-way error
algorithm (that is, never errs on bipartite graphs), must check induced subgraphs on at least Ω(1/ε)
vertices.

Similarly, Theorem 3 provides, for every fixed k ≥ 3, a one-way error algorithm that tests k-
colorability by checking random induced subgraphs on O(1/ε2) vertices. Both algorithms improve
the results in [3].

It will be nice to close the gap between our upper and lower bounds for the functions gk(n, ε)
and fk(n, ε) for k ≥ 3. It is plausible to conjecture that for every fixed k ≥ 3, gk(n, ε) = Õ(1/ε) and
fk(n, ε) = Õ(1/ε). This remains open.

Finally we note that Goldreich et al. measure the complexity of their algorithms for graph
property testing by the number of pairs of vertices (u, v) of the input graph G queried by the
algorithm. The query complexity of our algorithms for testing k-colorability is Õ(1/ε2) for k = 2
and (̃1/ε4) for k ≥ 3. It is easy to prove a lower bound of Ω(1/ε) for testing k-colorability. It would
be quite interesting to obtain tighter bounds for the query complexity of this problem.

Acknowledgment. We would like to thank the anonymous referees for very careful reading of the
first version of the paper and for many helpful comments and suggestions.
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