NONREPETITIVE COLORINGS OF GRAPHS

JAREK GRYTCZUK

A sequence $S = s_1 s_2 \dots s_{2n}$ is called a *repetition* if $s_i = s_{n+i}$ for each $i = 1, \dots, n$. A coloring of the vertices of a graph G is *nonrepetitive* if no simple path of G looks like a repetition. The minimum number of colors needed for a nonrepetitive coloring of G is denoted by $\pi(G)$ and is called the *Thue chromatic number* of G.

The celebrated 1906 theorem of Thue [4] asserts that $\pi(P_n) = 3$ for all $n \ge 4$, where P_n is a path with *n* vertices. Let $\pi(d)$ denote the supremum of $\pi(G)$ where *G* ranges over all graphs with $\Delta(G) \le d$. In [1] it was proved by the probabilistic method that there are absolute positive constants c_1 and c_2 such that

$$c_1 \frac{d^2}{\log d} \le \pi(d) \le c_2 d^2.$$

Recently Kündgen and Pelsmajer [2] proved that $\pi(G) \leq 4^t$ for graphs of treewidth at most t. Hence, by the result of Robertson and Seymour [3], any minor-closed class of graphs with unbounded Thue chromatic number must contain all planar graphs. This makes the following natural question even more intriguing:

Is the Thue chromatic number bounded for planar graphs?

A lot of similar variations involving graphs and combinatorics on words are possible. The talk will concentrate on several most interesting open problems of this type.

References

- N. Alon, J. Grytczuk, M. Hałuszczak, O. Riordan, Nonrepetitive colorings of graphs, Random Struct. Alg. 21 (2002), 336-346.
- [2] A. Kündgen, M.J. Pelsmajer, Nonrepetitive colorings of graphs of bounded treewidth, manuscript.
- [3] N. Robertson, P.D. Seymour, Graph minors V: Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92-114.
- [4] A. Thue, Über unendliche Zeichenreichen, Norske Vid Selsk. Skr. I. Mat. Nat. Kl. Christiana, (1906), 1-67.

FACULTY OF MATHEMATICS, COMPUTER SCIENCE AND ECONOMETRICS, UNIVERSITY OF ZIELONA GÓRA, 65-516 ZIELONA GÓRA, POLAND

E-mail address: J.Grytczuk@wmie.uz.zgora.pl