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Abstract

For every n, we describe an explicit construction of a graph on n vertices with at most O(n2−ε)
edges, for ε = 0.133 . . ., that contains every graph on n vertices with maximum degree 3 as a
subgraph. It is easy to see that each such graph must have at least Ω(n

4
3 ) edges. We also show that

the minimum number of edges of a graph that contains every graph with n edges as a subgraph is
Θ( n2

log2 n
). This improves a result of Babai, Chung, Erdös, Graham and Spencer.

1 Introduction

For a family H of graphs, a graph G is H-universal if it contains every member of H as a (not
necessarily induced) subgraph. The study of universal graphs for various families H is motivated by
problems in VLSI circuit design. See, e.g., [4], [6] and their references.

In this paper we study the minimum possible number of edges in universal graphs for two families
of graphs.

Let H(r, n) denote the family of all graphs on n vertices in which every degree is at most r. In
section 2 we study the minimum possible number of edges in a graph on n vertices which is H(3, n)-
universal. The best known construction for such graphs is given in [1], where the authors describe an
H(3, n)-universal graph with n vertices and at most O(n2−0.023) edges. Here we improve this result
by giving a tighter analysis using a related technique, which is also based on some of the ideas in [5].

In subsection 2.1 we give an extension of a lemma used in [5], in subsection 2.2 we describe the
construction of the graph, and in subsection 2.3 we bound its number of edges.

Let En denote the family of all graphs with at most n edges and without isolated vertices. In section
3 we study the minimum possible number of edges of an En-universal graph. The best known result is
given in [3], where the authors prove that the minimum possible number of edges of an En-universal
graph is at least cn2

log2 n
and at most (1 + o(1))n

2 log logn
logn . Here we determine this minimum possible

number up to a constant factor and show that it is actually Θ( n2

log2 n
).
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2 H(3, n)-universal graphs

2.1 The main lemma

To simplify the presentation we omit all floor and ceiling signs. It is not difficult to check that this is
not crucial for the proofs.

The following lemma is proved in [5]:

Lemma 2.1 Let G = (V,E) be a graph on n vertices in which every degree is at most 3. Let
V1, V2, . . . , Vm be any collection of pairwise disjoint subsets of V such that |Vi| ≥ log3 n for each i.
Then, there exists an independent set W such that |W ∩ Vi| ≥ |Vi|/5, for all i.

The following result extends and strengthens the above lemma:

Lemma 2.2 The following holds for all 0 < ε < 1/4. Let G = (V,E) be a graph on n vertices in
which every degree is at most 3. Let V1, V2, . . . , Vm be any collection of pairwise disjoint subsets of V
such that |Vi| ≥ 10

ε2
log n for each i. Then, there exist two disjoint independent sets W0 and W1 such

that |Wi ∩ Vj | = |Vj |(1/4− ε) for all i, j.

Proof: Clearly, it suffices to prove the existence of two independent sets W0 and W1 such that
|Wi∩Vj | ≥ |Vj |(1/4− ε) for all i, j, as we can then take the desired sets as appropriate subsets of these
two. We proceed with the proof that such W0 and W1 exist. Let V = {v0, v1, . . . , vn−1} and let σ be a
permutation chosen uniformly from Sn. Define W0 and W1 as follows: W0 = {vi ∈ V | ∀j s.t. (vi, vj) ∈
E, σ(i) < σ(j)}, and W1 = {vi ∈ V | ∀j s.t. (vi, vj) ∈ E, σ(i) > σ(j)}.

We now show that W0 and W1 satisfy the desired properties with positive probability. Without
loss of generality, we may assume that W0 ∩ W1 = ∅. (We can assume that there are no isolated
vertices in G. If there is more than one isolated vertex, we can add edges so that there will be no
isolated vertices, and if there is one isolated vertex, we can find independent sets in the rest of the
graph, and add the isolated vertex to one of them.)

Let us define for each vertex u, the indicator random variables ψi(u) for i = 0, 1 as follows:
ψi(u) = 1 iff u ∈Wi. We make the following observations.
Observation 1: For every u ∈ V , E[ψi(u)] ≥ 1/4.
Observation 2: Let X be any independent set in G2, where G2 is the graph whose vertices are the
vertices of G, and there is an edge (u, v) in G2 iff there is a path of length 1 or 2 between u and v in
G. For any distinct u, v ∈ X, u and v are not neighbours in G, and they do not share neighbours in
G. Thus, for every fixed i ∈ {0, 1}, the ψi(u)’s, with u ∈ X are mutually independent. This is because
the value of ψi(u) is determined by the induced permutation on the indices of u and its neighbours.

To prove the lemma it suffices to show that

Pr[∀i, j
∑
u∈Vj

ψi(u) ≥ |Vj |(1/4− ε)] > 0.

2



Since m < n/2, it suffices to show that for each admissible i, j

Pr[
∑
u∈Vj

ψi(u) < |Vj |(1/4− ε)] ≤
1
n
.

Fix i, j. Since the maximum degree in G is at most 3, it follows that the maximum degree in G2 is at
most 9, so by the Hajnal-Szemerédi theorem [7], there is a way to partition the induced subgraph of G2

on Vj into 10 independent setsX1, X2, . . . , X10 of nearly equal sizes, that is b|Vj |/10c ≤ |Xl| ≤ d|Vj |/10e
for all l.

By observation 1, ∀u ∈ Vj , E[ψi(u)] ≥ 1/4, and by observation 2, the ψi(u)’s for u ∈ Xl are
mutually independent. Therefore, by Chernoff’s inequality (c.f., e.g., [2], Appendix A),

Pr[
∑
u∈Xl

ψi(u) < |Xl|(1/4− ε)] ≤ e−2ε2|Xl|.

If
∑
u∈Xl ψi(u) > |Xl|(1/4− ε)] ∀1 ≤ l ≤ 10, then, clearly,

∑
u∈Vj ψi(u) > |Vj |(1/4− ε)]. Therefore, for

a sufficiently large n, using the fact that |Vj | ≥ 10
ε2

log n, we conclude that

Pr[
∑
u∈Vj

ψi(u) < |Vj |(1/4− ε)] ≤ 10e−2ε2 10
10ε2

logn =
10
n2

<
1
n
.

2

2.2 The construction of an H(3, n)-universal graph

Define g = 2
ε2

log n. We construct an H(3, n)-universal graph G = (V,E) as follows: First we construct
a graph G′ = (V ′, E′), where |V ′| = Θ(n/g), and then we construct G from G′.

For a vector v ∈ {0, 1, 2}∗, denote by Nj(v) the number of coordinates in v whose value is j, for
j = 0, 1, 2. The set of vertices V ′ consists of all vectors v (of different lengths), such that

n(1/4− ε)N0(v)+N1(v)(1/2 + 2ε)N2(v) < 5g, (1)

but this inequality fails for every prefix v′ of v. Note that in this case the left hand side of the inequality
is always at least g. There is an edge (u, v) in G′ if and only if there is no coordinate in which both u
and v have the value 0, and there is no coordinate in which they both have the value 1.

We construct G from G′ by replacing each vertex v of G′ by a set Sv of roughly g vertices, where
the precise numbers will be given later. For each edge (u, v) in G′, we add edges between each vertex
of Su and each vertex of Sv. We also add edges between all the pairs of vertices in the group that
replaces the vertex in G′ whose vector contains only 2’s. Clearly, |E| ≤ |E′|g2 + g2 = O(|E′| log2 n).

Proposition 2.3 The graph G = (V,E) with the sizes of sets Sv as described below is H(3, n)-
universal.

Proof: Suppose H ∈ H(3, n). We assign vectors of the type described above to the vertices of H,
map each vertex to one in a group labeled by its vector, and show that all the required edges exist in
G. Here are the details.
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By Lemma 2.2, H contains two disjoint independent sets W0 and W1, of size (1/4− ε)n each. The
first coordinate of the vectors of the vertices in Wi will be i, and the first coordinate of the vectors of
the vertices in V \ (W0 ∪W1) will be 2. Now, let us assume that we have already completed l steps
and assigned to each vertex either a complete vector, if the length of this vector is at most l, or a
prefix of length l. Let us classify the vertices in sets Vi according to the vectors assigned to them so
far, and let V1, V2, . . . , Vm be all sets of vertices in this classification such that |Vi| ≥ 5g. (Note that
for each i, all the vertices in Vi have the same prefix.) Since all the sets Vj are of size at least 5g, we
can apply Lemma 2.2 and conclude that there exist two disjoint independent sets W0 and W1 such
that |Wi ∩ Vj | = |Vj |(1/4 − ε). The (l + 1)th coordinate of the vectors of the vertices in Wi will be
i, and the (l + 1)th coordinate of the vectors of the vertices in V \ (W0 ∪W1) will be 2. If there is
an edge between two vertices of H then they never belong to the same independent set during this
process, which means that there is no coordinate in which the vectors assigned to them both have 0
and there is no coordinate in which they both have 1. To embed H in G simply map all the vertices
whose vectors are v to Sv bijectively. Note that this process also determines the sizes of the sets
Sv, as a function of n only. This is because the construction guarantees that the number of vertices
to which we assign any fixed vector during the process is uniquely determined by the vector and n

(and is independent of the structure of H). Indeed, in each step the size of each quantity of the form
|Wi∩Vj | = |Vj |(1/4− ε) is independent of the structure of H. Finally, if a fixed vector v is assigned to
x vertices during the process, and x ≥ 5g, then the concatanations v0 and v1 are assigned to (1/4−ε)x
vertices each, and v2 is assigned to (1/2 + 2ε)x vertices. This implies that the process terminates with
sets Sv corresponding to vectors v satisfying (1). 2

2.3 Bounding the number of edges

Throughout the proof we denote by ε1, ε2 etc. positive constants, where εi ≤ ciε for some easily
computable absolute constant ci.

For every v ∈ V
n

5g
≤ (

1
1/4− ε

)N0(v)+N1(v)(
1

1/2 + 2ε
)N2(v) ≤ n

g
.

Let k = log 1
1/2+2ε

n, and let δ = log 1
1/2+2ε

(5g). Thus, for every v ∈ V

k − δ ≤ (N0(v) +N1(v)) log 1
1/2+2ε

(
1

1/4− ε
) +N2(v) = k − log 1

1/2+2ε
g ≤ k.

Therefore,

N2(v) ≤ k − (N0(v) +N1(v)) log 1
1/2+2ε

(
1

1/4− ε
)

= k − (2 + ε1)((N0(v) +N1(v))

< k − 2((N0(v) +N1(v))

and also
N2(v) ≥ k − δ − (N0(v) +N1(v)) log 1

1/2+2ε
(

1
1/4− ε

)
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= k − δ − (2 + ε1)((N0(v) +N1(v)).

For v ∈ V ′, let r = N0(v) + N1(v). Then N2(v) < k − 2r, and thus the length of v is less than
k − r. We bound the number of edges from v to vertices u such that the length of the vector u is
greater than or equal to the length of the vector v as follows:

If u is a vertex as described above, then there can be 0 ≤ j ≤ r coordinates in which v has 0 or 1
and u has 2. In the other coordinates in which v has 0 or 1, if v has 0 then u has 1 and vice versa.
There are

(r
j

)
possibilities for choosing the coordinates in which v has 0 or 1 and u has 2, for each

0 ≤ j ≤ r.
Note also that u can also have 0 or 1 in p coordinates in which v has 2. Moreover, 0 ≤ p < k− 2r,

since N2(v) < k − 2r.
The number of different ways to choose these p coordinates is

(N2(v)
p

)
≤
(k−2r

p

)
, and the number of

possibilities for the values of u in these coordinates (0 or 1) is 2p.
After choosing the above we have a prefix of length as that of v, of vectors which are adjacent to

v. Let us denote this prefix by x. We claim that the number of vertices in V ′ with prefix x is at most

n

g
(
1
2

+ 2ε)N2(x)(
1
4
− ε)N0(x)+N1(x).

To prove this claim note that V ′ can be constructed by starting with a single vertex of weight n
indexed by the empty vector, and by repeatedly splitting each vertex of weight w ≥ 5g indexed by u
into three vertices, indexed by u0, u1 and u2, of weights w(1

4 − ε), w(1
4 − ε) and w(1

2 + 2ε) respectively.
Since the weight of the vertex indexed by x is n(1

2 + 2ε)N2(x)(1
4 − ε)

N0(x)+N1(x), and by the end of the
splitting the weight of each vertex is at least g, the desired claim follows. Since (1

2 + 2ε)k−δ = 5g
n the

number of vectors in V ′ with prefix x is at most

n

g
(
1
2

+ 2ε)N2(x)(
1
4
− ε)N0(x)+N1(x)

≤ n

g
(
1
2

+ 2ε)k−δ−(2+ε1)r+j−p(
1
4
− ε)r−j+p

= 5(
1

1/2 + 2ε
)(2+ε1)r−j+p(

1
4
− ε)r−j+p

< 5 · 2(2+ε1)r−j+p(
1
4

)r−j+p

= 5 · 2j−p2ε1r

≤ 5nε22j−p,

where the last inequality follows from the fact that r ≤ k/2 and thus 2r ≤ 2k/2 < n. Therefore the
number of edges from a vertex v with N0(v) +N1(v) = r to vertices with vectors of at least the same
length is bounded by:

r∑
j=0

(
r

j

)
k−2r∑
p=0

(
k − 2r
p

)
2p5nε22j−p = 5nε2

r∑
j=0

(
r

j

)
2j

k−2r∑
p=0

(
k − 2r
p

)
.
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As r ≤ k/2 and the number of vertices of V ′ with N0(v) + N1(v) = r is at most
(k−r
r

)
2r, the total

number of edges is bounded by

5nε2
bk/2c∑
r=0

(
k − r
r

)
2r

r∑
j=0

(
r

j

)
2j

k−2r∑
p=0

(
k − 2r
p

)

≤ 5nε2
bk/2c∑
r=0

(
k − r
r

)
2r

r∑
j=0

(
r

j

)
2j

k−2r∑
p=0

(
k − 2r
p

)

= 5nε2
bk/2c∑
r=0

(
k − r
r

)
2r

r∑
j=0

(
r

j

)
2j2k−2r

= 5nε22k
bk/2c∑
r=0

(
k − r
r

)
2−r

r∑
j=0

(
r

j

)
2j

= 5n
ε2+log 1

1/2+2ε
2
bk/2c∑
r=0

(
k − r
r

)
2−r3r

= 5n1+ε3

bk/2c∑
r=0

(
k − r
r

)
(
3
2

)r.

The last formula is a sum of bk/2c + 1 terms. Although it is not difficult to compute the sum
precisely, we prefer to bound it as follows. Its value is clearly at most 5n1+ε3(bk/2c + 1)max(f(r)),
where f(r) =

(k−r
r

)
(3

2)r, and 0 ≤ r ≤ bk/2c. Observe that

f(r + 1)
f(r)

=

(k−(r+1)
r+1

)
(3

2)r+1(k−r
r

)
(3

2)r
=

3
2

(k − 2r)(k − 2r − 1)
(k − r)(r + 1)

.

The function f(r) is ascending when f(r+1)
f(r) > 1. This happens when r < (1 + o(1))7−

√
7

14 k and when

r > (1 + o(1))7+
√

7
14 k. But r ≤ bk/2c, therefore f(r) reaches its maximum for r = (1 + o(1))7−

√
7

14 k.
Thus,

max(f(r)) = f((1 + o(1))
7−
√

7
14

k)

≤ 2ε4k
(7+

√
7

14 k

7−
√

7
14 k

)
(
3
2

)
7−
√

7
14

k

≤ 2ε4k(
3
2

)
7−
√

7
14

k (7+
√

7
14 k)

7+
√

7
14

k

(7−
√

7
14 k)

7−
√

7
14

k( 1√
7
k)

1√
7
k

= nα+ε5 ,

where α = 7−
√

7
14 log 3

2 + 7+
√

7
14 log 7+

√
7

14 − 7−
√

7
14 log 7−

√
7

14 − 1√
7

log 1√
7

= 0.866 . . .
Thus, the number of edges of G′ is less than

5bk/2cn1+ε3+α+ε5 = O(n1.866...+ε6),

and since the number of edges of G is |E| = O(|E′| log2 n) we get the desired result.
We have thus proved the following:
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Theorem 2.4 There exists an explicit H(3, n)-universal graph with O(n1.867) edges.

Remark: From the analysis it follows that the number of edges of G above is at least

n−ε7
bk/2c∑
r=0

(
k − r
r

)
2r

r∑
j=0

(
r

j

)
2j

k−2r∑
p=0

(
k − 2r
p

)
≥

≥ n−ε7 ·max(

(
k − r
r

)
2r
(
r

j

)
2j
(
k − 2r
p

)
where the maximum is taken over all admissible r, j, p.

We now find the values of p, j, and r that provide the maximum. The value of p in this term is the
value for which

(k−2r
p

)
reaches its maximum, which is k/2 − r. For p = k/2 − r,

(k−2r
p

)
= Θ( 2k−2r

√
k−2r

),

and therefore the term behaves like
(k−r
r

)
2r
(r
j

)
2j2k−2r. The value of j in the maximal term is the

j for which
(r
j

)
2j reaches its maximum, which is 2

3r, and then
(r
j

)
2j = Θ( 3r√

r
). Then the maximal

term is roughly
(k−r
r

)
2r3r2k−2r = 2k

(k−r
r

)
(3

2)r. We now have the same expression that we had when
we calculated the sum. We have seen that it reaches its maximum for r ≈ 7−

√
7

14 k. Then we have
p = k/2 − r ≈

√
7

14 k, and j = 2
3r ≈

7−
√

7
21 k. Thus p ≤ j, and hence the bound we have found is

essentially the correct number of edges of G.
It will be interseting to close the gap between the O(n1.866...) upper bound for the minimum possible

number of edges of an H(3, n)-universal graph on n vertices proved here, and the simple lower bound
of Ω(n

4
3 ) mentioned in [1].

3 En-universal graphs

Let f(H) denote the minimum possible number of edges in an H-universal graph. In this section we
study the minimum possible number of edges in an En-universal graph. The best known result is given
in [3], where the authors prove that

cn2

log2 n
< f(En) < (1 + o(1))

n2 log log n
log n

,

for some absolute constant c > 0.
In this section we prove that f(En) = Θ( n2

log2 n
).

Theorem 3.1 There exist two positive constants c1 and c2 such that for all n

c1
n2

log2 n
≤ f(En) ≤ c2

n2

log2 n
.

The fact that f(En) ≥ Ω( n2

log2 n
) is proved in [3] by a simple counting argument. It also follows from

the fact that for r = blog nc and M = 2b n
lognc, any En-universal graph must contain all the r-regular

graphs on M vertices. Therefore, by a result proved in [1],

f(En) = Ω(M2−2/r) = Ω((
n

log n
)2−2/ logn) = Ω(

n2

log2 n
).
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In the rest of this section we prove the upper bound. We make no attempt to optimize the absolute
constants, and we omit all floor and ceiling signs whenever these are not crucial. All logarithms are
in base 2. Throughout the proof we assume, whenever this is needed, that n is sufficiently large.

We construct an En-universal graph G = (V,E). Let V = V0 ∪ V1 ∪ . . .∪ Vk, where k = dlog log ne,
V0 is set of 2x0 = 4n

log2 n
vertices, and for all 1 ≤ i ≤ k, Vi is a set of 2xi = 4n2i

logn vertices. Each vertex
in V0 is connected to all the other vertices of G, the graph on V1 is a complete graph, and for all
2 ≤ i ≤ k, for every u ∈ Vi and v ∈ V1 ∪ V2 ∪ . . . ∪ Vi, u 6= v, we let (u, v) be an edge, randomly and
independently, with probability min(1, c

8i
), for some constant c to be specified later.

The number of edges between the vertices of V0 and all the vertices of G is(
|V0|
2

)
+ |V0| · |V \ V0|

<
( 4n

log2 n
)2

2
+

4n
log2 n

(
k∑
i=1

4n2i

log n
)

=
8n2

log4 n
+

16n2

log3 n
(2k+1 − 2)

<
8n2

log4 n
+

16n2

log3 n
2dlog logne+1

<
8n2

log4 n
+

64n2

log2 n

≤ 72n2

log2 n
.

The number of edges in V1 is
(|V1|

2

)
<

( 8n
logn

)2

2 = 32n2

log2 n
.

For each 2 ≤ i ≤ k, the expected number of edges between the vertices of Vi and the vertices of
V1 ∪ V2 ∪ . . . ∪ Vi is at most

c

8i
· |Vi| · |V1 ∪ V2 ∪ . . . ∪ Vi|

=
c

8i
· 4n2i

log n
(
i∑

j=1

4n2j

log n
)

=
16cn2

4i log2 n
(2i+1 − 2)

<
32cn2

2i log2 n
.

Thus, the expected number of edges in G is less than

72n2

log2 n
+

32n2

log2 n
+

k∑
i=2

32cn2

2i log2 n
<

<
104n2

log2 n
+

16cn2

log2 n
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=
(104 + 16c)n2

log2 n
.

Therefore, by Markov’s inequality, with probability at least 1
2 , G contains at most (208+32c)n2

log2 n
edges.

Lemma 3.2 Let G(l, p) be a random graph on l vertices, where l =
∑i
j=1 2xj =

∑i
j=1

4n2j

logn =
4n(2i+1−2)

logn < 8n2i

logn , p = min(1, c
8i

) for some constant c ≥ 83 and i ≤ dlog log ne. Let W be a sub-

set of the vertices of G, such that |W | = 2xi
log2 n

= 4n2i

log3 n
. Then the following holds with probability at

least 1−e−n0.3
. For every r ≤ |W |2 and every collection {S1, S2, . . . , Sr} of pairwise disjoint sets outside

W , such that for all 1 ≤ j ≤ r, |Sj | ≤ 2 logn
2i

, and every subset X of W satisfying |X| = |W | − r + 1,
there exists a vertex u ∈ X and 1 ≤ j ≤ r such that u is connected to all the vertices in Sj.

Proof: Fix u ∈ X and 1 ≤ j ≤ r. The probability that u is connected to all the vertices in Sj

is at least min(1, ( c
8i

)2 logn/2i). As c ≥ 83, it follows that for i ≤ 3, this probability is 1, and for
i ≥ 4, if c ≥ 8i then the probability is 1, and otherwise it is at least ( c

8i
)2 logn/2i ≥ ( 1

8i−3 )2 logn/2i =
( 1

23i−9 )2 logn/2i = 1

n2(3i−9)/2i
> 1√

n
.

Therefore, the probability that there is no vertex u ∈ X and 1 ≤ j ≤ r such that u is connected
to all the vertices in Sj is at most

(1− 1√
n

)(|W |−r+1)r

< (1− 1√
n

)
|W |

2
r

≤ e−
2n2i

log3 n
1√
n
r

≤ e−n0.4r,

for all sufficiently large n.
The number of possibilities to choose r, S1, S2, . . . , Sr and X is at most

|W |
2

(
l

2 logn
2i

)r( |W |
|W | − r

)
< n(8n)r lognnr < n4r lognn2r ≤ e5r log2 n.

Thus, with probability at least 1− e−n0.3
the assertion of the lemma holds. 2

Corollary 3.3 There exists a graph G on the vertices V = V0 ∪ V1 ∪ . . . ∪ Vk, where k = dlog log ne,
with the following properties.

1. |V0| = 2x0 = 4n
log2 n

, and for all 1 ≤ i ≤ k, |Vi| = 2xi = 4n2i

logn , and Vi = Vi1 ∪ Vi2 ∪ . . . ∪ Vi log2 n,

where for all 1 ≤ j ≤ log2 n, |Vij | = |Vi|
log2 n

, and all sets Vij are pairwise disjoint.

2. The number of edges of G is at most 10000n2

log2 n
.

3. The vertices of V0 are connected to all the vertices of G.

4. The induced subgraph on V1 is a complete graph.
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5. For all 2 ≤ i ≤ k, 1 ≤ j ≤ log2 n and 1 ≤ r ≤ |Vij |
2 , and for every collection {S1, S2, . . . , Sr}

of pairwise disjoint subsets of ∪is=1Vs \ Vij, such that for all 1 ≤ t ≤ r, |St| ≤ 2 logn
2i

, and every
subset X of Vij satisfying |X| = |Vij | − r + 1, there exists a vertex u ∈ X and 1 ≤ t ≤ r such
that u is connected to all the vertices in St.

Proof: This follows directly from Lemma 3.2, by taking, say, c = 83. 2

We next show that every graph G satisfying the assertion of Corollary 3.3 is En-universal.
Let H ∈ En. Then H has n edges and m ≤ 2n vertices. Let v1, v2, . . . , vm be the vertices of H

such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vm), where d(vi) is the degree of vi in H. Partition v1, v2, . . . , vm

into blocks B0 = v1, v2, . . . , vx0 , B1 = vx0+1, vx0+2, . . . , vx0+x1 and so on. To complete the proof we
show that there is an embedding of H in G such that for all i, Bi is mapped injectively into Vi.

We choose an arbitrary injective mapping from B0 to V0 and from B1 to V1. Let us assume that we
have already found a mapping from Bj to Vj for all j < i, i ≥ 2, such that all the needed edges in the
induced subgraph on the images of the vertices of ∪j<iBj exist. For all v ∈ Bi, 2n ≥

∑
u∈V (H) d(u) ≥∑

u∈Bi−1
d(u) ≥ d(v)2n2i−1

logn . Thus, d(v) ≤ 2 logn
2i

.
Let F be the graph whose vertices are all the vertices in Bi, where two vertices are connected iff

they are either connected in H or have a common neighbour in H \B0. Each vertex v of Bi is adjacent
in H to at most 2 logn

2i
other vertices, and as the degree of each vertex of H \B0 is at most log n, there

are at most 2 logn
2i

log n paths of length 2 in H \ B0 starting at v. Therefore, as i ≥ 2, the maximum
degree in F is at most 2 logn

2i
+ 2 logn

2i
log n < log2 n− 1. By the Hajnal-Szemerédi theorem [7], there is

a partition of Bi into log2 n independent sets Bij of equal sizes, such that no two vertices in the same
set have a common neighbour outside B0.

We now embed the sets Bij into Vij one by one.
Let Bij = {v1, v2, . . . , v 2n2i

log3 n

}. For each 1 ≤ t ≤ 2n2i

log3 n
, let St be the set of the vertices in V1 ∪ V2 ∪

. . . ∪ Vi to which the neighbours of vt that have already been mapped were mapped. Since no two
vertices in Bij have a common neighbour outside V0, the sets S1, S2, . . . , S 2n2i

log3 n

are pairwise disjoint.

Let G′ = (Bij , Vij , E′) be a bipartite graph, where for each 1 ≤ t ≤ 2n2i

log3 n
and u ∈ Vij , (vt, u) ∈ E′ iff

u is connected to all the vertices of St. By Corollary 3.3, for all r ≤ 2n2i

log3 n
and for all U ⊆ Bij such

that |U | = r, the set of neighbours of U in Vij is of size at least r. Thus, by Hall’s theorem, there
is a matching in G′ saturating all members of Bij . The mapping of Bij into Vij is obtained by this
matching. This completes the proof of Theorem 3.1. 2

Note that our constraction is probabilistic. It may be interesting to describe an explicit construction
of an En-universal graph with Θ( n2

log2 n
) edges.
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