Topics in Combinatorics and Graph Theory: Homework Assignment Number 4 Noga Alon

Solutions will be collected in class on Wednesday, May 26, 2010.

1. Let $A=\left(A_{i j k}: 1 \leq i, j, k \leq n\right)$ be a 3 -dimensional array of real numbers. For $I, J, K \subset N=$ $\{1,2, \ldots, n\}$ and a real d, the cut-array $D(I, J, K ; d)$ is the three dimensional array $\left(D_{i j k}\right)$ defined by $D_{i j k}=d$ for $i \in I, j \in J, k \in K$ and $D_{i j k}=0$ otherwise. Show that for every $\epsilon>0$ and every array A as above in which $\left|A_{i j k}\right| \leq 1$ for all admissible i, j, k, there is a set of $s \leq 1 / \epsilon^{2}$ cut-arrays $D^{(1)}, \ldots, D^{(s)}$ so that if $W=A-D^{(1)}-\cdots-D^{(s)}$ then for every $I, J, K \subset N$

$$
\left|\sum_{i \in I, j \in J, k \in K} W_{i j k}\right| \leq \epsilon n^{3} .
$$

2. Let $G=(V, E)$ be a graph on n vertices whose edges are colored by 3 colors. Describe a polynomial time algorithm that approximates, up to an additive error of $\frac{n^{2}}{1000}$, the minimum possible value of

$$
\sum_{i=1}^{3}\left|e_{i}(S, \bar{S})-\frac{i n^{2}}{100}\right|,
$$

where the minimum is taken over all cuts (S, \bar{S}) in G, and where $e_{i}(S, \bar{S})$ denotes the number of edges of color i in the cut for all $1 \leq i \leq 3$.
3. Show that for every $\epsilon>0$ there exist $\delta=\delta(\epsilon)>0$ and $m_{0}=m_{0}(\epsilon)$ so that the following holds: Let $G=(V, E)$ be a graph, and let V_{1}, V_{2}, V_{3} be pairwise disjoint subsets of V, each of size $m>m_{0}$, and suppose all three pairs $\left(V_{i}, V_{j}\right)$ for $1 \leq i<j \leq 3$ are δ-regular of density $\epsilon<d\left(V_{i}, V_{j}\right)<1-\epsilon$. Then G contains an induced copy of a cycle of length 4 , that is, four vertices $v_{1}, v_{2}, v_{3}, v_{4}$ so that $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ and $v_{4} v_{1}$ are edges whereas $v_{1} v_{3}$ and $v_{2} v_{4}$ are non-edges.
4. Prove that for every $\epsilon>0$ there are $\delta=\delta(\epsilon)>0$ and $n_{0}=n_{0}(\epsilon)$ so that the following holds. Let $G=(V, E)$ be a graph on $n>n_{0}$ vertices, and suppose that the number of edges between any two disjoint subsets V_{1}, V_{2} of V, each of size $m=\lfloor\sqrt{n}\rfloor$, is at least $(1-\delta) \frac{m^{2}}{2}$ and at most $(1+\delta) \frac{m^{2}}{2}$. (The random graph $G=G(n, 0.5)$ satisfies this property with high probability, provided n is sufficiently large as a function of δ). Then the minimum number of edge modifications (additions or deletions of edges) required to transform G into a graph containing no induced cycle of length 4 is at least $\left(\frac{1}{8}-\epsilon\right) n^{2}$.
5. Show that for any graph G on $2 m$ vertices, the minimum number of edge modifications required to transform G into a graph containing no induced cycle of length 4 is at most $\binom{m}{2}$, and that there is a graph on $2 m$ vertices that indeed requires $\binom{m}{2}$ modifications.

