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Abstract. We present a randomized subexponential time, polynomial space parameterized

algorithm for the k-Weighted Feedback Arc Set in Tournaments (k-FAST) problem.

We also show that our algorithm can be derandomized by slightly increasing the running time.

To derandomize our algorithm we construct a new kind of universal hash functions, that we

coin universal coloring families. For integers m, k and r, a family F of functions from [m] to [r]

is called a universal (m, k, r)-coloring family if for any graph G on the set of vertices [m] with

at most k edges, there exists an f ∈ F which is a proper vertex coloring of G. Our algorithm

is the first non-trivial subexponential time parameterized algorithm outside the framework of

bidimensionality.

1 Introduction

In a competition where everyone plays against everyone it is uncommon that the

results are acyclic and hence one cannot rank the players by simply using a topological

ordering. A natural ranking is one that minimizes the number of upsets, where an

upset is a pair of players such that the lower ranked player beats the higher ranked one.

The problem of finding such a ranking given the match outcomes is the Feedback

Arc Set problem restricted to tournaments.

A tournament is a directed graph where every pair of vertices is connected by

exactly one arc, and a feedback arc set is a set of arcs whose removal makes the

graph acyclic. Feedback arc sets in tournaments are well studied, both from the com-

binatorial [16, 17, 20–22, 28, 31, 32, 35], statistical [29] and algorithmic [1, 2, 9, 25, 33,

34] points of view. The problem has several applications - in psychology it occurs

in relation to ranking by paired comparisons : here you wish to rank some items by

an objective, but you don’t have access to the objective function, only to pairwise

comparisons of the objects in question. An example for this setting is measuring peo-

ple’s preferences for food. The weighted generalization of the problem, Weighted

Feedback Arc Set in Tournaments is applied in rank aggregation: Here we are

given several rankings of a set of object s, and we wish to produce a single ranking
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that on average is as consistent as possible with the given ones, according to some

chosen measure of consistency. This problem has been studied in the context of voting

[5, 8], machine learning [7], and search engine ranking [14, 15]. A natural consistency

measure for rank aggregation is the number of pairs that occur in different order in

the two rankings. This leads to Kemeney-Young rank aggregation [23, 24], a special

case of Weighted Feedback Arc Set in Tournaments.

Unfortunately, the problem of finding a feedback arc set of minimum size in an

unweighted tournament is NP-hard [2]. However, even the weighted version of the

problem admits a polynomial time approximation scheme [25] and has been shown to

be fixed parameter tractable [27]. One should note that the weighted generalization

shown to admit a PTAS in [25] differs slightly from the one considered in this paper.

We consider the following problem:

k-Weighted Feedback Arc Set in Tournaments (k-FAST)

Instance: A tournament T = (V,A), a weight function w : A→ {x ∈ R : x ≥
1} and an integer k.

Question: Is there an arc set S ⊆ A such that
∑

e∈S w(e) ≤ k and T \ S is

acyclic?

The fastest previously known parameterized algorithm for k-FAST by Raman

and Saurabh [27] runs in time O(2.415k · k4.752 + nO(1)), and it was an open prob-

lem of Guo et al. [19] whether k-FAST can be solved in time 2k · nO(1). We give a

randomized and a deterministic algorithm both running in time 2O(
√
k log2 k) + nO(1).

Our algorithms run in subexponential time, a trait uncommon to parameterized al-

gorithms. In fact, to the authors best knowledge the only parameterized problems

for which non-trivial subexponential time algorithms are known are bidimensional

problems in planar graphs or graphs excluding a certain fixed graph H as a minor

[10, 11, 13].

Our randomized algorithm is based on a novel version of the color coding technique

initiated in [4] combined with a divide and conquer algorithm and a k2 kernel for the

problem, due to Dom et al. [12]. In order to derandomize our algorithm we construct

a new kind of universal hash functions, that we coin universal coloring families. For

integers m, k and r, a family F of functions from [m] to [r] is called a universal

(m, k, r)-coloring family if for any graph G on the set of vertices [m] with at most k

edges, there exists an f ∈ F which is a proper vertex coloring of G. In the last section

of the paper we give an explicit construction of a (10k2, k, O(
√
k))-coloring family F

of size |F| ≤ 2Õ(
√
k) and an explicit universal (n, k,O(

√
k))-coloring family F of size

|F| ≤ 2Õ(
√
k) log n. We believe that these constructions can turn out to be useful to

solve other edge subset problems in dense graphs.
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2 Preliminaries

For an arc weighted tournament we define the weight function w∗ : V × V → R such

that w∗(u, v) = w(uv) if uv ∈ A and 0 otherwise. Given a directed graph D = (V,A)

and a set F of arcs in A define D{F} to be the directed graph obtained from D by

reversing all arcs of F . In our arguments we will need the following characterization

of minimal feedback arc sets in directed graphs.

Proposition 1. Let D = (V,A) be a directed graph and F be a subset of A. Then F

is a minimal feedback arc set of D if and only if F is a minimal set of arcs such that

D{F} is a directed acyclic graph.

Given a minimal feedback arc set F of a tournament T , the ordering σ correspond-

ing to F is the unique topological ordering of T{F}. Conversely, given an ordering σ

of the vertices of T , the feedback arc set F corresponding to σ is the set of arcs whose

endpoint appears before their startpoint in σ. The cost of an arc set F is
∑

e∈F w(e)

and the cost of a vertex ordering σ is the cost of the feedback arc set corresponding

to σ.

For a pair of integer row vectors p̂ = [p1, . . . , pt], q̂ = [q1, . . . , qt] we say that p̂ ≤ q̂

if pi ≤ qi for all i. The transpose of a row vector p̂ is denoted by p̂†. The t-sized

vector ê is [1, 1, . . . , 1], 0̂ is [0, 0, . . . , 0] and êi is the t-sized vector with all entries

0 except for the i’th which is 1. Let Õ(
√
k) denote, as usual, any function which is

O(
√
k(log k)O(1)). For any positive integer m put [m] = {1, 2, . . . ,m}.

3 Color and Conquer

Our algorithm consists of three steps. In the first step we reduce the instance to a

problem kernel with at most O(k2) vertices, showing how to efficiently reduce the

input tournament into one with O(k2) vertices, so that the original tournament has

a feedback arc set of weight at most k, if and only if the new one has such a set. In

the second step we randomly color the vertices of our graph with t =
√

8k colors, and

define the arc set Ac to be the set of arcs whose endpoints have different colors. In the

last step the algorithm checks whether there is a weight k feedback arc set S ⊆ Ac.

A summary of the algorithm is given in Figure 1.

3.1 Kernelization

For the first step of the algorithm we use the kernelization algorithm provided by

Dom et al. [12]. They only show that the data reduction is feasible for the unweighted

case, while in fact, it works for the weighted case as well. For completeness we provide

a short proof of this. A triangle in what follows means a directed cyclic triangle.

3



1. Perform a data reduction to obtain a tournament T ′ of size O(k2).

2. Let t =
√

8k. Color the vertices of T ′ uniformly at random with colors from {1, . . . , t}.
3. Let Ac be the set of arcs whose endpoints have different colors. Find a minimum weight feedback arc

set contained in Ac, or conclude that no such feedback arc set exists.

Fig. 1. Outline of the algorithm for k-FAST.

Lemma 1. k-FAST has a kernel with O(k2) vertices.

Proof. We give two simple reduction rules.

1. If an arc e is contained in at least k + 1 triangles reverse the arc and reduce k by

w(e).

2. If a vertex v is not contained in any triangle, delete v from T .

The first rule is safe because any feedback arc set that does not contain the arc e

must contain at least one arc from each of the k + 1 triangles containing e and thus

must have weight at least k+ 1. The second rule is safe because the fact that v is not

contained in any triangle implies that all arcs between N−(v) and N+(v) are oriented

from N−(v) to N+(v). Hence for any feedback arc set S1 of T [N−(v)] and feedback

arc set S2 of T [N+(v)], S1 ∪ S2 is a feedback arc set of T .

Finally we show that any reduced yes instance T has at most k(k + 2) vertices.

Let S be a feedback arc set of T with weight at most k. The set S contains at most k

arcs, and for every arc e ∈ S, aside from the two endpoints of e, there are at most k

vertices that are contained in a triangle containing e, because otherwise the first rule

would have applied. Since every triangle in T contains an arc of S and every vertex

of T is in a triangle, T has at most k(k + 2) vertices. ut

3.2 Probability of a Good Coloring

We now proceed to analyze the second step of the algorithm. What we aim for, is to

show that if T does have a feedback arc set S of weight at most k, then the probability

that S is a subset of Ac is at least 2−c
√
k for some fixed constant c. We show this by

showing that if we randomly color the vertices of a k edge graph G with t =
√

8k

colors, then the probability that G has been properly colored is at least 2−c
√
k.

Lemma 2. If a graph on q edges is colored randomly with
√

8q colors then the prob-

ability that G is properly colored is at least (2e)−
√
q/8.
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Proof. Arrange the vertices of the graph by repeatedly removing a vertex of lowest

degree. Let d1, d2, . . . , ds be the degrees of the vertices when they have been removed.

Then for each i, di(s − i + 1) ≤ 2q, since when vertex i is removed each vertex

had degree at least di. Furthermore, di ≤ s − i for all i, since the degree of the

vertex removed can not exceed the number of remaining vertices at that point. Thus

di ≤
√

2q for all i. In the coloring, consider the colors of each vertex one by one

starting from the last one, that is vertex number s. When vertex number i is colored,

the probability that it will be colored by a color that differs from all those of its di
neighbors following it is at least (1 − di√

8q
) ≥ (2e)−di/

√
8q because

√
8q ≥ 2di. Hence

the probability that G is properly colored is at least

s∏
i=1

(1− di√
8q

) ≥
s∏
i=1

(2e)−di/
√

8q = (2e)−
√
q/8.

ut

3.3 Solving a Colored Instance

Given a t-colored tournament T , we will say that an arc set F is colorful if no arc in F

is monochromatic. An ordering σ of T is colorful if the feedback arc set corresponding

to σ is colorful. An optimal colorful ordering of T is a colorful ordering of T with

minimum cost among all colorful orderings. We now give an algorithm that takes a

t-colored arc weighted tournament T as input and finds a colorful feedback arc set of

minimum weight, or concludes that no such feedback arc set exists.

Observation 1 Let T = (V1∪V2∪ . . .∪Vt, A) be a t-colored tournament. There exists

a colorful feedback arc set of T if and only if T [Vi] induces an acyclic tournament for

every i.

We say that a colored tournament T is feasible if T [Vi] induces an acyclic tourna-

ment for every i. Let ni = |Vi| for every i and let n̂ be the vector [n1, n2 . . . nt]. Let

σ = v1v2 . . . vn be the ordering of V corresponding to a colorful feedback arc set F of

T . For every color class Vi of T , let v1
i v

2
i . . . v

ni
i be the order in which the vertices of

Vi appear according to σ. Observe that since F is colorful, v1
i v

2
i . . . v

ni
i must be the

unique topological ordering of T [Vi]. We exploit this to give a dynamic programming

algorithm for the problem.

Lemma 3. Given a feasible t-colored tournament T , we can find a minimum weight

colorful feedback arc set in O(t · nt+1) time and O(nt) space.
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Proof. For an integer x ≥ 1, define Sx = {v1 . . . , vx} and Six = {vi1 . . . , vix}. Let

S0 = Si0 = ∅. Notice that for any x there must be some x′ such that Sx ∩ Vi = Sx′ .

Given an integer vector p̂ of length t in which the ith entry is between 0 and ni, let

T (p̂) be T [S1
p1
∪ S2

p2
. . . ∪ Stpt

].

For a feasible t-colored tournament T , let Fas(T ) be the weight of the minimum

weight colorful feedback arc set of T . Observe that if a t-colored tournament T is

feasible then so are all induced subtournaments of T , and hence the function Fas

is well defined on all induced subtournaments of T . We proceed to prove that the

following recurrence holds for Fas(T (p̂)).

Fas(T (p̂)) = min
i : p̂i>0

(Fas(T (p̂− êi)) +
∑

u∈V (T (p̂))

w∗(vip̂i
, u)) (1)

First we prove that the left hand side is at most the right hand side. Let i be the

integer that minimizes the right hand side. Taking the optimal ordering of T (p̂− êi)
and appending it with vip̂i

gives an ordering of T (p̂) with cost at most Fas(T (p̂ −
êi)) +

∑
u∈V (T (p̂))w

∗(vip̂i
, u).

To prove that the right hand side is at most the left hand side, take an optimal

colorful ordering σ of T (p̂) and let v be the last vertex of this ordering. There is an i

such that v = vip̂i
. Thus σ restricted to V (T (p̂− êi)) is a colorful ordering of T (p̂− êi)

and the total weight of the edges with startpoint in v and endpoint in V (T (p̂ − êi))
is exactly

∑
u∈V (T (p̂))w

∗(vip̂i
, u). Thus the cost of σ is at least the value of the right

hand side of the inequality, completing the proof.

Recurrence 1 naturally leads to a dynamic programming algorithm for the prob-

lem. We build a table containing Fas(T (p̂)) for every p̂. There are O(nt) table entries,

for each entry it takes O(nt) time to compute it giving the O(t ·nt+1) time bound. ut

In fact, the algorithm provided in Lemma 3 can be made to run slightly faster

by pre-computing the value of
∑

u∈V (T (p̂))w
∗(vip̂i

, u)) for every p̂ and i using dynamic

programming, and storing it in a table. This would let us reduce the time to compute

a table entry using Recurrence 1 from O(nt) to O(t) yielding an algorithm that runs

in time and space O(t · nt).

Lemma 4. k-FAST (for a tournament of size O(k2)) can be solved in expected time

2O(
√
k log k) and 2O(

√
k log k) space.

Proof. Our algorithm proceeds as described in Figure 1. The correctness of the algo-

rithm follows from Lemma 3. Combining Lemmata 1, 2, 3 yields an expected running

time of O((2e)
√
k/8) · O(

√
8k · (k2 + 2k)1+

√
8k) ≤ 2O(

√
k log k) for finding a feedback

arc set of weight at most k if one exists. The space required by the algorithm is

O((k2 + 2k)1+
√

8k) ≤ 2O(
√
k log k). ut
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The dynamic programming algorithm from Lemma 3 can be turned into a divide

and conquer algorithm that runs in polynomial space, at a small cost in the running

time.

Lemma 5. Given a feasible t-colored tournament T , we can find a minimum weight

colorful feedback arc set in time O(n1+(t+2)·logn) in polynomial space.

Proof. By expanding Recurrence (1) bn/2c times and simplifying the right hand side

we obtain the following recurrence.

Fas(T (p̂)) = min
q̂≥0̂

q̂†·ê=dn/2e

{Fas(T (q̂)) + Fas(T \ V (T (q̂))) +
∑

u∈V (T (q̂))
v /∈V (T (q̂))

w∗(v, u)} (2)

Recurrence 2 immediately yields a divide and conquer algorithm for the problem.

Let T (n) be the running time of the algorithm restricted to a subtournament of T

with n vertices. For a particular vector q̂ it takes at most n2 time to find the value

of
∑

u∈V (T (q̂)),v /∈V (T (q̂))w
∗(v, u). It follows that T (n) ≤ nt+2 · 2 · T (n/2) ≤ 2logn ·

n(t+2)·logn = n1+(t+2)·logn. ut

Theorem 1. k-FAST (for a tournament of size O(k2)) can be solved in expected

time 2O(
√
k log2 k) and polynomial space. Therefore, k-FAST for a tournament of size

n can be solved in expected time 2O(
√
k log2 k) + nO(1) and polynomial space.

4 Derandomization with Universal Coloring Families

For integers m, k and r, a family F of functions from [m] to [r] is called a universal

(m, k, r)-coloring family if for any graph G on the set of vertices [m] with at most

k edges, there exists an f ∈ F which is a proper vertex coloring of G. An explicit

construction of a (10k2, k, O(
√
k))-coloring family can replace the randomized coloring

step in the algorithm for k-FAST. In this section, we provide such a construction.

Theorem 2. There exists an explicit universal (10k2, k, O(
√
k))-coloring family F of

size |F| ≤ 2Õ(
√
k).

For simplicity we omit all floor and ceiling signs whenever these are not crucial.

We make no attempt to optimize the absolute constants in the Õ(
√
k) or in the O(

√
k)

notation. Whenever this is needed, we assume that k is sufficiently large.

Proof. Let G be an explicit family of functions g from [10k2] to [
√
k] so that every

coordinate of g is uniformly distributed in [
√
k], and every two coordinates are pairwise
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independent. There are known constructions of such a family G with |G| ≤ kO(1).

Indeed, each function g represents the values of 10k2 pairwise independent random

variables distributed uniformly in [
√
k] in a point of a small sample space supporting

such variables; a construction is given, for example, in [3]. The family G is obtained

from the family of all linear polynomials over a finite field with some kO(1) elements,

as described in [3].

We can now describe the required family F . Each f ∈ F is described by a subset

T ⊂ [10k2] of size |T | =
√
k and by a function g ∈ G. For each i ∈ [10k2], the value of

f(i) is determined as follows. Suppose T = {i1, i2, . . . , i√k}, with i1 < i2 < . . . < i√k.

If i = ij ∈ T , define f(i) =
√
k + j. Otherwise, f(i) = g(i). Note that the range of f

is of size
√
k +
√
k = 2

√
k, and the size of F is at most(

10k2

√
k

)
|G| ≤

(
10k2

√
k

)
kO(1) ≤ 2O(

√
k log k) ≤ 2Õ(

√
k).

To complete the proof we have to show that for every graph G on the set of vertices

[10k2] with at most k edges, there is an f ∈ F which is a proper vertex coloring of

G. Fix such a graph G.

The idea is to choose T and g in the definition of the function f that will provide

the required coloring for G as follows. The function g is chosen at random in G, and

is used to properly color all but at most
√
k edges. The set T is chosen to contain

at least one endpoint of each of these edges, and the vertices in the set T will be

re-colored by a unique color that is used only once by f . Using the properties of G
we now observe that with positive probability the number of edges of G which are

monochromatic is bounded by
√
k.

Claim. If the vertices of G are colored by a function g chosen at random from G, then

the expected number of monochromatic edges is
√
k.

Proof. Fix an edge e in the graph G and j ∈ [
√
k]. As g maps the vertices in a pairwise

independent manner, the probability that both the end points of e get mapped to j

is precisely 1
(
√
k)2

. There are
√
k possibilities for j and hence the probability that e is

monochromatic is given by
√
k

(
√
k)2

= 1√
k
. Let X be the random variable denoting the

number of monochromatic edges. By linearity of expectation, the expected value of

X is k · 1√
k

=
√
k. ut

Returning to the proof of the theorem, observe that by the above claim, with

positive probability, the number of monochromatic edges is upper bounded by
√
k.

Fix a g ∈ G for which this holds and let T = {i1, i2, . . . , i√k} be a set of
√
k vertices

containing at least one endpoint of each monochromatic edge. Consider the function

f defined by this T and g. As mentioned above f colors each of the vertices in T by
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a unique color, which is used only once by f , and hence we only need to consider

the coloring of G \ T . However all edges in G \ T are properly colored by g and f

coincides with g on G \ T . Hence f is a proper coloring of G, completing the proof of

the theorem. ut

Remarks:

– Each universal (n, k,O(
√
k))-coloring family must also be an (n,

√
k,O(

√
k))-

hashing family, as it must contain, for every set S of
√
k vertices in [n], a function

that maps the elements of S in a one-to-one manner, since these vertices may form

a clique that has to be properly colored by a function of the family. Therefore, by

the known bounds for families of hash functions (see, e.g., [26]), each such family

must be of size at least 2Ω̃(
√
k) log n.

Although the next result is not required for our results on the feedback arc set

problem, we present it here as it may be useful in similar applications.

Theorem 3. For any n > 10k2 there exists an explicit universal (n, k,O(
√
k))-

coloring family F of size |F| ≤ 2Õ(
√
k) log n.

Proof. Let F1 be an explicit (n, 2k, 10k2)-family of hash functions from [n] to 10k2 of

size |F1| ≤ kO(1) log n. This means that for every set S ⊂ [n] of size at most 2k there

is an f ∈ F1 mapping S in a one-to-one fashion. The existence of such a family is

well known, and follows, for example, from constructions of small spaces supporting

n nearly pairwise independent random variables taking values in [10k2]. Let F2 be an

explicit universal (10k2, k, O(
√
k))-coloring family, as described in Theorem 2. The

required family F is simply the family of all compositions of a function from F2

followed by one from F1. It is easy to check that F satisfies the assertion of Theorem

3. ut

Finally, combining the algorithm from Theorem 1 with the universal coloring

family given by Theorem 2 yields a deterministic subexponential time polynomial

space algorithm for k-FAST.

Theorem 4. k-FAST can be solved in time 2Õ(
√
k) + nO(1) and polynomial space.

5 Concluding Remarks

In this article, we have shown that k-FAST can be solved in time 2Õ(
√
k) + nO(1)

and polynomial space. To achieve this we introduced a new variant of randomized

color coding, and showed that this approach could be derandomized with an explicit
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construction of universal coloring families. We find it surprising that the problem

admits a subexponential time parameterized algorithm, as even the existence of a

2k · nO(1) time algorithm was an open problem until now.

At the end of the introduction of the paper in which it was proved that Feedback

Arc Set in Tournaments admits a PTAS [25], Mathieu and Schudy write “We

can feel lucky that the FAS problem on tournaments turns out to be so easy as to

have an approximation scheme: In contrast to Theorem 1, the related problem of

feedback vertex set is hard to approximate even on tournaments.” Interestingly, a

similar remark can be made in our setting - a simple reduction from Vertex Cover

[30] shows that k-Feedback Vertex Set in tournaments can not be solved in

subexponential time unless the Exponential Time Hypothesis [6, 18] fails.

The results of Section 4 can be extended to universal coloring families of uni-

form hypergraphs. These families can also be useful in tackling several parameterized

algorithmic problems. The details will appear in the full version of this paper.
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