# Topics in Combinatorics and Graph Theory: Homework Assignment Number 2 Noga Alon 

Solutions will be collected in class on Wednesday, April 7, 2010.

1. Recall that for a graph $G, R(G)$ is the limit, as $k$ tends to infinity, of $\left[\chi\left(G^{k}\right)\right]^{1 / k}$. What is the value of $R\left(C_{5}\right)$, where $C_{5}$ is a cycle of length 5 ?
2. Let $G_{n}=(V, E)$ be the graph of the $n$-cube, that is, $V=Z_{2}^{n}$ and two vertices are adjacent iff they differ in exactly one coordinate. What is the Shannon capacity $c\left(G_{n}\right)$ of $G_{n}$ ? What is the Witsenhausen rate $R\left(G_{n}\right)$ of $G_{n}$ ?
3. An automorphism of a graph $G=(V, E)$ is a one-to-one function from $V$ to $V$ that maps edges to edges. $G$ is called vertex transitive if for any two distinct vertices $u, v$ of $G$ there is an automorphism of $G$ mapping $u$ to $v$. Show that for any vertex transitive graph $G=(V, E)$, $\chi^{*}(G)=\frac{|V|}{\alpha(G)}$, where $\chi^{*}(G)$ is the fractional chromatic number of $G$ and $\alpha(G)$ is the independence number of $G$.
4. Let $n>10^{6}$ be a large square. Bob knows $n$ pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ of binary vectors, each of length $n$, where for each $i$, the Hamming distance between $x_{i}$ and $y_{i}$ is at least $n-0.5 \sqrt{n}$. Alice knows one of the vectors of each pair, that is, she knows $z_{1}, z_{2}, \ldots, z_{n}$ where for each $i$, $z_{i} \in\left\{x_{i}, y_{i}\right\}$. Can Alice send Bob less than $10 n$ bits that will enable him to identify all the $n$ vectors $z_{i}$ among his $2 n$ vectors ? (We assume that Bob and Alice can agree on a communication protocol ahead of time, and they both know in advance that the Hamming distance between each pair of vectors of Bob will be at least $n-0.5 \sqrt{n}$.)
5. Let $G=(V, E)$ be a graph of chromatic number $r$ on the set of vertices $V=\{1,2, \ldots, n\}$, and suppose that there is a proper vertex-coloring $f: V \mapsto\{1,2, \ldots, r\}$ of $G$ by $r$ colors so that for every two connected vertices $i, j$ with $i<j, f(i)<f(j)$. Let $L(G)$ be the graph whose vertices are all ordered pairs $(i, j)$, where $1 \leq i<j \leq n$ and $\{i, j\}$ is an edge of $G$. The vertices $(i, j)$ and $\left(i^{\prime}, j^{\prime}\right)$ of $L(G)$ are connected if and only if either $j=i^{\prime}$ or $i=j^{\prime}$.
(i) What is the chromatic number of $L(G)$ ?
(ii) Can $R(L(G))$ be bigger than 4 ?
