Topics in Combinatorics and Graph Theory: Homework Assignment Number 1 Noga Alon

Solutions will be collected in class on Wednesday, March 17, 2010.

1. (i) What is the value of the Lovász theta function of a complete graph on n vertices ?
(ii) What is the value of the theta function of the complete bipartite graph $K_{m, n}$ with vertex classes of sizes m and n, where $m \geq n$?
2. (i) Let G be an arbitrary undirected graph, and let K_{m} denote a complete graph on m vertices. Express the Shannon capacity $c\left(G \cdot K_{m}\right)$ of the product of G and K_{m} as a function of $c(G)$ and m.
(ii) In the notation of (i), express the Shannon capacity $c\left(G+K_{m}\right)$ of the vertex disjoint union of G and K_{m} as a function of $c(G)$ and m.
3. (i) Let G and H be two graphs, and suppose $\alpha(H)=\chi(\bar{H})$, that is, the independence number of H is equal to the chromatic number of its complement. Express the Shannon capacity $c(G+H)$ of the disjoint union of G and H as a function of $c(G)$ and $c(H)$.
(ii) Let G be the graph obtained from a cycle of length 5 by adding to it three isolated vertices. Prove that the Shannon capacity of G satisfies $c(G)=\sqrt{5}+3$ and conclude that there is no finite k for which $c(G)=\left(\alpha\left(G^{k}\right)\right)^{1 / k}$.
4. Let G be a graph on n vertices, and suppose that there are 5 subgraphs $G_{1}, G_{2}, \ldots, G_{5}$ of the complete graph K_{n} on n vertices, with each of them isomorphic to G, so that no edge of K_{n} belongs to all 5 of them. Prove that $c(G) \geq n^{1 / 5}$.
5. (i) Show that for any graph G on n vertices, $\Theta(G)+\Theta(\bar{G}) \geq 2 \sqrt{n}$, where $\Theta(G)$ is the Lovász theta function of G, and $\Theta(G)$ is the theta function of its complement.
(ii) Prove that the above inequality is tight for every perfect square $n=m^{2}$ by showing that there is a graph G on n vertices so that $\Theta(G)+\Theta(\bar{G})=2 m(=2 \sqrt{n})$
