Graph Theory
Homework assignment #1
Due date: Sunday, November 15, 2015

Problem 1. Prove that for each \(n \geq 1 \), the number of graphs with vertex set \(\{1, \ldots, n\} \) and all degrees even is \(2^{\binom{n-1}{2}} \).

Problem 2. Suppose that \(n \geq 8 \). Prove that every \(n \)-vertex graph graph with at least \(6n - 20 \) edges contains a subgraph with minimum degree at least 7.

Problem 3. Let \(G \) be a graph with \(n \) vertices. Prove that \(G \) contains a cycle with a chord (an edge connecting nonconsecutive vertices of the cycle) if either

(a) \(\delta(G) \geq 3 \) or

(b) \(|E(G)| \geq 2n - 3 \) and \(n \geq 4 \).

Problem 4. Prove that every graph \(G \) with \(m \) edges admits a bipartition \(V(G) = V_1 \cup V_2 \) such that the number of edges of \(G \) crossing between \(V_1 \) and \(V_2 \) is at least \(m/2 \).

Problem 5. Let \(d_1, \ldots, d_n \) be positive integers. Prove that there exists a tree with degrees \(d_1, \ldots, d_n \) if and only if

\[
d_1 + \ldots + d_n = 2n - 2.
\]

Problem 6. Prove that if \(T_1, \ldots, T_k \) are pairwise intersecting subtrees of a tree \(T \), then \(T \) has a vertex that belongs to each of \(T_1, \ldots, T_k \).

Problem 7. Prove that every graph \(G \) contains each tree with \(\delta(G) \) edges as a subgraph.

Problem 8. Compute the number of spanning trees of the complete bipartite graph \(K_{m,n} \).

Please do NOT submit written solutions to the following exercises:

Exercise 1. Show that a graph is bipartite if and only if it contains no odd cycles. In particular, all trees are bipartite.

Exercise 2. Suppose that \(m \leq n \), let \(A \) be an \(m \times n \) matrix and let \(B \) be an \(n \times n \) matrix. Prove, using the Lindström–Gessel–Viennot lemma, the Cauchy–Binet formula:

\[
det AB = \sum_{J \subseteq \binom{[n]}{m}} det A_J \cdot det B_J,
\]

where \(A_J \) is the \(m \times m \) submatrix of \(A \) consisting of the columns indexed by \(J \) and \(B_J \) is the \(m \times m \) submatrix of \(B \) consisting of the rows indexed by \(J \).

Exercise 3. Show that the block graph of a connected graph is a tree.