Probabilistic Methods in Combinatorics: Homework Assignment Number 4 Noga Alon

Solutions will be collected in class on Tuesday, June 20, 2017. This deadline (June 20) is strict

1. Show that for any $\epsilon > 0$ there is a $C = C(\epsilon)$ such that every set S of at least $\epsilon 4^n$ vectors in Z_4^n contains four vectors so that the Hamming distance between any pair of them is at least $n - C\sqrt{n}$.

Hint: use an appropriate martingale to show that more than 3/4 of the vectors are within distance $C\sqrt{n}/2$ of S

- 2. Let *H* be a graph with *m* edges and maximum degree at most 10. Let *U* be a random set of vertices of *H* obtained by picking each vertex, randomly and independently, with probability $p = \frac{1}{\log m}$. Show that the probability that *U* is independent is $(1 p^2)^{m(1-o(1))}$ (where the o(1) term tends to zero as *m* tends to infinity.)
- 3. Prove that there exists n_0 so that for every $n > n_0$ there is a bipartite graph G with classes of vertices A and B, where |A| = |B| = n, in which the degree of every vertex $a \in A$ is exactly $\lfloor n^{0.4} \rfloor$ and for every two subsets $X \subset A$ and $Y \subset B$ so that $|X| = |Y| \ge n^{0.9}$, the induced subgraph of G on $X \cup Y$ contains a cycle of length 4.
- 4. Find a threshold function for the following property of a graph G on n vertices: every set of at least n/2 vertices of G contains a (not necessarily induced) cycle of length 5. (Recall that, by definition, t(n) is such a threshold function if when p(n) = o(t(n)), then with high probability, G(n, p(n)) does not satisfy the property, and if t(n) = o(p(n)) then with high probability G(n, p(n)) satisfies it).
- 5. Prove that there exists a constant d_0 so that for every $d > d_0$, every d-regular graph contains a spanning subgraph with minimum degree at least 10 and girth at least 10.