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Abstract. Two boolean functions f, g : {0, 1}n → {0, 1} are isomorphic
if they are identical up to relabeling of the input variables. We consider
the problem of testing whether two functions are isomorphic or far from
being isomorphic with as few queries as possible.
In the setting where one of the functions is known in advance, we show
that the non-adaptive query complexity of the isomorphism testing prob-
lem is Θ̃(n). In fact, we show that the lower bound of Ω(n) queries for
testing isomorphism to g holds for almost all functions g.
In the setting where both functions are unknown to the testing algorithm,
we show that the query complexity of the isomorphism testing problem
is Θ̃(2n/2). The bound in this result holds for both adaptive and non-
adaptive testing algorithms.

1 Introduction

The field of property testing, originally introduced by Rubinfeld and Sudan [20],
considers the following general problem: given a property P, determine the min-
imum number q of queries required to determine with high probability whether
an input has the property P or whether it is “far” from P. The field has been
extremely active over the last few years – see, e.g., the recent surveys [18, 19].

In this paper, we concern ourselves with property testing of boolean func-
tions. Despite significant progress in the study of the query complexity of many
properties of boolean functions (e.g., monotonicity [7, 11, 13], juntas [10, 5], hav-
ing concise representations [6], halfspaces [16, 17]), our overall understanding of
the testability of boolean function properties still lags behind our understanding
of the testability of graph properties, whose study was initiated by Goldreich,
Goldwasser, and Ron [14].

A notable example that illustrates the gap between our understanding of
graph and boolean function properties is isomorphism. Two graphs are isomor-
phic if they are identical up to relabeling of the vertices, while two boolean
functions are isomorphic if they are identical up to relabeling of the input vari-
ables. There are three main variants to the isomorphism testing problem. (In
the following list, an “object” refers to either a graph or a boolean function.)

⋆ Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant
and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.



1. Testing isomorphism to a given object O. The query complexity re-
quired to test isomorphism in this variant depends on the object O; the goal
for this problem is to characterize the query complexity for every graph or
boolean function.

2. Testing isomorphism to the hardest known object. A less fine-grained
variant of the first problem asks to determine the maximum query complexity
of testing isomorphism to O over objects of a given size.

3. Testing isomorphism of two unknown objects. In this variant, the
testing algorithm has query access to two unknown objects O1 and O2 and
must distinguish between the cases where they are isomorphic to each other
or far from isomorphic to each other.

The problem of testing graph isomorphism was first raised by Alon, Fischer,
Krivelevich, and Szegedy [1] (see also [8]), who used a lower bound on testing
isomorphism of two unknown graphs to give an example of a non-testable first-
order graph property of a certain type. Fischer [9] studied the problem of testing
isomorphism to a given graph G and characterized the query complexity of the
problem in terms of a complexity measure of G. Tight asymptotic bounds on the
query complexity of the problem of testing isomorphism to a known graph and
testing isomorphism of two unknown graphs were then obtained by Fischer and
Matsliah [12]. As a result, all three versions of the graph isomorphism testing
problem are well understood.

The picture is much less complete in the setting of boolean functions. Testing
isomorphism against a known function f was first studied by Fischer, Kindler,
Ron, Safra, and Samorodnitsky [10]. They gave a general upper bound on the
problem showing that for every function f that depends on k variables (that is,
for every k-junta), the problem of testing isomorphism to f requires poly(k/ϵ)
queries. Conversely, they showed that when f is a parity function on k < o(

√
n)

variables, testing isomorphism to f requires Ω̃(k) queries. No other progress was
made on the problem of testing isomorphism on boolean functions until very
recently, when Blais and O’Donnell [3] showed that for every function f that
“strongly” depends on k variables, testing isomorphism to f requires Ω(log k)
queries. Taken together, the results in [10, 3] give only an incomplete solution
to the problem of testing isomorphism to a given boolean function and provide
only weak bounds on the other two versions of the isomorphism testing problem.

Our results. We introduce new results for all three variants of the problem of
testing isomorphism to boolean functions.

In the problem of testing isomorphism to a given function g : {0, 1}n →
{0, 1}, it is easy to show that O(n logn

ϵ ) queries always suffice to ϵ-test isomor-
phism to any function g. (For completeness, we give the proof of this statement
in Section 3.1.) Our main result is a matching lower bound (up to a logarithmic
factor) that applies for almost all functions g.

Theorem 1.1. Fix 0 < ϵ < 1
2 . For a 1 − o(1) fraction of the functions

g : {0, 1}n → {0, 1}, any non-adaptive algorithm for ϵ-testing isomorphism to g
must make at least n

100 queries.



We present the proof of Theorem 1.1 in Sections 3.2 and 3.3. The lower bound
of the theorem and the aforementioned upper bound immediately give a tight
bound on the query complexity of testing isomorphism to a known function:

Corollary 1.2. The maximum possible query complexity for testing isomor-
phism to a known function {0, 1}n → {0, 1} non-adaptively is Θ̃(n). This bound
holds for testing algorithms with 1-sided and 2-sided error.

Finally, we examine the problem of testing two unknown functions for the
property of being isomorphic. A simple algorithm can ϵ-test isomorphism in this
setting with Õ(2n/2/

√
ϵ) queries. We give a matching lower bound establishing

that no other algorithm can do better.

Theorem 1.3. The query complexity for testing isomorphism of two unknown
functions in {0, 1}n → {0, 1} is Θ̃(2n/2). This bound holds for all testing algo-
rithms (adaptive or non-adaptive, with 1-sided or 2-sided error).

We present the proof of Theorem 1.3 in Section 4.

Related work. Recently, Chakraborty, Garćıa-Soriano, and Matsliah [4] inde-
pendently obtained results very similar to Corollary 1.2 and Theorem 1.3. In
fact, their version of Corollary 1.2 contains a stronger lower bound that also
applies to adaptive testing algorithms.

Furthermore, [4] also show tight bounds on the query complexity for test-
ing isomorphism to the hardest known function within some restricted classes of
functions. Notably, they show that O(k log k) queries are sufficient to test isomor-
phism to any k-juntas and that Ω(k) queries are required to test isomorphism
to some k-juntas.

2 Preliminaries and Notation

Throughout the paper, f and g represent boolean functions {0, 1}n → {0, 1}.
The weight of an input x = (x1, . . . , xn) ∈ {0, 1}n is |x| = x1 + · · · + xn. All
big O notation in this paper refers to asymptotic statements as n → ∞ while the
other parameters (typically, ϵ) remain constant. Tilde notation is used to hide
polylogarithmic factors – for example f = Θ̃(n) if there is a positive constant c
such that f ≥ Ω( n

logc n ) and f ≤ O(n logc n).

For a permutation π : [n] → [n] and x = (x1, . . . , xn) ∈ {0, 1}n, we write
π(x) = (xπ(1), . . . , xπ(n)). The function gπ : {0, 1}n → {0, 1} represents the
function defined by gπ(x) = g(π(x)) for every x ∈ {0, 1}n. Two functions f and
g are isomorphic if there is a permutation π such that f = gπ.

Given a set X ⊆ {0, 1}n and a permutation π on [n], we write π(X) =
{π(x) : x ∈ X}. With some abuse of notation, we also write f(X) ∈ {0, 1}|X| to
represent the value of f over each x ∈ X, over some ordering of X. In particular,
f(X) = g(X) iff f(x) = g(x) for every x ∈ X.



Given two random variables A,B defined on a common discrete sample space
Ω, the total variation distance between A and B is

dTV (A,B) =
1

2

∑
ω∈Ω

∣∣Pr[A = ω]− Pr[B = ω]
∣∣.

A property P of boolean functions {0, 1}n → {0, 1} is simply a subset of
those functions. The distance of a function f to P is the minimum distance
between f and g over all g ∈ P, where the distance between two functions is
dist(f, g) = Prx[f(x) ̸= g(x)] = 1

2n

∑
x∈{0,1}n 1[f(x) ̸= g(x)].

A (q, ϵ)-tester for the property P is a randomized algorithm T that queries
an unknown function f on q different inputs in {0, 1}n and then (1) accepts
f with probability at least 2

3 when f ∈ P, and (2) rejects f with probability
at least 2

3 when f is ϵ-far from P. (If the property deals with a pair of input
functions, the algorithm may query both.)

When a tester T chooses all its queries in advance, it is non-adaptive; if it uses
the responses to some of its queries to decide what queries to make afterwards,
it is adaptive. A tester that accepts functions in P with probability 1 (instead
of 2

3 ) has 1-sided error, otherwise it has 2-sided error.

The query complexity of a property P for a given ϵ > 0 is the minimum value
of q for which there is a (q, ϵ)-tester for P.

3 Testing Isomorphism to a Given Function

3.1 Upper Bound

The trivial algorithm T for testing isomorphism to g queries the unknown func-
tion f : {0, 1}n → {0, 1} on a set Q ⊆ {0, 1}n of n lnn

ϵ randomly selected inputs.
The algorithm accepts f if and only if there is a permutation π ∈ Sn such that
f(x) = g(π(x)) for every x ∈ Q.

Clearly, the trivial algorithm T is non-adaptive and accepts functions iso-
morphic to g with probability 1. The following simple proposition completes
the proof of correctness of T by showing that it rejects functions ϵ-far from
isomorphic to g with probability at least 2

3 .

Proposition 3.1. Fix ϵ > 0. Let g : {0, 1}n → {0, 1} be any boolean function
and f : {0, 1}n → {0, 1} be a function ϵ-far from isomorphic to g. Then T
accepts f with probability o(1).

Proof. For any permutation π ∈ Sn, there are at least ϵ2n values of x ∈ {0, 1}n
for which f(x) ̸= g(π(x)). The probability that none of those inputs are queried
by T is at most (1− ϵ)|Q| ≤ e−ϵ(n lnn/ϵ) = n−n. Thus, by the union bound, the
probability that there is a permutation π ∈ Sn such that f(x) = g(π(x)) for
every x ∈ Q is at most n!/nn = o(1). ⊓⊔



3.2 Lower Bound

We prove Theorem 1.1 in this section. The proof of this theorem combined with
the upper bound of the previous section immediately yields Corollary 1.2.

The proof of Theorem 1.1 uses Yao’s Minimax Principle [21]. For a fixed
function g we introduce two distributions Fyes and Fno such that a function
f ∼ Fyes is isomorphic to g and a function f ∼ Fno is ϵ-far from isomorphic to
g with high probability. We then show that for most choices of g, deterministic
non-adaptive testing algorithms cannot distinguish functions drawn from either
of these distributions with only n

100 queries.
We define Fyes to be the uniform distribution over functions isomorphic to

g. In other words, we draw a function f ∼ Fyes by choosing π ∈ Sn uniformly
at random and setting f = gπ.

A first idea for Fno may be to make it the uniform distribution over all
boolean functions {0, 1}n → {0, 1}. This idea does not quite work, since, for
example, a random function differs from g and all functions isomorphic to it
on the all 0 input or the all 1 input with probability at least 3/4. However,
a simple modification of this idea does work: to draw a function f ∼ Fno, we
choose a permutation π ∈ Sn uniformly at random and we choose a function
frand uniformly at random from all boolean functions on n variables. We then
let f be the function defined by

f(x) =

{
frand(x) if n

3 ≤ |x| ≤ 2n
3 ,

gπ(x) otherwise.

With high probability, a function f ∼ Fno is far from isomorphic to g.

Proposition 3.2. Fix 0 < ϵ < 1
2 . For any function g : {0, 1}n → {0, 1}, the

function f ∼ Fno is ϵ-close to isomorphic to g with probability at most o(1).

Proof. Fix any permutation π ∈ Sn. Let frand be the random function generated
in the draw of f ∼ Fno. By the triangle inequality,

dist(f, gπ) ≥ dist(frand, gπ)− dist(f, frand).

Since dist(f, frand) ≤ 2
∑n/3

i=0

(
n
i

)
/2n ≤ o(1), to complete the proof it suffices to

fix ϵ < ϵ′ < 1
2 and show that dist(frand, gπ) > ϵ′ with high probability.

Let η = 1− 2ϵ′. For any x ∈ {0, 1}n, frand(x) = gπ(x) with probability 1
2 , so

E[dist(frand, gπ)] =
1
2 . By Chernoff’s bound (see, e.g., Appendix A in [2]),

Pr[dist(frand, gπ) < ϵ′] = Pr[dist(frand, gπ) < (1− η) 12 ] ≤ e−2nη2/6 ≤ o( 1
n! ).

Taking the union bound over all choices of π ∈ Sn completes the proof. ⊓⊔

Let T be any deterministic non-adaptive algorithm that attempts to test g-
isomorphism with at most n

100 queries to an unknown function f . We will show



that T cannot reliably distinguish between the cases where f was drawn from
Fyes or from Fno.

Let Q ⊆ {0, 1}n be the set of queries performed by T on f . We partition the
queries in Q in two: the set Qb = {q ∈ Q : n

3 ≤ |q| ≤ 2n
3 } of balanced queries,

and the set Qu = Q \Qb of unbalanced queries.
When f is drawn from Fyes or from Fno, the responses to the unbalanced

queriesQu are consistent with some function gπ isomorphic to g. Our next propo-
sition shows that when T makes only n

100 queries to f , then in fact the responses
to the unbalanced queries will be consistent with many functions isomorphic to
g. More precisely, define

Πg(f,Qu) = {π ∈ Sn : gπ(Qu) = f(Qu)}

to be the set of permutations π for which gπ is consistent with the responses to
the queriesQu. The following proposition shows that when the unknown function
is drawn from Fyes or from Fno, then with high probability the set Πg(f,Qu) is
large.

Proposition 3.3. Let Qu be any set of unbalanced queries and let f be a func-
tion drawn from Fyes or from Fno. Then for any 0 < t < 1,

Pr
f

[
|Πg(f,Qu)| < t · n!

2|Qu|

]
≤ t.

Proof. When f ∼ Fyes or f ∼ Fno, then f(x) = gπ(x) for every unbalanced
input x, where π is chosen uniformly at random from Sn. So it suffices to show
that Prπ[|Πg(gπ, Qu)| < t · n!

2|Qu| ] ≤ t.

For every r ∈ {0, 1}|Qu|, let Sr ⊆ Sn be the set of permutations σ for which
gσ(Qu) = r. A set Sr is small if |Sr| ≤ t n!

2|Qu| . The union of all small sets covers

at most 2|Qu| · t n!
2|Qu| = tn! permutations, so the probability that a randomly

chosen permutation π belongs to a small set is at most t. ⊓⊔

The last proposition showed that when f is drawn from Fyes or from Fno, then
with high probability Πg(f,Qu) is large; the next lemma shows that conditioned
on Πg(f,Qu) being large, the distribution on the responses to the balanced
queries is nearly uniform, even when f ∼ Fyes. Specifically, given a function g
and a set S of permutations, we define the discrepancy of g on S to be

∆S(g) = max
Qb:|Qb|= n

100

r∈{0,1}|Qb|

∣∣∣∣ Prπ∈S
[gπ(Qb) = r]− 2−

n
100

∣∣∣∣ .
We then define the discrepancy of g to be

∆(g) = max
Qu:|Qu|= n

100

π:|Πg(gπ,Qu)|≥n!/2n/50

∆Πg(gπ,Qu)(g).

The following lemma shows that ∆(g) is small for almost all functions g.



Lemma 3.4. When g is drawn uniformly at random from the set of functions
{0, 1}n → {0, 1},

Pr
g

[
∆(g) > 1

3 · 2− n
100

]
≤ 2−Ω(2n/25).

We prove Lemma 3.4 in the next section, but first we show how it implies
Theorem 1.1.

Proof (Theorem 1.1). By Lemma 3.4, with probability at least 1− 2−Ω(2n/25) =
1 − o(1), the discrepancy of a randomly drawn function g : {0, 1}n → {0, 1} is
∆(g) ≤ 1

32
− n

100 . Fix g to be any function that satisfies this condition. We will
show that testing isomorphism to g requires at least n

100 queries.
As discussed earlier, we complete the proof with Yao’s Minimax Principle,

with the distributions Fyes and Fno as defined at the beginning of the section. Let
T be any deterministic non-adaptive algorithm that makes at most n

100 queries
to the input function f , and let Q = Qu ∪Qb represent the queries made by T .
Without loss of generality, we can assume |Qu| = |Qb| = n

100 . (If |Qb| < n
100 ,

simply add extra balanced queries to Qb; this can only help T determine whether
f was drawn from Fyes or from Fno. Similarly, adding unbalanced queries to Qu

can only help T .)
By Proposition 3.3, the probability that |Πg(f,Qu)| < n!

2n/50 is at most
1

2n/100 = o(1). Assume, thus, that this event does not happen. Let Ryes and
Rno be the distribution of the responses to the balanced queries Qb. Then the
total variation distance between Ryes and Rno is bounded by

dTV (Ryes,Rno) =
1

2

∑
r∈{0,1}

n
100

∣∣∣∣ Pr
π∈Πg(f,Qu)

[gπ(Qb) = r]− 2−
n

100

∣∣∣∣
≤ 1

2 · 2 n
100 ∆(g) ≤ 1

6
. (1)

Therefore, if T accepts functions drawn from Fyes with probability at least
2
3 , (1) implies that T also accepts functions drawn from Fno with probability
at least 2

3 − 1
6 = 1

2 . But by Proposition 3.2, a function drawn from Fno is ϵ-far
from isomorphic to g with probability 1− o(1), so T can’t be a valid ϵ-tester for
isomorphism to g. ⊓⊔

3.3 Proof of Lemma 3.4

The first step in the proof of Lemma 3.4 is to show that for any sufficiently small
set Q of balanced queries and sufficiently large set S of permutations, the set
{π(Q)}π∈S can be partitioned into a number of large pairwise disjoint sets. The
proof of this claim uses the celebrated theorem of Hajnal and Szemerédi [15].

Hajnal-Szemerédi Theorem. Let G be a graph on n vertices with maximum
vertex degree ∆(G) ≤ d. Then G has a (d + 1)-coloring in which all the color
classes have size

⌊
n

d+1

⌋
or

⌈
n

d+1

⌉
.



Lemma 3.5. Let S be a set of at least n!
2n/50 permutations on [n], and let Qb be

a set of at most n
100 balanced queries. Then there exists a partition S1∪̇ · · · ∪̇Sk

of the permutations in S such that for i = 1, 2, . . . , k,

(i) |Si| ≥ 2n/20, and
(ii) The sets {π(Qb)}π∈Si are pairwise disjoint.

Proof. Construct a graph G on S where two permutations σ, τ are adjacent iff
there exist u, v ∈ Qb such that σ(u) = τ(v). By this construction, when T is
a set of permutations that form an independent set in G, then {π(Qb)}π∈T are
pairwise disjoint.

Consider a fixed permutation σ ∈ S. A second permutation τ is adjacent to
σ in G iff there are two vectors u, v in Qb such that the permutation τσ−1 maps
the indices where u has value 1 to the indices where v has value 1 as well. There
are

(|Qb|
2

)
≤ ( n

100 )
2 ways to choose u, v ∈ Qb and at most |u|!(n − |u|)! ways to

satisfy the mapping condition, so the graph has degree at most

max
n
3 ≤k≤ 2n

3

(
n

100

)2 · k! (n− k)! =
( n

100

)2

·
(n
3

)
!

(
2n

3

)
! =

( n

100

)2

· n!(
n

n/3

) ≤ n!

2cn
− 1

for a constant c = 1−H2(
1
3 )−o(1) ≥ 0.07.3 Therefore, by the Hajnal-Szemerédi

Theorem, G can be colored with n!/20.07n colors, with each color class having

size at least n!/2n/50

n!/20.07n = 2n/20. ⊓⊔

Lemma 3.5 is useful because most functions g have low discrepancy on large
pairwise disjoint sets.

Lemma 3.6. Fix Qb to be a set of n
100 balanced queries and fix r ∈ {0, 1} n

100 .
Let S be a fixed set of at least 2

n
20 permutations such that the sets {π(Qb)}π∈S

are pairwise disjoint. Then

Pr
g

[∣∣∣∣ Prπ∈S
[gπ(Qb) = r]− 2−

n
100

∣∣∣∣ > 1
3 · 2− n

100

]
< 2−Ω(2n/25).

Proof. For every function g : {0, 1}n → {0, 1} and every permutation π of [n],
define the indicator random variable

Xg,π =

{
1 if gπ(Qb) = r,

0 otherwise.

When g is chosen uniformly at random from the set of all boolean functions
{0, 1}n → {0, 1}, Eg[Xg,π] = Prg[gπ(Qb) = r] = 2−

n
100 , so

Eg

[
Pr
π∈S

[gπ(Qb) = r]

]
=

1

|S|
∑
π∈S

Eg[Xg,π] = 2−
n

100 .

3 H2(p) represents the binary entropy of p. H2(
1
3
) ≈ 0.918.



Furthermore, the pairwise disjointness property of S guarantees that the in-
dicator variablesXg,π are pairwise independent. Therefore, by Chernoff’s bound,

Pr
g

[∣∣∣∣ Prπ∈S
[gπ(Qb) = r]− 2−

n
100

∣∣∣∣ > 1
3 · 2− n

100

]
< e−Ω(|S|2−n/100). ⊓⊔

The proof of Lemma 3.4 can now be completed as follows.

Proof (Lemma 3.4). Fix a permutation π and a set Qu of n
100 unbalanced queries

such that |Πg(gπ, Qu)| ≥ n!
2n/50 . Let S = Πg(gπ, Qu), and fix a set Qb of n

100
balanced queries.

By Lemma 3.5, there exists a partition S1∪̇ · · · ∪̇Sk of S such that for each
part Si, |Si| ≥ 2n/20 and {π(Qb)}π∈Si are pairwise disjoint. By Lemma 3.6, for
every set Si in the partition,

Pr
g

[∣∣∣ Pr
π∈Si

[gπ(Qb) = r]− 2−
n

100

∣∣∣ > 1
3 · 2− n

100

]
≤ 2−Ω(2n/25).

Taking the union bound over all k < n! sets Si, we get that

Pr
g

[∣∣∣ Pr
π∈S

[gπ(Qb) = r]− 2−
n

100

∣∣∣ > 1
3 · 2− n

100

]
< n! · 2−Ω(2n/25).

Applying a union bound once again, this time over all
(

2n

n/100

)
< 2

n2

100 choices of

Qb and 2
n

100 choices for r, we obtain

Pr
g

[
∆S(g) >

1
3 · 2− n

100

]
< 2

n2

100+
n

100 · n! · 2−Ω(2n/25).

Finally, applying the union bound one last time over the n! choices for π and(
2n

n/100

)
≤ 2

n2

100 choices for Qu, we get

Pr
g

[
∆(g) >

1

3
· 2− n

100

]
< 2

2n2

100 + n
100 · n!2 · 2−Ω(2n/25) = 2−Ω(2n/25). ⊓⊔

4 Testing Isomorphism of Two Unknown Functions

4.1 Upper Bound

Algorithm T
1. Generate two sets Qf , Qg ⊂ {0, 1}n of 2n/2

√
n lnn

ϵ
queries independently

and uniformly at random.

2. Query f(x) for every x ∈ Qf .

3. Query g(x) for every x ∈ Qg.

4. Accept iff there exists π ∈ Sn such that for every element x ∈ Qf where
π(x) ∈ Qg, f(x) = g(π(x)).



The algorithm T is non-adaptive and makes Õ(2n/2) queries. Clearly, it
always accepts when f and g are isomorphic. The following simple argument
completes the proof of correctness of the algorithm by showing that it rejects
functions that are ϵ-far from isomorphic with high probability.

Proposition 4.1. Fix ϵ > 0. Let f and g be ϵ-far from isomorphic. Then T
rejects (f, g) with probability 1− o(1).

Proof. For any permutation π ∈ Sn, there are at least ϵ2
n inputs x ∈ {0, 1}n for

which f(x) ̸= g(π(x)). It is not too difficult to show that the probability that
none of these inputs satisfy x ∈ Qf and π(x) ∈ Qg is at most

4

(
1− |Qf |

2n
· |Qg|

2n

)ϵ2n

= 4

(
1− n lnn

ϵ2n

)ϵ2n

≤ 4e−
n lnn
ϵ2n ·ϵ2n = 4n−n.

By the union bound, the probability that f and g are accepted by the algorithm
is at most n!/nn = o(1). ⊓⊔

4.2 Lower Bound

The following Lemma, combined with the upper bound in the previous section,
implies Theorem 1.3.

Lemma 4.2. Any algorithm for testing two unknown functions f, g : {0, 1}n →
{0, 1} for the property of being isomorphic must make at least Ω( 2

n/2

n1/4 ) queries
to the functions.

Proof. Let T be an algorithm making o( 2
n/2

n1/4 ) queries to f and g. We will define
two distributions Dyes and Dno on pairs of functions (f, g) that are isomorphic
and ϵ-far from isomorphic with probability 1− o(1), respectively, and show that
T can not determine with probability greater than 1

2 + o(1) which distribution
generated an input.

Let T = {x ∈ {0, 1}n : n
2 −

√
n ≤ |x| ≤ n

2 +
√
n} consist of the elements

in the middle slice of the hypercube and let M be the set of all functions from
{0, 1}n to {0, 1} that map each x ̸∈ T to 0. A pair of functions (f, g) from Dyes

is drawn by the following procedure:

1. Pick π ∈ Sn uniformly at random.
2. Choose f ∈ M uniformly at random.
3. Let g = fπ.

A pair of functions (f, g) is drawn from Dno by independently choosing two
functions uniformly at random from M . With probability 1 − o(1), f is 1

4 -far
from isomorphic to g.

We now introduce two random processes Pyes and Pno that answer the queries
of T while generating a pair of functions (f, g) from Dyes or from Dno, respec-
tively. Without loss of generality, we can assume that the tester queries the value



of f or of g only on inputs x ∈ T , since functions drawn from Dyes or from Dno

always take the value 0 on the remaining inputs.

The process Pyes starts by choosing a permutation π ∈ Sn uniformly at
random. It then proceeds to answer all the queries of the algorithm T randomly,
with one exception: Pyes “quits” if T queries the value of f(x) after previously
having queried g(π(x)), and similarly Pyes quits if T queries g(x) after having
queried f(π−1(x)).

When Pyes quits or reaches the end of the queries, it completes the generation
of (f, g) by choosing f uniformly at random from all the functions that are
consistent with the previously-answered queries (note: in this step, the value of
f(x) for every x where g(π(x)) was queried is also determined by the value that
was returned to the tester) and setting g = fπ. If there are more queries that
have not yet been answered because Pyes quit, they are answered as per the
generated f and g.

The process Pno is defined similarly. First, it chooses a permutation π ∈ Sn

uniformly at random. It then answers the queries of T randomly, with the same
exception as in the Pyes case: if T queries f(x) after having queried g(π(x)), or
if T queries g(x) after having queried f(π−1(x)), then Pno “quits”.

When Pno quits or reaches the end of the queries, it completes the definitions
of f and of g independently, randomly fixing the value of f(x) and g(x) for every
input x ∈ T that has not been queried by T . If Pno quit before answering all the
queries, those queries are then answered with the values of f and g that have
been fixed.

It is easy to check that Pyes and Pno generate pairs of functions from Dyes and
Dno, respectively. Furthermore, when Pyes and Pno do not quit, they induce the
same (i.e., uniformly random) distribution on the responses. So to complete the
proof of the Lemma, it suffices to show that neither process quits with probability
greater than o(1).

The process Pyes or Pno quits if there is a pair of inputs xf , xg ∈ T such
that f(xf ) and g(xg) are queried by T and π(xf ) = xg. For any such pair, the

probability that π(xf ) = xg is at most O(
√
n

2n ). But the answers to the queries
yield no information about π to the tester T , so the probability that it causes

Pyes or Pno to quit is at most o( 2
n/2

n1/4 )
2 ·O(

√
n

2n ) = o(1). ⊓⊔
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