Topics in Combinatorics and Graph Theory: Homework Assignment Number 3 Noga Alon

Solutions will be collected in class on Wednesday, May 5, 2010.

- 1. Show that for every $\epsilon > 0$ there is a $\delta = \delta(\epsilon) > 0$ and $n_0 = n_0(\epsilon)$ such that every graph G = (V, E) with $n > n_0$ vertices and at least ϵn^2 edges contains a *d*-regular (not necessarily spanning or induced) subgraph, where $d \ge \delta n$.
- 2. Is the following claim correct? Prove, or describe a counter-example.

Claim: For every $\epsilon > 0$ there is an $n_0 = n_0(\epsilon)$ such that for every $n > n_0$ and every set $A \subset \{1, 2, \ldots, n\}$ satisfying $|A| \ge \epsilon n$, there are three distinct elements $a, b, c \in A$ satisfying

$$4a + 6b = 10c.$$

3. Prove that the number of triangle-free graphs on a set V of n labeled vertices is

$$2^{(\frac{1}{4}+o(1))n^2}$$
.

where the o(1)-term tends to 0 as n tends to infinity.

- 4. Prove that for every $\epsilon > 0$ and any integer h there are $\delta = \delta(\epsilon, h) > 0$ and $n_0 = n_0(\epsilon, h)$ such that the following holds. For any graph H on h vertices, any graph G on $n > n_0$ vertices from which one has to delete at least ϵn^2 edges to destroy all copies of H contains at least δn^h copies of H.
- 5. Is the following claim correct? Prove, or describe a counter-example.

Claim: For every $\epsilon > 0$ there are $\delta = \delta(\epsilon) > 0$ and $n_0 = n_0(\epsilon)$ such that for every $n > n_0$ and every set $A \subset Z_n$ from which one has to delete at least ϵn elements to get a set A' with no $a_1, a_2, a_3, a_4, a_5 \in A'$ satisfying

$$a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5 \equiv 6 \pmod{n} \tag{1}$$

the number of solutions of (1) with $a_1, a_2, a_3, a_4, a_5 \in A$ is at least δn^4 .