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Abstract

A family of permutations F forms a realization of a directed graph T = (V,E) if for every
directed edge uv of T , u precedes v in more than half of the permutations. The quality q(F , T )
of the realization is the minimum, over all directed edges uv of T , of the ratio (|F(u, v)| −
|F(v, u)|)/|F|, where |F(x, y)| is the number of permutations in F in which x precedes y. The
study of this quantity is motivated by questions about voting schemes in which each individual
has a linear ordering of all candidates, and the individual preferences are combined to decide
between any pair of possible candidates by applying the majority vote. It is shown that every
simple digraph T on n vertices, with no anti-parallel edges, admits a realization F with quality
at least c/

√
n for some absolute positive constant c, and this is tight up to the constant factor c.

1 Introduction

All directed graphs considered here are finite, simple (that is, have no loops and no parallel edges),
and have no anti-parallel edges. The densest digraphs of this type are tournaments. A tournament
on a set V of n vertices is a directed graph on V in which for every pair of distinct vertices u, v ∈ V ,
either uv or vu is a directed edge, but not both. Let T = (V,E) be a digraph, and let F be a
collection of (not necessarily distinct) permutations of V . We say that F is a realization of T if for
every directed edge uv ∈ E, u precedes v in a majority of the permutations in F . The quality q(F , T )
of the realization is given by

q(F , T ) = minuv∈E
|F(u, v)| − |F(v, u)|

|F|
,

where F(x, y) is the set of all permutations in F in which x precedes y.
McGarvey [9] proved that every tournament (and hence every digraph) has a realization by

permutations, and subsequent results by Stearns [11] and Erdős and Moser [4] imply that every
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tournament on n vertices can be realized by O(n/ log n) permutations, and some tournaments on
n vertices cannot be realized by less than Ω(n/ log n) permutations. In this paper we study the
maximum possible real q = q(n), such that every tournament (and hence every digraph) on n

vertices has a realization with quality at least q. It turns out that q(n) = Θ(1/
√
n), as stated in the

following theorem.

Theorem 1.1 There are three absolute positive constants c1, c2, c3 such that the following holds for
every integer n.
(i) For every digraph T = (V,E) on n vertices there is a set F of permutations of V such that
q(F , T ) ≥ c1√

n
. Moreover, there is such an F of cardinality |F| ≤ c3n log n.

(ii) There exists a tournament T = (V,E) on n vertices, such that for every realization F of T ,
q(F , T ) ≤ c2√

n
. In fact, this holds for almost all tournaments on n vertices.

The question of realizing digraphs by permutations arises in Social Choice Theory (see, e.g., [5]).
Thus, for example, the well known Condorcet Paradox which asserts that the majority might prefer
option A over option B, prefer option B over option C, and yet prefer option C over option A,
even if each individual has a linear order over the options, is simply the fact that the cyclic triangle
can be realized by permutations. Realizations of this type occur in the study of voting schemes
in which each individual has a linear ordering of all candidates, and the individual preferences are
combined to decide between any pair of possible candidates by applying the majority vote. The
quality of a realization is thus a measure for the smallest gap between a pair of candidates, with a
given set of voters. Recent results of Kalai [7] about schemes in which other rules are applied instead
of majority, provide further motivation to study the quantity q(n) defined above, and indeed the
problem of estimating this quantity was raised by Kalai.

The proof of Theorem 1.1, part (i) combines some probabilistic arguments with the minmax
Theorem, and is based on an extremal result about transitive subgraphs in weighted directed graphs,
which may be of independent interest. We present this proof in Section 2, together with an extension
of it dealing with digraphs of small maximum degree. The assertion of part (ii) can be derived from a
known result of de la Vega [3], as described in Section 3. The final Section 4 contains some concluding
remarks.

2 Transitive subgraphs in weighted digraphs

Let D = (V,E) be a loopless directed graph on the set of vertices V = {1, 2, . . . , n} in which every
pair of vertices are joined by at most one oriented edge, and let w : E 7→ R+ be a weight function
assigning to each directed edge a positive real weight. Let w(E) =

∑
ab∈E w(ab) denote the total

weight of the edges of D. For a permutation σ of V let FIT (D,σ) denote the total weight of all
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edges ij of D for which i precedes j in σ, that is

FIT (D,σ) =
∑

ij∈E,σ(i)<σ(j)

w(ij).

Our first result in this section is the following.

Theorem 2.1 There is an absolute, positive constant c such that the following holds. For every
weighted, simple, directed graph on n vertices D = (V,E) with no anti-parallel edges, there is a
permutation σ of V such that

FIT (D,σ) ≥ (
1
2

+
c√
n

)w(E).

This extends a result of Spencer [10], who proved the above result for non-weighted tournaments.
The result is tight, up to the constant c, as follows from the discussion in the next section.

In the proof of the theorem, we apply the following result of Szarek. See also [8] for a shorter
proof of a more general result.

Lemma 2.2 ([12]) For every set of m reals c1, c2, . . . , cm, the expected value of the random variable
|
∑m
i=1 εici|, where the variables εi are independent, identically distributed random variables, each

distributed uniformly on {−1, 1}, is at least 2−1/2(c2
1 + . . .+ c2

m)1/2.

Proof of Theorem 2.1. We make no attempt to optimize the multiplicative constant c and prove
the theorem with c = 1/16. It is convenient to extend the definition of the function w to V × V by
putting w(uv) = 0 for every ordered pair of vertices u, v for which uv 6∈ E. For any two disjoint sets of
vertices A,B ⊂ V , define w(A,B) =

∑
a∈A,b∈B w(ab). Let V = A∪B be a random partition of V into

two disjoint sets, obtained by choosing each member of V , randomly and independently, to lie in A

or in B with equal probability. By linearity of expectation, the expected value of w(A,B) +w(B,A)
is precisely w(E)/2, and hence there are A and B for which

w(A,B) + w(B,A) ≥ w(E)/2. (1)

Fix such a partition V = A ∪B and assume, without loss of generality, that |B| ≤ n/2. With these
fixed A and B, let B = X ∪ Y be a random partition of B obtained by choosing each member of B,
randomly and independently, to lie in X or in Y with equal probability. For each vertex a ∈ A let
Sa be the random variable

Sa = |
∑
x∈X

w(xa)−
∑
x∈X

w(ax) +
∑
y∈Y

w(ay)−
∑
y∈Y

w(ya)|

By Lemma 2.2 (with m = |B|, the reals cb, b ∈ B being given by cb = w(ba) if ba ∈ E, cb = −w(ab)
if ab ∈ E, and cb = 0 otherwise, εb = +1 if b ∈ X and εb = −1 if b ∈ Y ) we conclude that the
expectation of Sa satisfies

E(Sa) ≥
1√
2

[
∑
b∈B

w2(ab) + w2(ba)]1/2.
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By the Cauchy Schwarz Inequality, and using the fact that |B| ≤ n/2 it follows that

E(Sa) ≥
1√
2

∑
b∈B w(ab) + w(ba)

|B|1/2
≥
∑
b∈B w(ab) + w(ba)√

n
. (2)

Summing over all a ∈ A, and using (1) we obtain, by linearity of expectation

E(
∑
a∈A

Sa) ≥
w(E)
2
√
n
.

Therefore, there is a fixed choice of X and Y such that

∑
a∈A
|
∑
x∈X

w(xa)−
∑
x∈X

w(ax)|+
∑
a∈A
|
∑
y∈Y

w(ay)−
∑
y∈Y

w(ya)| ≥ w(E)
2
√
n
,

where here we used the triangle inequality. It follows that either the first summand or the second
one is at least w(E)

4
√
n

, and in that summand, either the contribution of the positive terms or that of

the absolute values of the negative terms is at least w(E)
8
√
n

. In any case, we get two disjoint sets of
vertices, say C and Z, one of which is either X or Y and the other is a subset of A, such that

w(Z,C)− w(C,Z) =
∑
c∈C

∑
z∈Z

(w(zc)− w(cz)) ≥ w(E)
8
√
n
.

Put F = V \ (C ∪ Z). Let σC be a random permutation of the elements of C (chosen uniformly
among all possible permutations). Similarly, let σZ be a random permutation of the elements of
Z and let σF be a random permutation of the elements of F . Finally, let σ be the (random)
permutation of V obtained from the permutation σZ followed by the permutation σC by putting
the permutation σF either before or after all elements of C ∪ Z, where each of the two choices is
equally likely. It is easy to see that the contribution of each directed edge which is not connecting a
vertex in C with one in Z to the expected value of FIT (D,σ) is precisely half its weight, whereas
the total contribution of the edges between C and Z to this expected value exceeds half their total
weight by (W (Z,C) −W (C,Z))/2 ≥ w(E)

16
√
n
. Therefore, the expected value of FIT (D,σ) is at least

(1
2 + 1

16
√
n

)w(E), implying that there is a permutation σ with

FIT (D,σ) ≥ (
1
2

+
1

16
√
n

)w(E).

This completes the proof.

Remark: The part of the proof following the construction of C and Z can be described without
the random choices, by a simple greedy procedure. It is also possible to choose σC , σZ and σF more
carefully (by applying the construction in the proof recursively) in order to get a somewhat better
value of c in the statement of the theorem.
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Proof of Theorem 1.1, part (i). Let T = (V,E) be a digraph, where V = {1, 2, . . . , n}. Consider
the following two-person zero-sum game. The first player, called the edge player, chooses a directed
edge ij ∈ E, and the second player, called the order player chooses a permutation σ of V . The edge
player then pays the order player 1 if and only if σ(i) < σ(j), that is, iff i precedes j in the order σ.
A mixed strategy for the edge player is a probability distribution on the edges of T . By Theorem
2.1, for every such mixed strategy, there is a pure strategy of the order player that ensures him an
expected payoff of at least V al, where V al = 1

2 + c√
n

and c ≥ 1/16 is the constant in the assertion of
the theorem. It follows that the value of the game is at least V al and hence, by the minmax theorem,
there is a mixed strategy of the order player whose expected payoff for every pure strategy of the
edge player is at least V al. A mixed strategy of the order player is a probability distribution P on
the permutations of V , and the fact that its expected payoff is at least V al means that for every
directed edge ij of the tournament, the probability that σ(i) < σ(j) when σ is chosen according
to the distribution P , is at least V al. Put t = 4n log n/c2, and let F be a random collection of t
permutations of V , where each member of F is chosen, randomly and independently, according to
the distribution P . Fix a directed edge ij of T , and let Aij be the event that i precedes j in at least
(1

2 + c
2
√
n

)t permutations in F . The expected number of permutations in F in which i precedes j is
at least (1

2 + c√
n

)t. Therefore, by the standard estimates of Chernoff (cf., e.g., [2], Theorem A.1.4),
the probability that the event Aij does not hold is at most

e−2c2t/(4n) ≤ 1/n2.

It follows that with positive probability, all the events Aij hold, and hence there is a collection F of
4n log n/c2 ( ≤ 1024n log n) permutations of V , such that for every directed edge ij of T ,

|F(i, j)| − |F(j, i)|
|F|

≥ c√
n

( ≥ 1
16
√
n

).

Thus, q(F , T ) ≥ c√
n

, as needed.

A close look at the proof of Theorem 2.1 shows that for digraphs with small maximum degree it
gives a stronger statement. The indegree d−(v) of a vertex v in a digraph D = (V,E) is the number
of vertices u such that uv ∈ E. Similarly, the outdegree d+(v) of v is the number of vertices w such
that vw ∈ E, and the degree d(v) is the sum d(v) = d−(v) + d+(v).

Theorem 2.3 There is an absolute, positive constant c such that the following holds. For every
weighted, simple, directed graph D = (V,E) with no anti-parallel edges and with maximum degree at
most d, there is a permutation σ of V such that

FIT (D,σ) ≥ (
1
2

+
c√
d

)w(E). 2

Indeed, this follows by repeating the proof of Theorem 2.1, and by observing that the |B|1/2 term in
(2) can be replaced by d1/2. This implies the following strengthening of Theorem 1.1, part (i).
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Theorem 2.4 There is an absolute positive constant c1 such that the following holds for every integer
d. For every digraph T = (V,E) with maximum degree d there is a set F of permutations of V such
that q(F , T ) ≥ c1√

d
. 2

3 Random tournaments do not admit a high quality realization

In this section we present the (simple) proof of Theorem 1.1, part (ii). We need the following result
of de-la Vega.

Theorem 3.1 ([3]) There exists an absolute constant b such that the following holds. Let T = (V,E)
be a random tournament on the set V = {1, 2, . . . , n}, obtained by choosing, for each 1 ≤ i < j ≤ n,
randomly and independently, either ij or ji to be a directed edge of T with equal probability. Assign
to each edge of T weight 1. Then almost surely (that is, with probability that tends to 1 as n tends
to infinity), for every permutation σ of V ,

FIT (T, σ) ≤ 1
2

(
n

2

)
+ bn3/2. (3)

Proof of Theorem 1.1, part (ii). Let T = (V,E) be a tournament on n vertices with weight 1
assigned to each of its edges, and suppose that (3) holds for each permutation σ of V . Let F be a
realization of T of quality q = q(F , T ). Let σ be a random member of F , chosen uniformly. For each
directed edge ij of T , the probability that σ(i) < σ(j) is at least 1

2 + 1
2q. Therefore, by linearity of

expectation, the expected value of FIT (T, σ) is at least (1
2 + 1

2q)
(n

2

)
. By (3) it follows that

1
2
q

(
n

2

)
≤ bn3/2,

implying that q ≤ O(n−1/2), as needed. 2

4 Concluding remarks

• By Theorem 1.1, part (ii), most tournaments on n vertices do not admit a realization of quality
ε when ε is much bigger than 1/

√
n. It is still of interest to estimate the number f(n, ε) of

labelled tournaments on n vertices that admit a realization of quality at least ε. Repeating
the argument appearing at the end of Section 2 it follows that each such tournament can be
realized by a set F of at most 4

ε2
log n permutations, implying that

f(n, ε) ≤ (n!)4 logn/ε2 ( ≤ 2O(n log2 n

ε2
) ).
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• Hurlbert and Kierstead [6] have recently considered a different way to realize tournaments. In
this realization, each vertex v of the tournament is assigned a set Sv of k integers, where no
integer is assigned to more than a single vertex. For two distinct vertices u and v, the pair uv
is a directed edge if and only if in the majority of the ordered pairs (x, y) with x ∈ Su, y ∈ Sv,
x exceeds y. This can be viewed as follows: each vertex v is assigned a k-sided die with the
numbers in Sv on its sides. Each pair of vertices can now play by rolling their dice, where
the bigger number wins. The direction of the edge connecting u and v is from the player who
is more likely to win, to the other player. The authors of [6] proved that every tournament
can be realized by an appropriate collection of dice. For a tournament T , they defined the
dice dimension of T , denoted dd(T ), to be the minimum k such that T can be realized by
k-sided dice. A simple counting argument shows that for some tournament on n vertices, the
dice dimension is at least Ω(n/ log n), and the authors of [6] proved that the dice dimension
of any tournament on n vertices is at most O(n). This can be improved to a (tight) bound of
O(n/ log n) by applying the result of Erdős and Moser [4], as follows.

There is a simple way to obtain from any realization of a tournament T = (V,E) by a set F of k
permutations, a realization of the tournament by k-sided dice. Indeed, if F = {π1, π2, . . . , πk}
define, for each v ∈ V , Sv = {jn− π−1

j (v) + 1 : 1 ≤ j ≤ k}, where π−1
j (v) is the place of v in

the permutation πj . It is not difficult to check that if u precedes v in t of the k permutations,
then in precisely k(k− 1)/2 + t of the pairs (x, y) ∈ Su×Sv, x > y. Therefore, the result of [4]
mentioned in the introduction implies that the dice dimension of any tournament on n vertices
is at most O(n/ log n). Similarly, by Theorem 1.1 here, every tournament can be realized by
dice so that for every directed edge uv, the probability that the die of u will beat that of v is
at least 1/2 + Ω( 1

n3/2 logn
). On the other hand, linearity of expectation together with the result

of de-la Vega mentioned in Section 3 easily imply that for most tournaments T on n vertices,
in any dice realization there will be directed edges uv such that the probability that the die
of u will beat that of v is at most 1/2 + O( 1

n1/2 ). Indeed, if for every directed edge of T this
probability is at least 1/2(1 + q), choose, for each vertex v of T , a random element xv ∈ Sv,
and let σ be the ordering of the vertices in a decreasing order of the numbers xv. For each
fixed directed edge uv, the probability that xu > xv is at least 1/2(1 + q). Thus, by linearity of
expectation, the expected value of FIT (T, σ) is at least 1/2(1+q)

(n
2

)
. As, by the result of de-la

Vega (Theorem 3.1), for most tournaments T on n vertices, FIT (T, π) ≤ 1/2
(n

2

)
+O(n3/2) for

every permutation π, the desired upper estimate for q follows.

• The proof of Theorem 2.1 (and the related proof of Theorem 2.3) can be converted into algo-
rithmic proofs. That is, we can prove the following.

Proposition 4.1 There is an absolute, positive constant c such that the following holds. There
is a deterministic algorithm, that given a weighted, simple, directed graph D = (V,E) with no
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anti-parallel edges and with maximum degree at most d, finds, in polynomial time, a permutation
σ of V such that

FIT (D,σ) ≥ (
1
2

+
c√
d

)w(E).

One way to prove the above proposition is to first show, using Hölder’s Inequality, that for any
real random variable X

E(|X|) ≥ E(X2)3/2

E(X4)1/2
.

Next, observe that if c1, . . . , cm are reals, ε1, . . . , εm are 4-wise independent, identically dis-
tributed random variables, each distributed uniformly on {−1, 1} and X =

∑m
i=1 εici, then

E(X2) =
∑m
i=1 c

2
i and

E(X4) =
m∑
i=1

c4
i + 6

∑
1≤i<j≤m

c2
i c

2
j ≤ 3(

m∑
i=1

c2
i )

2.

Therefore, by the previous inequality, E(|X|) ≥ 3−1/2(c2
1 + . . . + c2

m)1/2. This shows that the
assertion of Szarek’s Inequality (Lemma 2.2) holds (with a slight loss in the constant factor)
even under the assumption that the variables εi are 4-wise independent, rather than fully
independent. It follows that one can obtain an algorithmic version of the proofs of Theorem
2.1 and Theorem 2.3 by checking all points of a small sample space that supports n 4-wise
independent random variables εi as needed. Constructions of such spaces with O(n2) points
appear in [1] (see also [2]), providing the required efficient, deterministic algorithm.

• The proof in Section 3 provides no explicit example of a tournament T on n vertices that admits
no realization of quality Ω(1). Such examples are given by the quadratic residue tournaments.
For a prime p ≡ 3 ( mod 4), the tournament Tp is the tournament whose set of vertices are
the elements of the finite field Zp, and ij forms a directed edge iff i− j is a quadratic residue.
It is proved in [2], Chapter 9, that if we assign weight 1 for each edge of Tp, then, for every
permutation σ of Zp,

FIT (Tp, σ) ≤ (
1
2

+O(
log p
p1/2

))

(
p

2

)
.

By the argument of Section 3 this implies that the quality of any realization of Tp does not
exceed O(log p/

√
p). It would be interesting to get rid of the logarithmic factor and find an

explicit example of tournaments on n vertices which admit no realization of quality better than
O(1/

√
n).
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