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ABSTRACT

Given a family of sets S, where the sets in S admit k ‘degrees of freedom’, we prove
that not all (k + 1)-dimensional posets are containment posets of sets in S. Our results
depend on the following enumerative result of independent interest: Let P (n, k) denote
the number of partially ordered sets on n labeled elements of dimension k. We show that
logP (n, k) ∼ nk log n where k is fixed and n is large.
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1. Introduction

Let S be a family of sets. We say that a partially ordered set P has an S-containment representation

provided there is a map f : P → S such that x < y iff f(x) ⊂ f(y). In this case we say that P is an S-order.

For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]).

Similarly, angle orders are the containment orders of angles in the plane, where an angle includes its interior

(see [3]). The containment orders of d-dimensional boxes are discussed in [4] where it was shown that this

family of posets is exactly the set of 2d-dimensional posets.

Note that circles admit three ‘degrees of freedom’: two center coordinates and a radius. An angle admits

four degrees of freedom: the two coordinates of its vertex and the slopes of its rays. Further, it is known

that not all 4-dimensional posets are circle orders [9] nor are all 5-dimensional posets angle orders [7]. These

are confirming instances of the following intuitive notion:

If the sets in S admit k degrees of freedom, then not all (k + 1)-dimensional posets are S-orders.

Our main result is to prove (a precise version of) this intuitive principle.
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2. Enumeration of k-dimensional posets

Recall that the dimension of a partially ordered set P is the minimum number of linear extensions whose

intersection is P . Alternatively, it is the smallest k so that the elements of P can be mapped to points in

Rk so that x < y iff each coordinate of x’s point is less than or equal to the corresponding coordinate of y’s

point. (See [2,6].)

Denote by P (n, k) the number of posets with element set {1, . . . , n} and dimension at most k.

By f(n) ∼ g(n) we mean that the limit f(n)/g(n) as n tends to infinity is 1.

Theorem 1. For k fixed and n large we have logP (n, k) ∼ nk log n.

Proof. First, one has P (n, k) ≤ (n!)k ≤ nnk as there are n! possible linear orders on {1, . . . , n} and we

intersect k of them to form every possible k-dimensional poset. This gives logP (n, k) ≤ nk log n.

Second, let m = n/ log n. Let Bj denote the set of m boxes in Rk of the form

[0,m+ 1]× · · · × [0,m+ 1]× [i, i+ 1
2 ]× [0,m+ 1]× · · · × [0,m+ 1]

where there are k factors and [i, i + 1
2 ] is the jth factor with 1 ≤ i ≤ m. Each box has 2k corners and is

uniquely determined by its two extreme corners: the one with the smallest values in each coordinate and

the one with the largest. Also, notice that by choosing one box from each Bj one determines a cube (with

side length 1
2 ) which is the intersection of the k boxes. There are mk such cubes.

We define a k-dimensional poset on {1, . . . , n} as follows: Let the first 2mk elements be assigned to

the extreme corners of boxes in B1, . . . ,Bk. Now to each element of {2mk + 1, . . . , n}, assign a point in

one of the mk small cubes. Note that each assignment of the remaining elements to cubes gives a different

k-dimensional poset, as an element in the poset lies between the two elements corresponding to the extreme

points of a box iff the point assigned to it lies in that box. Thus we have,

P (n, k) ≥
(
mk
)n−2km

=
(

n

log n

)nk−2k2n/ logn

(∗)

whence logP (n, k) ≥ n(k − o(1)) log n.

Remark. Our construction uses the fact that km boxes in Rk can determine at least mk cells. A more

exact estimate for this problem appears in [5]. For our purposes here our estimate suffices.

3. Degrees of Freedom

We now make the intuitive notion of ‘degrees of freedom’ precise. Let S be a family of sets. We say the

sets in S have k degrees of freedom provided:

1. Each set in S can be uniquely identified by a k-tuple of real numbers, i.e., there is an injection

f : S → Rk, and
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2. There exists a finite list of polynomials p1, p2, . . . , pt in 2k variables with the following property: If

S, T ∈ S map to (x1, . . . , xk), (y1, . . . , yk) ∈ Rk respectively, then the containment S ⊂ T can be

determined based on the signs of the values pj(x1, . . . , xk, y1, . . . , yk) for 1 ≤ j ≤ t.

For example, let us consider circles (disks) in the plane. Suppose we have two circles C1 and C2 with

centers and radii given by xi, yi, ri (i = 1, 2). One checks that we have C1 ⊂ C2 iff both of the following

hold:
(x1 − x2)2 + (y1 − y2)2 − (r1 − r2)2 ≤ 0

r1 − r2 ≤ 0

Thus the family of circles in the plane admits three degrees of freedom. Similarly, the containment of one

angle in another can be expressed in terms of a finite list of polynomial inequalities.

Our main result depends on the following result due (essentially) to Warren [10] (see also [1]): Let

p1, . . . , pr be polynomials in ` variables. Let s(p1, . . . , pr) denote the number of sign patterns (pluses,

minuses and zeroes) of the r polynomials have as their variables range over R`. That is,

s(p1, . . . , pr) =
∣∣∣∣{(sgn[p1(x)], . . . , sgn[pr(x)]

)
: x ∈ R`

}∣∣∣∣.
Theorem 2. Let p1, . . . , pr be as above and suppose the degree of each polynomial is at most d. If r ≥ `

then

s(p1, . . . , pr) ≤
[

8edr
`

]`
.

Proof. Warren [10] places an upper bound of (4edr/`)` on the number of sign patterns in which one counts

only plus/minus sign patterns. One can extend this result to include zeroes by “doubling” each polynomial

as follows:

Let S denote the set of all sign patterns (plus/minus/zero) for p1, . . . , pr. Clearly S is finite; indeed

|S| ≤ 3`. Now let X denote a finite subset of R` in which each sign pattern is represented exactly once. Put

ε = 1
2 min

{
|pj(x)| : x ∈ X, pj(x) 6= 0, and 1 ≤ j ≤ r

}
and let q+

j = pj + ε and q−j = pj − ε. Note that for each x ∈ X, q+
j (x) 6= 0 and q−j (x) 6= 0, and that the

sign patterns of the q’s attained at points in X are all distinct. The result now follows by applying Warren’s

Theorem to the q’s.

We use this to achieve our main result:

Theorem 3. Let S be a family of sets admitting k degrees of freedom. Then there exists a (k+1)-dimensional

poset which is not an S-containment order.

Proof. Let S be a family of sets admitting k degrees of freedom. Let Sn denote the family of S-orders on

{1, . . . , n}. For each n-tuple of sets in S, (S1, . . . , Sn), we have a (potentially) different poset depending on
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the sign pattern of r = 2
(
n
2

)
t polynomials in ` = nk variables which have some maximum degree d (which is

independent of n). Hence by Theorem 2:

|Sn| ≤

[
16ed

(
n
2

)
t

nk

]nk
=
[
O(1)n

]nk
. (∗∗)

Were every (k + 1)-dimensional poset an S-order we would have logP (n, k + 1) ≤ log |Sn|, contradicting

Theorem 1.

Remark. Our proof in Theorem 3 is nonconstructive. One can, however, give an explicit (k+1)-dimensional

poset which is not an S-containment order as follows. Choose n sufficiently large so that P (n, k+ 1) > |Sn|;

this can be done explicitly using inequalities (∗) and (∗∗). Let P be the partially ordered set which is the

disjoint union of all (k+ 1)-dimensional posets on n elements. Necessarily, P is not an S-containment order

and dimP = k + 1.

Theorem 3 gives a common proof for the known results concerning circle and angle orders. We can also

apply it to a prove a conjecture due to [9]:

Consider the family of p-gons in the plane. These are described by 2p real variables (the x, y coordinates

of the corners) and the containment of one p-gon in another can be determined by a list of polynomial

inequalities as follows:

First note that given four points A = (a1, a2), B = (b1, b2), C = (c1, c2) and D = (d1, d2) in general

position, the line segment AB intersects the line segment CD iff

det

 1 a1 a2

1 b1 b2
1 c1 c2

 ·
 1 a1 a2

1 b1 b2
1 d1 d2

 < 0

and

det

 1 c1 c2
1 d1 d2

1 a1 a2

 ·
 1 c1 c2

1 d1 d2

1 b1 b2

 < 0.

Thus the intersection of two line segments can be determined by examining the signs of two quadratic

polynomials.

Now suppose that we are given two p-gons V and W where the vertices of V (in order) are v1,v2, . . . ,vp

where vi = (vi1, vi2). Likewise, the vertices of W are wi = (wi1, wi2) for i = 1, . . . , p. Without loss of

generality (and for ease of exposition) we may assume that the 2p points are in general position and that

no two have the same y-coordinate. Furthermore, by rescaling, we may assume that the two polygons are

contained in the rectangle [−1, 1]2.

Now, to test if V is contained in W it suffices to show that the boundaries of the two p-gons do not

intersect and that one of V ’s vertices is contained in the interior of W . To show that the boundaries do not
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intersect, one checks that for all i, j ∈ {1, . . . , p} the line segments vivi+1 and wjwj+1 (subscript addition

modulo p) do not intersect. This can be done by examining the signs of 2p2 polynomials. Next we test if v1

lies in the interior of W by counting the number of times a horizontal ray emerging from v1 intersects the

boundary of W ; this count is odd if and only if v1 is in the interior of W . Since all vertices are contained

in [−1, 1]2, we check if the line segment (v11, v12)(2, v12) intersects wjwj+1 for j = 1, . . . , p. Hence by

computing 2p further polynomials, we determine if v1 is contained in the interior of W .

The authors of [9] proposed the problem: Is there a (2p + 1)-dimensional order which is not a p-gon

order? The existence of such an order is now readily verified using our Theorem 3.

Finally, it is known [3] that all 4-dimensional posets are angle orders and it is conjectured that all

3-dimensional posets are circle orders (see [8,9]). In [9] it is shown that all 2p-dimensional posets are p-

gon orders. One is tempted to conjecture: If S admits k degrees of freedom (and no fewer) then every

k-dimensional poset is an S-containment order. This, however, is false as the following simple example

shows. Let S be the family of all horizontal rays in the plane which point in the positive x-direction. The

S-containment posets are exactly the disjoint unions of chains. One now checks that S admits two degrees

of freedom, but 2{1,2}, the subsets of a 2-set poset, is not an S-poset.
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