Topics in Combinatorics and Graph Theory: Homework Assignment Number 4 Noga Alon

Solutions will be collected in class on Wednesday, May 26, 2010.

1. Let $A = (A_{ijk} : 1 \le i, j, k \le n)$ be a 3-dimensional array of real numbers. For $I, J, K \subset N = \{1, 2, \ldots, n\}$ and a real d, the *cut-array* D(I, J, K; d) is the three dimensional array (D_{ijk}) defined by $D_{ijk} = d$ for $i \in I, j \in J, k \in K$ and $D_{ijk} = 0$ otherwise. Show that for every $\epsilon > 0$ and every array A as above in which $|A_{ijk}| \le 1$ for all admissible i, j, k, there is a set of $s \le 1/\epsilon^2$ cut-arrays $D^{(1)}, \ldots, D^{(s)}$ so that if $W = A - D^{(1)} - \cdots - D^{(s)}$ then for every $I, J, K \subset N$

$$|\sum_{i\in I, j\in J, k\in K} W_{ijk}| \le \epsilon n^3$$

2. Let G = (V, E) be a graph on *n* vertices whose edges are colored by 3 colors. Describe a polynomial time algorithm that approximates, up to an additive error of $\frac{n^2}{1000}$, the minimum possible value of

$$\sum_{i=1}^{3} |e_i(S,\overline{S}) - \frac{in^2}{100}|,$$

where the minimum is taken over all cuts (S, \overline{S}) in G, and where $e_i(S, \overline{S})$ denotes the number of edges of color i in the cut for all $1 \le i \le 3$.

- 3. Show that for every $\epsilon > 0$ there exist $\delta = \delta(\epsilon) > 0$ and $m_0 = m_0(\epsilon)$ so that the following holds: Let G = (V, E) be a graph, and let V_1, V_2, V_3 be pairwise disjoint subsets of V, each of size $m > m_0$, and suppose all three pairs (V_i, V_j) for $1 \le i < j \le 3$ are δ -regular of density $\epsilon < d(V_i, V_j) < 1 - \epsilon$. Then G contains an *induced* copy of a cycle of length 4, that is, four vertices v_1, v_2, v_3, v_4 so that v_1v_2, v_2v_3, v_3v_4 and v_4v_1 are edges whereas v_1v_3 and v_2v_4 are non-edges.
- 4. Prove that for every $\epsilon > 0$ there are $\delta = \delta(\epsilon) > 0$ and $n_0 = n_0(\epsilon)$ so that the following holds. Let G = (V, E) be a graph on $n > n_0$ vertices, and suppose that the number of edges between any two disjoint subsets V_1, V_2 of V, each of size $m = \lfloor \sqrt{n} \rfloor$, is at least $(1 \delta) \frac{m^2}{2}$ and at most $(1 + \delta) \frac{m^2}{2}$. (The random graph G = G(n, 0.5) satisfies this property with high probability, provided n is sufficiently large as a function of δ). Then the minimum number of edge modifications (additions or deletions of edges) required to transform G into a graph containing no induced cycle of length 4 is at least $(\frac{1}{8} \epsilon)n^2$.
- 5. Show that for any graph G on 2m vertices, the minimum number of edge modifications required to transform G into a graph containing no induced cycle of length 4 is at most $\binom{m}{2}$, and that there is a graph on 2m vertices that indeed requires $\binom{m}{2}$ modifications.