Probabilistic Methods in Combinatorics: Homework Assignment Number 3 Noga Alon

Solutions will be collected in class on Tuesday, May 23, 2017.

- 1. Prove that there is an absolute constant C > 0 so that for every integer $k \ge 1$, every $\lceil Ck \rceil$ regular directed graph (that is, a graph in which all indegrees and all outdegrees are exactly $\lceil Ck \rceil$) contains k pairwise vertex disjoint even directed cycles (that is, cycles of even lengths).
- 2. Consider the covering of the plane by the grid squares, that is, by the unit squares whose vertices are the grid points. Prove that there is an absolute constant C > 0 so that for every $0.1 > \epsilon > 0$ there is a set F of points in the plane containing exactly one point in each grid square so that every planar (not necessarily aligned) rectangle of dimensions ϵ by $C \frac{\log(1/\epsilon)}{\epsilon}$ contains at least one point of F.
- 3. Prove that there is an absolute constant C > 0 so that for every (finite or infinite) group H, every integer $k \ge 1$ and every subset $A \subset H$ of size $|A| = \lceil Ck \log k \rceil$ there is a function $f: H \mapsto [k] = \{1, 2, ..., k\}$ so that for every $h \in H$, f(hA) = [k].
- 4. Let w be a random vector of length n with $\{0,1\}$ entries obtained by selecting each entry, randomly and independently, to be 1 with probability 1/3, and 0 with probability 2/3. Let v_1, v_2, \ldots, v_k be k distribution vectors, each of length n (that is, each v_i has n non-negative coordinates whose sum is 1). Show that the probability that the inner product of w and v_i is at least 1/3 for each $i, 1 \le i \le k$, is at least $(1/3)^k$.
- 5. Is the following statement correct ? (prove or supply a counterexample):

Let G_1, G_2, \ldots, G_t be a collection of $t = n^{20}$ graphs on the same set of vertices V, |V| = n. Suppose the chromatic number of each G_i is at least $r = 3n^{0.1}$, and suppose that n is sufficiently large. Then there is a subset $U \subset V$ of size at most 2n/3, so that for every $i, 1 \leq i \leq t$, the chromatic number of the induced subgraph of G_i on U is at least $\frac{r}{3} = n^{0.1}$.

6. Is the following statement correct ? (prove or supply a counterexample):

Let G_1, G_2, \ldots, G_t be a collection of $t = n^{20}$ graphs on the same set of vertices V, |V| = n. Suppose the chromatic number of each G_i is at least $r = 3 \log_2 n$, and suppose that n is sufficiently large. Then there is a subset $U \subset V$ of size at most 2n/3, so that for every $i, 1 \leq i \leq t$, the chromatic number of the induced subgraph of G_i on U is at least $\frac{r}{3} = \log_2 n$.