A sequence $S = s_1s_2...s_{2n}$ is called a repetition if $s_i = s_{n+i}$ for each $i = 1, ..., n$. A coloring of the vertices of a graph G is nonrepetitive if no simple path of G looks like a repetition. The minimum number of colors needed for a nonrepetitive coloring of G is denoted by $\pi(G)$ and is called the Thue chromatic number of G.

The celebrated 1906 theorem of Thue [4] asserts that $\pi(P_n) = 3$ for all $n \geq 4$, where P_n is a path with n vertices. Let $\pi(d)$ denote the supremum of $\pi(G)$ where G ranges over all graphs with $\Delta(G) \leq d$. In [1] it was proved by the probabilistic method that there are absolute positive constants c_1 and c_2 such that

$$c_1 \frac{d^2}{\log d} \leq \pi(d) \leq c_2d^2.$$

Recently Kündgen and Pelsmajer [2] proved that $\pi(G) \leq 4^t$ for graphs of treewidth at most t. Hence, by the result of Robertson and Seymour [3], any minor-closed class of graphs with unbounded Thue chromatic number must contain all planar graphs. This makes the following natural question even more intriguing:

Is the Thue chromatic number bounded for planar graphs?

A lot of similar variations involving graphs and combinatorics on words are possible. The talk will concentrate on several most interesting open problems of this type.

References

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, 65-516 Zielona Góra, Poland

E-mail address: J.Grytczuk@wmie.uz.zgora.pl

1