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Abstract

For k > 2 and r ≥ 2, letG(k, r) denote the smallest positive integer g such that every increasing
sequence of g integers {a1, a2, . . . , ag} with gaps aj+1 − aj ∈ {1, . . . , r}, 1 ≤ j ≤ g − 1 contains a
k-term arithmetic progression. Brown and Hare [4] proved that G(k, 2) >

√
(k − 1)/2( 4

3 )(k−1)/2

and that G(k, 2s−1) > (sk−2/ek)(1+o(1)) for all s ≥ 2. Here we improve these bounds and prove
that G(k, 2) > 2k−O(

√
k) and, more generally, that for every fixed r ≥ 2 there exists a constant

cr > 0 such that G(k, r) > rk−cr
√
k for all k.

A sequence of integers {a1, a2, . . . , ag} is called nearly consecutive if aj+1 − aj ∈ {1, 2} for 1 ≤
j ≤ g − 1. Let G(k, 2) denote the smallest positive integer g such that every nearly consecutive
sequence of length g contains a k-term arithmetic progression. Brown and Hare [4] proved that
G(k, 2) >

√
(k − 1)/2(4

3)(k−1)/2. Their proof is probabilistic: each gap aj+1 − aj is chosen randomly
and independently to be either 1 or 2 with equal probability, and the length of the sequence is chosen
so that the expected number of arithmetic progressions of length k it contains is smaller than 1.

In this short paper we first show that there exists a nearly consecutive sequence {ai}gi=1 where g >
2k−10

√
k−1 that does not contain any arithmetic progression of length k, provided k is large enough.

Our proof is also probabilistic, but uses a slightly more sophisticated probabilistic construction. The
first idea is to choose the gaps of size 1 with probability p which is much smaller than 1

2 , thus giving
the gaps of size 2 a higher probability, to obtain a sequence which is as sparse as possible. The second
idea is that the “bad” events of containing potential arithmetic progressions are nearly independent,
and thus there should be a way of applying the Lovász Local Lemma to improve the resulting bound.
Unfortunately, in the construction based on the Markov process described above, each event does
depend on all others. We therefore apply an additional trick, which is similar to the one used in
[1], and make our construction in two steps in order to reduce the dependencies between the events.
First we choose a random subset of the elements of the sequence with large gaps between them,
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making sure each potential progression does not contain too many of these elements, and then we
fill these large gaps and obtain the desired nearly consecutive sequence. The resulting lower bound
is given in the following theorem.

Theorem 1 G(k, 2) > 2k−O(
√
k).

Our arguments can be extended to deal with sequences of bigger gaps as well. For any two integers
a < b, denote the set {a, a + 1, . . . , b} by [a, b]. A sequence of integers {a1, a2, . . . , ag} is called a
[1, r]-gap sequence if aj+1 − aj ∈ [1, r] for j ∈ [1, g − 1]1. Let G(k, r) denote the smallest positive
integer g such that every [1, r]-gap sequence of length g contains a k-term arithmetic progression.
Brown and Hare [4] proved that G(k, 2s−1) > (sk−2/ek)(1+o(1)), where e is the base of the natural
logarithm. Their proof uses the following probabilistic construction: each aj is chosen arbitrarily
from the interval [(j − 1)s + 1, js], thereby generating a [1, 2s − 1]-gap sequence. Using the Lovász
Local Lemma the authors show that with positive probability this sequence contains no k-term
progression, provided the length of the sequence does not exceed (sk−2/ek)(1 + o(1)).

Extending the proof of Theorem 1, we prove the following.

Theorem 2 For every fixed r ≥ 2 there is a constant cr so that G(k, r) > rk−cr
√
k for all k > 2.

In order to prove Theorem 2 we prove the existence of a [1, r]-gap sequence {ai}gi=1 where g >

rk−(2 log r+5)
√
k−1 that does not contain any arithmetic progression of length k, provided k is large

enough. As in the proof of Theorem 1 this is done by first choosing a random subset of the elements of
the sequence with large gaps between them, making sure each potential progression does not contain
too many of these elements, and then by filling these large gaps. This two-step process reduces the
dependencies between the “bad” events of containing potential progressions. Inside each large gap
we allow gaps of r − 1 or r only, choosing the gaps of size r − 1 with probability p which is much
smaller than 1

2 , thus giving the gaps of size r a higher probability. This is done to obtain a sequence
which is as sparse as possible.

The van der Waerden number W (k, r) is the least integer w such that for any covering of [1, w]
by r sets ∪ri=1Ai ⊇ [1, w], at least one of the sets Ai contains an arithmetic progression of length
k. As proved in [9] (cf., also, [5]) this number is finite for every k and r. Rabung [7] (see also [6])
observed that G(k, r) ≤W (k, r), since the union of any [1, r]-gap sequence with r − 1 shifted copies
of itself covers all integers between the smallest and the largest element of the sequence.

The best known lower bound for W (k, r) is W (k, r) > rk

erk (1 + o(1)), see, e.g., [5], while for
r = 2 and for any prime p it is known that W (p + 1, 2) ≥ p2p, as proved in [3]. Note that both
these bounds, as well as our bounds for G(k, r) mentioned in Theorems 1 and 2, are asymptotically
(r + o(1))k. Thus there are r [1, r]-gap sequences whose union covers a set of almost rk consecutive
integers with no k-term progressions in any of them. Note also that any lower bound for G(k, r)

1Thus, in particular, a [1, 2]-gap sequence is a nearly consecutive sequence.
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which is significantly bigger than those in Theorems 1 or 2 would improve the known lower bound
for W (k, r) as well. As mentioned in [4], the problem of improving the best known upper bound for
G(k, 2) (which follows from the best known bound for W (k, 2), due to Shelah [8]) is also interesting.

In the rest of this note we present the proofs of the two theorems. Note that the assertion of
Theorem 2 contains that of Theorem 1, but since the proof of the first theorem is a bit simpler we
prefer to describe it separately.

Proof of Theorem 1. We omit all floor and ceiling functions, for the sake of brevity. Let k be
a sufficiently large integer, and set n = 2k−10

√
k (we do not attempt to optimize the constants here

and in what follows).
Let C = {ci} be a sequence of integers, and let C = ∪i{x : ci ≤ x < ci + k}. An arithmetic

progression D = {a+dj}kj=1 having d > k is called bad (with respect to C) if |D∩C| ≥ 3
√
k. Finally,

C is called bad if there exists a bad arithmetic progression. Let m = n1/
√
k and l = n

m . A simple
probabilistic argument shows that there exists a sequence B = {bi}li=1 where (i − 1)m < bi ≤ im

for each i, which is not bad, provided k is large enough. Indeed, if each bi is chosen randomly and
independently, the expected number of bad arithmetic progressions is less than n2

( k
3
√
k

)
( km)3

√
k which

is smaller than 1, for all sufficiently large k. This holds even if we fix b1 = 1 and bl = n.
We complete such a sequence B into a nearly consecutive sequence A = {ai}gi=1 ⊂ [1, n] in

the following way. Let 0 < p < 1 be some constant, which will be determined later. Start with
a1 = b1 = 1. Suppose {a1, . . . , aj} have already been determined. If aj + 1 ∈ B set aj+1 = aj + 1, so
that eventually A ⊃ B. If aj + 1 6∈ B, choose aj+1 to be either aj + 1 (with probability p) or else
aj + 2 (with probability 1 − p), where all choices are mutually independent. If aj+1 = bl stop, and
set g = j + 1. Clearly, g > n/2.

For every a ∈ [1, n] \B,

Prob[a ∈ A] = Prob[a− 1 6∈ A] + p · Prob[a− 1 ∈ A] = 1− (1− p)Prob[a− 1 ∈ A]. (1)

The boundary condition for (1) is: Prob[bi ∈ A] = 1, where bi ∈ B such that bi < a < bi+1. Solving
(1) yields the following formula: for every bi < a < bi+1,

Prob[a ∈ A] = Prob[a ∈ A|bi ∈ A] = δp(a− bi), where δp(x) =
1

2− p
+

1− p
2− p

(p− 1)x. (2)

Let σp(x) = 1
2−p + (1−p)x+1

2−p . Following are simple bounds for the values of δp(x):

δp(x) ≤ δp(2) = 1− p+ p2 for every x ≥ 1, (3)

δp(x) ≤ σp(x) for every x ≥ 1, (4)

σp(x) ≤ σp(k) <
1
2

+
1√
k

for p =
1√
k

and every x ≥ k. (5)
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Before continuing with the proof, we state the asymmetric form of the Lovász local lemma we use
(cf., e.g. [2], [5]).

The Lovász local lemma. Let A1, . . . , An be events in a probability space Ω, and let G = (V,E) be
a graph on V = [1, n] such that for all i, the event Ai is mutually independent of {Aj : (i, j) 6∈ E}.
Suppose that there exist x1, . . . , xn, 0 < xi < 1, so that for all i, Prob[Ai] < xi

∏
(i,j)∈E(1−xj). Then

Prob[∧Ai] > 0.

For any k-term arithmetic progression U = {u1, u2, . . . , uk} in [1, n] denote by EU the event
“U ⊆ A” and let BU = ∪ki=1[bj(i), bj(i+1)] where bj(i), bj(i+1) ∈ B such that bj(i) ≤ ui ≤ bj(i+1). Event
EU is mutually independent of all events EU ′ such that U ′∩BU = ∅. For a fixed U and gap g there are
at most 2mk2 progressions U ′ of gap g such that U ′∩BU 6= ∅: there are at most k different intervals in
BU which U ′ can intersect and any such interval contains at most 2m elements one of which belongs
to U ′ in one of k possible positions. Let the symbols S, T denote k-term arithmetic progressions in
[1, n] having a gap ≤ k and a gap > k respectively. Every event EU is mutually independent of all
but at most dS = 2mk3 events of type ES , and of all but at most dT = 2mk2 n

k = 2mkn events of
type ET . We next show that for an appropriate choice of p, there exist 0 < xS , xT < 1 such that Prob[ES ] < xS(1− xS)dS (1− xT )dT

Prob[ET ] < xT (1− xS)dS (1− xT )dT

 .
Set p = 1√

k
. We bound the probabilities of each event ES as follows. Suppose S = {s1, s2, . . . , sk}

is an arithmetic progression with 1 ≤ s1 < s2 < . . . < sk ≤ n. Then

Prob[ES ] =
k∏
i=1

Prob[si ∈ A|s1, . . . , si−1 ∈ A] =
k∏
i=1

Prob[si ∈ A|si−1 ∈ A].

For every i ∈ [1, k], let j(i) be such that bj(i) ≤ si < bj(i)+1, where bj(i) ∈ B. Similar to the derivation
of (2), for every si 6∈ B: Prob[si ∈ A|si−1 ∈ A] = δp(si −max{si−1, bj(i)}). Denote IS = {i : si 6∈ B}.
Since m is much larger than k, |IS | ≥ k − 2. Therefore, using (3):

Prob[ES ] ≤
∏
i∈I

Prob[si ∈ A|si−1 ∈ A] ≤ (δp(2))k−2 < e4−
√
k.

By a similar reasoning, for any event ET , denote IT = {i : si − bj(i) ≥ k}. By the choice of B,
|IT | ≥ k − 3

√
k. Therefore, using (4) and (5):

Prob[ET ] ≤ (σp(k))k−3
√
k < 26

√
k−k.

Set xS = 2−
√
kk−3 and xT = 28

√
k−k. Then (1−xS)dS > 1− 1

29 >
1
2 and (1−xT )dT > 1− k

2
√
k+9

> 1
2 .

The proof is completed by observing that, for sufficiently large k:

e4−
√
k < 2−

√
kk−3/4,

26
√
k−k < 28

√
k−k/4. 2
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Proof of Theorem 2. To simplify the presentation, some of the technical details are postponed
to the appendix. By Theorem 1 we may assume that r > 2. Fix such r, let k be a sufficiently large
integer, and set n = rk−(2 log r+5)

√
k. As before, define m = n1/

√
k, l = n

m and let B = {bi}li=1 be a
sequence which is not bad, where b1 = 1, bl = n and (i− 1)m < bi ≤ im ∀i ∈ [2, l − 1].

The sequence B is completed into a [1, r]-gap sequence A = {ai}gi=1 ⊂ [1, n] in the following way.
Let p = 2 log r√

k
. Start with a1 = b1 = 1. Suppose {a1, . . . , aj} have already been determined. If

aj + x ∈ B for some x ∈ [1, r − 1], set aj+1 = aj + x. Otherwise choose aj+1 to be either aj + r − 1
(with probability p) or else aj+r (with probability 1−p), where all choices are mutually independent.
If aj+1 = bl stop, and set g = j + 1. Clearly, g > n

r .
Let a ∈ [1, n] \B, and bi ∈ B be such that bi < a < bi+1. If a ≥ bi + r then

Prob[a ∈ A] = p · Prob[a− (r − 1) ∈ A] + (1− p)Prob[a− r ∈ A]. (6)

The boundary conditions for (6) are:

Prob[x ∈ A] =


1 if x = bi

0 if x ∈ [bi + 1, bi + r − 2]
p if x = bi + r − 1.

(7)

The corresponding characteristic polynomial is: f(x) = xr − px − (1 − p) = (x − 1)(xr−1 + xr−2 +
. . . + x2 + x + 1 − p). Let f1 = 1, f2, . . . , fr be the roots of f(x). For any large k, as p = 2 log r√

k
, it

is easy to check that f has no multiple roots (see lemma 6 in the appendix for details). Therefore,
solving (6) yields the following formula: for every a ∈ [bi + r, bi+1 − 1],

Prob[a ∈ A] = Prob[a ∈ A|bi ∈ A] = δp,r(a− bi), where δp,r(x) = c1 +
r∑
i=2

cif
x
i ,

and c1, c2, . . . , cr are constants depending only on p and r (and not on x). A simple upper bound of
δp,r(x) is (see lemma 3 in the appendix):

δp,r(x) ≤ δp,r(r) = 1− p for every x ≥ 1. (8)

It is not difficult to see that |fi| < 1 ∀i ∈ [2, r] (see corollary 8 in the appendix), implying that δp,r(x)
converges exponentially fast to c1. It follows that c1, being the stationary distribution of the Markov
process, is equal to the asymptotic density of A, which is 1

r−p . The values of δp,r(x) can be bounded
as follows (for a complete proof see appendix, lemma 14), provided k is sufficiently large:

δp,r(x) ≤ 1
r

(
1 +

2√
k

)
for every x ≥ k. (9)

Let the symbols S, T, U,ES , ET , EU be defined as before. Using (8) and (9):

Prob[ES ] ≤ (δp,r(r))k−2 < r6−2
√
k,

Prob[ET ] ≤
(

1
r

(
1 +

2√
k

))k−3
√
k

< r5
√
k−k.
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Again, every event EU (ES or ET ) is mutually independent of all but at most dS = 2mk3 events
of type ES , and of all but at most dT = 2mkn events of type ET . Set xS = r−

√
kk−3 and xT =

r(2 log r+4)
√
k−k/k. Then (1− xS)dS > 1− 2

r2 log r+5 >
1
2 , and (1− xT )dT > 1− 2

r2 log r+5 >
1
2 . The proof

is completed by observing that, for sufficiently large k:

r6−2
√
k < r−

√
kk−3/4,

r5
√
k−k < r(2 log r+4)

√
k−k/(4k).

2
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Appendix
This appendix supplies proofs of several properties used in the proof of Theorem 2. Throughout the
appendix we assume that r > 2 and that k is large enough so that p = 2 log r√

k
< 1

2r2 . Recall that
f1 = 1, f2, . . . , fr are the roots of f(x) = xr − px− (1− p), and δp,r(x) = c1 +

∑r
i=2 cif

x
i such that:

(7’): for x ∈ [0, r − 1], δp,r(x) =


1 if x = 0
0 if x ∈ [1, r − 2]
p if x = r − 1

(6’): for x ≥ r, δp,r(x) = p · δp,r(x− r + 1) + (1− p)δp,r(x− r).

Lemma 3 (inequality (8)) ∀x ≥ 1 : δp,r(x) ≤ δp,r(r) = 1− p.

Proof. The proof is by induction on x. By (7’) this holds for all x ∈ [1, r− 1]. Note that δp,r(1) = 0
since r > 2, so that δp,r(r) = p · δp,r(1) + (1 − p)δp,r(0) = 1 − p by (6’). Assume by induction
that δp,r(i) ≤ 1 − p for all i ≤ x, where x ≥ r. By (6’) the value of δp,r(x + 1) is equal to a
convex combination of δp,r(x − r + 2) and δp,r(x − r + 1) which are both at most 1 − p. Therefore
δp,r(x+ 1) ≤ 1− p, completing the proof. 2

Lemma 4 ∀j : |fj | ≤ 1.

Proof. Assuming the contrary, suppose |fj | > 1. Then by the triangle inequality 1−p = |f rj −pfj | =
|fj | · |f r−1

j − p| > 1− p, a contradiction. 2

Since
∏r
j=1 fj = 1− p, the following corollary is a consequence of lemma 4.

Corollary 5 ∀j : |fj | ≥ 1− p. 2

The following lemma asserts that f(x) has no multiple roots.

Lemma 6 ∀i 6= j : fi 6= fj.

Proof. Assume the contrary: fi = fj . Then f ′(fj) = 0⇒ f r−1
j = p

r , and f(fj) = 0⇒ fj(f r−1
j −p) =

1− p, so that fj = 1−p
p( 1
r
−1)

< −r, since p < 1
r . But |fj | ≤ 1 by lemma 4, a contradiction. 2

Lemma 7 |fj | = 1⇒ fj = 1.

Proof. Let fj = a + bi and |fj | = 1 so that a2 + b2 = |fj |2 = 1. Let f rj = c + di, so that
c2 + d2 = |f rj |2 = 1. Then (c+ di)− p(a+ bi) = 1− p, so that c = 1− p+ pa and d = pb. Now,

1 = c2 + d2 = (1− p+ pa)2 + (pb)2 = 1− 2p+ p2 + p2a2 + p2b2︸ ︷︷ ︸
2p2

+2pa− 2p2a = 1− 2p(1− p)(1− a).

Since 0 < p < 1 we conclude that a = 1, and therefore fj = 1. 2

Combining lemmas 4, 6, 7 and the fact that f1 = 1, we obtain the following corollary.
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Corollary 8 ∀j ∈ [2, r] : |fj | < 1. 2

The distance between any pair of roots of f(x), which is strictly positive by lemma 6, can be
bounded away from zero as follows.

Lemma 9 ∀i 6= j : |fi − fj | > 2
r .

Proof. Developing the Taylor series of f(x) around fj : f(fi) = f(fj)+(fi−fj)f ′(fj)+ (fi−fj)2

2 f ′′(y)
where y lies somewhere on the line between fi and fj . By lemma 6, (fi − fj) 6= 0 and f ′(fj) 6= 0,
implying that f ′′(y) = r(r − 1)yr−2 6= 0. Therefore, 0 = (rf r−1

j − p) + (fi−fj2 )r(r − 1)yr−2 and

fi−fj =
−2(rfr−1

j −p)
r(r−1)yr−2 . Now, 1−p ≤ |fj | ≤ 1 by lemma 4 and corollary 5, so that |rf r−1

j | = r|fj |r−1 ≥
r|fj |r ≥ r(1 − p)r. Since p ≤ 1 we can apply Bernoulli’s inequality: (1 − p)r ≥ 1 − rp, so that
r(1− p)r ≥ r(1− rp) > r − 1

2 , using the fact that p < 1
2r2 . Since |fi|, |fj | ≤ 1 it follows that |y| ≤ 1,

and by the triangle inequality,

|fi − fj | =
2|rf r−1

j − p|
|r(r − 1)yr−2|

≥
2(|rf r−1

j | − p)
r(r − 1)

>
2(r − 1

2 − p)
r(r − 1)

>
2
r
.

2

The following corollary is a special case of lemma 9, taking fi = f1 = 1.

Corollary 10 ∀j ∈ [2, r] : |fj − 1| > 2
r . 2

Note that as p tends to 0, the absolute values of the roots of f(x) approach 1. The following
lemma bounds the absolute values of the roots of f(x) (except for f1) away from 1.

Lemma 11 ∀j ∈ [2, r] : |fj |2 < 1− p
r3 .

Proof. Similar to the computation presented in the proof of lemma 7, let fj = a + bi and |fj |2 =
a2 + b2 = 1 − ε where 0 < ε < 1 (since |fj | < 1 by corollary 8). We will show that ε > p

r3 . Let
f rj = c + di, so that |f rj |2 = c2 + d2 = |fj |2r = (1 − ε)r ≥ 1 − rε, using Bernoulli’s inequality. Then
(c+ di)− p(a+ bi) = 1− p, implying that c = 1− p+ pa and d = pb. Now,

1− rε ≤ c2 + d2 = (1− p+ pa)2 + (pb)2 = 1− 2p(1− p)(1− a)− εp2 < 1− p(1− a) =⇒ a > 1− εr

p
.

Recall that |fj | < 1 and |fj−1| > 2
r (by corollaries 8, 10), which by a simple trigonometric argument

imply that a < 1− 2
r2 . So 1− εr

p < a < 1− 2
r2 ⇒ ε > 2p

r3 >
p
r3 . Therefore |fj |2 = 1− ε < 1− p

r3 . 2

Lemma 12 ∀j : |cj | < rr
2
.

Proof. Let M = (mi,j) be an r×r matrix having mi,j = f i−1
j , (i, j ∈ [1, r]), and let c = (c1, . . . , cr)T .

Then by (7’), c is a solution of Mc = d, where d is the r-vector: (1, 0, . . . , 0, p)T . Notice that M is a
van der Monde matrix, so |detM | =

∏
i>j |fi−fj | 6= 0 by lemma 6. Hence M is nonsingular, and by

Cramer’s rule, cj = detMj

detM where Mj is the matrix obtained from M by replacing its jth column by
d. Since for every i, j : |mi,j |, |dj | ≤ 1, it follows that |detMj | ≤ r! < rr. By lemma 9, |fi− fj | > 1

r ,
so |

∏
i>j(fi − fj)| > r−(r2) > r−r

2/2. Therefore, |cj | < rr · rr2/2 < rr
2
. 2
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Lemma 13 ∀x ≥ k : |
∑r
j=2 cjf

x
j | < 1

2r
√
k

if k is sufficiently large.

Proof. |fj |2 < 1− p
r3 and |cj | < rr

2
by lemmas 11, 12. Therefore, |

∑r
j=2 cjf

x
j | ≤

∑r
j=2 |cj | · |fj |x ≤∑r

j=2 |cj | · |fj |k < rr
2+1(1 − p

r3 )
k
2 . Recall that p = 2 log r√

k
so that k

2 > 1
p2 . Therefore (1 − p

r3 )
k
2 <

(1 − p
r3 )

1
p2 ≤ e−

1
pr3 . If k is sufficiently large (with respect to r) then p is small enough so that:

rr
2+1e−

1
pr3 < p

r3 = 2 log r

r3
√
k
< 1

2r
√
k
. 2

Lemma 14 (inequality (9)) ∀x ≥ k : δp,r(x) < 1
r (1 + 2√

k
) if k is sufficiently large.

Proof. |
∑r
j=2 cjf

x
j | < 1

2r
√
k

by lemma 13, so that δp,r(x) = c1 +
∑r
j=2 cjf

x
j ≤ |c1| + |

∑r
j=2 cjf

x
j | <

|c1|+ 1
2r
√
k
. Now c1 is equal to the asymptotic density of 1’s which is 1

r−p . Therefore,

c1 =
1

r − p
=

1
r

(
1

1− p
r

)
=

1
r

∞∑
i=0

(
p

r

)i
<

1
r

(
1 +

3p
2r

)
=

1
r

(
1 +

3 log r
r
√
k

)
<

1
r

(
1 +

3
2
√
k

)
.

Hence δp,r(x) < (1
r + 3

2r
√
k
) + 1

2r
√
k

= 1
r (1 + 2√

k
). 2
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