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Abstract. A (continuous) necklace is simply an interval of the real line col-
ored measurably with some number of colors. A well-known application of

Borsuk-Ulam theorem asserts that every k-colored necklace can be fairly split-
ted by at most k cuts (from the resulting pieces one can form two collections,

each capturing the same measure of every color). Here we prove that for every

k ≥ 1 there is a measurable (k+3)-coloring of the real line such that no interval
can be fairly splitted using at most k cuts. In particular, there is a measurable

4-coloring of the real line in which no two adjacent intervals have the same

measure of every color. An analogous problem for the integers was posed by
Erdős in 1961 and solved in the affirmative in 1991 by Keränen. Curiously, in

the discrete case the desired coloring also uses four colors.

1. Introduction

In 1906 Thue [23] proved that there is a 3-coloring of the integers such that
no two adjacent intervals are colored exactly the same. This result has lots of
unexpected applications in distinct areas of mathematics and theoretical computer
science (cf. [1], [6], [8], [19]). Many variations and generalizations of this property
were considered so far, specifically in other combinatorial settings like Euclidean
spaces [6], [14], [15], or graph colorings [3], [4], [16].

In particular, in 1961 Erdős [11] (cf. [9], [10], [17]) asked whether there is a
4-coloring of the integers such that no two adjacent segments are identical, even
after arbitrary permutation of their terms. (In other words, there is always a color
whose number of occurrences in one segment is different than in the other.) It is
not hard to check by hand that four colors are needed for this property, but on the
other hand, it is not obvious that any finite number of colors is enough. This fact
was established first by Evdokimov [12] who found a 25-coloring with the desired
property. Another construction, provided by Pleasants [22], improved the bound
to 5. That 4 colors actually suffice was finally proved by Keränen [18], with some
verifications made by computer.

In the present paper we study a continuous variant of the Erdős problem. In
particular, we prove that there exists a measurable 4-coloring of the real line such
that no two adjacent segments contain equal measure of every color. Actually our
result is more general and relates to the continuous version of the necklace splitting
problem. Let f : R → {1, 2, . . . , k} be a k-coloring of the real line such that for
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every i = 1, 2, . . . , k, the set f−1(i) of all points in color i is Lebesgue measurable.
A splitting of size r of an interval [a, b] is a sequence of points a = y0 < y1 <
. . . < yr < yr+1 = b such that it is possible to partition the resulting collection of
intervals F = {[yi, yi+1] : 0 ≤ i ≤ r} into two disjoint subcollections F1 and F2,
each capturing exactly half of the the total measure of every color. The partition
F = F1 ∪ F2 will be called a fair partition of F . For instance, in the continuous
analog of the Erdős problem intervals with splitting of size one are forbidden.

Goldberg and West [13] proved that every k-colored interval has a splitting of
size at most k (see also [5] for a short proof using the Borsuk-Ulam theorem, and [20]
for other applications of the Borsuk-Ulam theorem in combinatorics). This result
is clearly best possible, as is seen in a necklace where colors occupy consecutively
full intervals. Our result goes the other direction and provides an upper bound for
the number of colors in a general version of the Erdős problem on the line.

Theorem 1. For every k ≥ 1 there is a (k + 3)-coloring of the real line such
that no interval has a splitting of size at most k.

The proof is based on the Baire category theorem applied to the space of all
measurable colorings of R, equipped with a suitable metric (Section 2). By the same
argument one may obtain other versions of the result. For instance, one of them
asserts that there is a 5-coloring of R such that no two intervals (not necessarily
adjacent) contain the same measure of every color (Section 3). We do not know
whether the bound in the theorem is optimal, even in the simplest case of k = 1,
though one can show that two colors are no enough to avoid intervals with splitting
of size one.

2. Proof of the main result

Recall that a set in a metric space is nowhere dense if the interior of its closure
is empty. A set is said to be of first category if it can be represented as a countable
union of nowhere dense sets. In the proof of Theorem 1 we apply the Baire category
theorem in the following version (cf. [21]).

Theorem 2. (Baire) If X is a complete metric space and A is a set of first
category in X then X \A is dense in X (and in particular is nonempty).

Our plan is to construct a suitable metric space of colorings and demonstrate
that the subset of bad colorings is of first category.

2.1. The setting. Let k be a fixed positive integer and let {1, 2, . . . , k} be
the set of colors. Let f, g be two measurable k-colorings of R. Let n be another
positive integer and consider the set

Dn(f, g) = {x ∈ [−n, n] : f(x) 6= g(x)}.
Clearly Dn(f, g) is measurable and we may define the normalized distance between
f and g on [−n, n] by

dn(f, g) =
λ(Dn(f, g))

n
,

where λ(D) is the Lebesgue measure ofD. Then we may define the distance between
any two measurable colorings f and g by

d(f, g) =
∞∑

n=1

dn(f, g)
2n+1

.
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Identifying colorings whose distance is zero gives the metric spaceM of equivalence
classes of all measurable k-colorings. Clearly equivalent colorings preserve the anti-
splitting properties we look for.

Lemma 1. M is a complete metric space.

The lemma is a straightforward generalization of the fact that sets of finite mea-
sure in any measure space form a complete metric space, with respect to symmetric
difference of sets as the distance function (cf. [21]).

Let t ≥ 1 be a fixed integer. Let Dt be the subspace of M consisting of those
k-colorings that avoid intervals having a splitting of size at most t. Our task is to
show that Dt is not empty provided t ≤ k− 3. By diameter of a splitting we mean
the length of the shortest subinterval in the splitting. For r, n ≥ 1 let B(r)

n be the
set of those colorings fromM for which there exists at least one interval contained
in [−n, n] having a splitting of size exactly r and diameter at least 1/n. Finally let

Bn(t) =
t⋃

r=1

B(r)
n .

These are the bad colorings. Clearly we have

Dt =M\
∞⋃

n=1

Bn(t).

So, our aim is to show that the sets Bn(t) are nowhere dense, provided k ≥ t + 3,

and hence the union
∞⋃

n=1
Bn(t) is of first category.

2.2. The sets Bn(t) are closed. We show that each set B(r)
n is a closed subset

of M. Since Bn(t) is a finite union of these sets, it follows it is closed too. For any
family F of measurable subsets of R and a coloring f , we denote by λi(f, F ) the
measure of color i in the union of all members of F .

Lemma 2. For every r, n ≥ 1, the set B(r)
n is a closed subset of the space M.

Proof. Fix n, r ≥ 1. Let fm be an infinite sequence of colorings from B(r)
n

tending to the limit coloring f . Let I(m) = [a(m), b(m)] be a sequence of intervals
in [−n, n], each having a splitting a(m) = y

(m)
0 ≤ y

(m)
1 ≤ . . . ≤ y

(m)
r ≤ y

(m)
r+1 = b(m)

of diameter at least 1/n. Let F (m) = {[y(m)
i , y

(m)
i+1 ] : 0 ≤ i ≤ r} be the resulting

family of intervals and let F (m) = F
(m)
1 ∪F (m)

2 be the related fair partition of F (m).
Finally, let {0, 1, . . . , r} = A(m) ∪ B(m) be the associated partition of indices, that
is F (m)

1 = {[y(m)
i , y

(m)
i+1 ] : i ∈ A(m)} and F

(m)
2 = {[y(m)

i , y
(m)
i+1 ] : i ∈ B(m)}.

Since there are only finitely many index patterns (A(m), B(m)), one of them
must appear infinitely many times in the sequence. Hence, without loss of gen-
erality, we may assume that all A(m) and all B(m) are equal, say A(m) = A and
B(m) = B for every m ≥ 1. Since [−n, n] is compact, there are subsequences of
the r + 1 sequences y(m)

i , 0 ≤ i ≤ r + 1, convergent to some points yi ∈ [−n, n],
respectively. Clearly the splitting a = y0 ≤ y1 ≤ . . . ≤ yr ≤ yr+1 = b has diameter
at least 1/n. Moreover, we claim that the related fair partition F = F1 ∪ F2 of the
family F = {[yi, yi+1] : 0 ≤ i ≤ r} has the same index pattern (A,B). Indeed, if
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this is not the case then there is a color i such that

|λi(f, F1)− λi(f, F2)| > ε,

for some ε > 0. Taking m large enough we can make the distances d(fm, f) arbi-
trarily small, so that

|λi(fm, F1)− λi(fm, F2)| > ε1

for some ε1 > 0. Now, for sufficiently large m, the symmetric difference between
the unions of intervals in F1 and F

(m)
1 can also be made arbitrarily small, hence∣∣∣λi(fm, F

(m)
1 )− λi(fm, F

(m)
2 )

∣∣∣ > ε2,

for some ε2 > 0. This contradicts the assumption that F (m) = F
(m)
1 ∪ F (m)

2 is a
fair partition. Consequently, the limit coloring f must be in B(r)

n .

2.3. The sets Bn(t) have empty interiors. Next we prove that each Bn(t)
has empty interior provided the number of colors k is at least t+3. For that purpose
let us call f an interval coloring on [−n, n] if there is a partition of the segment
[−n, n] into some number of (half-open) intervals of equal length, each filled with
only one color. Let In denote the set of all colorings from M that are interval
colorings on [−n, n].

Lemma 3. Let f ∈ M be a coloring. Then for every ε > 0 and n ∈ N there
exists a coloring g ∈ In such that d(f, g) < ε.

Proof. Let Ci = f−1(i) ∩ [−n, n] and let C∗i ⊂ [−n, n] be a finite union of
intervals such that

λ((C∗i \ Ci) ∪ (Ci \ C∗i )) <
ε

2k2

for each i = 1, 2, . . . , k. Define a coloring h so that for each i = 1, 2, . . . , k, the
set C∗i \ (C∗1 ∪ . . . ∪ C∗i−1) is filled with color i, the rest of interval [−n, n] is filled
with any of these colors, and h agrees with f everywhere outside [−n, n]. Then
d(f, h) < ε/2 and clearly each h−1(i) ∩ [−n, n] is a finite union of intervals. Let
A1, . . . , At be the whole family of these intervals. Now split the interval [−n, n] into
N ≥ 8tn/ε intervals B1, . . . , BN of equal length and define a new coloring g so that
g(Bi) = h(Aj) if Bi ⊂ Aj , and g(Bi) is any color otherwise. Hence, g differs from
h on at most 2t intervals of total length 2t2n/N ≤ ε/2 and we get d(f, g) ≤ ε.

Lemma 4. If k ≥ t+ 3 then each set Bn(t) has empty interior.

Proof. Let f ∈ Bn(t) be any bad coloring. Let U(f, ε) be the open ε-
neighborhood of f in the space M. Assume the assertion of the lemma is false:
there is some ε > 0 for which U(f, ε) ⊂ Bn(t). By Lemma 3 there is a coloring
g ∈ In such that d(f, g) < ε/2, so U(g, ε/2) ⊂ Bn(t). The idea is to modify slightly
the interval coloring g so that the new coloring will be still close to g, but there will
be no intervals inside [−n, n] possessing a splitting of size at most t and diameter
at least 1/n. Let −n = a0 < a1 < . . . < aN = n be equally spaced points in the
interval [−n, n] such that each interval Ai = [ai−1, ai) is filled with a unique color
in the interval coloring g. Let δ > 0 be a real number satisfying

δ < min
{ ε

2N
,
n

N2

}
.

Consider another collection of intervals Si = [ai−1, bi), with ai−1 < bi < ai, such
that λ(Si) = δ for all i = 1, 2, . . . , N .
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Now split randomly each Si into k subintervals I(m)
i , 1 ≤ m ≤ k. Then with

probability one, for every fixed m, 1 ≤ m ≤ k, the set {λ(I(m)
i ) : 1 ≤ i ≤ N} is

linearly independent over the rationals, and in particular no two nonempty disjoint
subsets of it have the same total sum. Let hi be a k-coloring of Si defined by
h−1

i (m) = I
(m)
i for every color m ∈ {1, 2, . . . , k}. Finally, let h be a coloring such

that h = hi on Si, with h = g everywhere outside the union of Si.
First notice that

d(g, h) ≤
N∑

i=1

λ(Si) = δN <
ε

2
,

by the choice of δ. Hence h is in Bn(t). Let [a, b] ⊂ [−n, n] be an interval with a
splitting a = y0 < y1 < . . . < yr < yr+1 = b of size r ≤ t and diameter at least 1/n.
Let F = F1∪F2 be the fair partition of the family F = {[yi, yi+1] : 0 ≤ i ≤ r}, that
is we have

λj(h, F1) = λj(h, F2)

for every 1 ≤ j ≤ k. Since, k ≥ t + 3 > r + 2, there is a color s ∈ {1, 2, . . . , k}
that does not appear on any of the points y0, y1, . . . , yr+1 in coloring h. Hence for
every open interval I filled with color s in coloring h and for every member Y of
the family F , either I is completely contained in Y , or I and Y are disjoint.

We distinguish two types of intervals filled with color s: those of the form
(bi, ai) (large intervals), and those of the form I

(s)
i (small intervals). Let li denote

the number of large intervals contained in the union of all members of Fi, i = 1, 2.
We claim that l1 = l2. Indeed, suppose that this is not the case and assume (without
loss of generality) that l1 > l2. Denote by L = 2n

N the common length of intervals
Ai = [ai−1, ai). Then

λs(h, F1) ≥ l1 (L− δ) = l1L− l1δ ≥ l1L−Nδ > l1L−
n

N
,

by the choice of δ. On the other hand,

λs(h, F2) ≤ l2L+Nδ ≤ (l1 − 1)L+Nδ = l1L− L+Nδ

< l1L−
2n
N

+
n

N
= l1L−

n

N
,

again by the initial choice of δ. This is a contradiction, so we have l1 = l2.
Since λs(h, F1) = λs(h, F2), the sum of lengths of small intervals of color s

in F1 equals the sum of lengths of small intervals of color s in F2. However this
contradicts with the choice of the numbers λ(I(m)

i ) as rationally independent. The
proof of the lemma is complete.

3. Generalizations and open problems

In [2] the necklace splitting theorem was generalized to fair partitions into more
than just two collections. A q-splitting of size r of the necklace [a, b] is a sequence
a = y0 < y1 < . . . < yr < yr+1 = b such that it is possible to partition the resulting
collection of intervals F = {[yi, yi+1] : 0 ≤ i ≤ r} into q disjoint subcollections
F1, F2, . . . , Fq, each capturing exactly 1/q of the the total measure of every color.
So, F = F1 ∪ F2 ∪ . . . ∪ Fq is a fair partition of F into q parts. The result of [2]
asserts that every k-colored necklace has a q-splitting of size at most (q−1)k, which
is clearly best possible.
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Notice that we may speak about fair partitions of any collection F of intervals on
the line (not necessarily adjacent) whose interiors are pairwise disjoint. Modifying
slightly the proof of Theorem 1 one may obtain the following more general result.

Theorem 3. For every k ≥ 4 there exists a measurable k-coloring of the real
line with the following property: there is no family F of closed intervals, whose
members have pairwise disjoint interiors and at most k− 1 endpoints in total, such
that F has a fair partition into q parts, for any q ≥ 2.

For instance, there is a 5-colorig of the real line such that there is no pair of
intervals (not necessarily adjacent), having the same measure of every color (this
solves an open problem posed in [15]). It is not known whether the constant 5 is
optimal for this property, but it is not hard to show that two colors are not enough.

Let us go back at the end to the discrete case. By the discrete necklace splitting
theorem (see [13], [5], [20]), any k-colored necklace has a splitting of size at most
k (provided the number of beads in each color is even). It is not clear however if
the following discrete version of Theorem 1 holds.

Problem 1. Is it true that for every k ≥ 1 there is a (k + 3)-coloring of the
integers such that no segment has a splitting of size at most k?
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