
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 1 - Euclidean Isometries.

Note: There is often more than one way to solve the homework problems. The

solutions presented here are merely some possibilities.

1. Let C(x, r) ⊂ R2 be the circle with center x and radius r, and let f : R2 → R2 be an

isometry. Prove that f(C(x, r)) = C(f(x), r).

Solution: Note that for an isometry f : R2 → R2 one has

f(C) = {f(z) | d(x, z) = r} = {f(z) | d(f(x), f(z)) = r}

Thus, every point of f(C) is a distance r from f(x). Therefore, f(C) ⊆ C(f(x), r).

On the other hand,

C(f(x), r) = {f(f−1(x)) | x ∈ C(f(x), r)} = {f(y) | y ∈ f−1(C(f(x), r))}
⊆ {f(z) | z ∈ C} = f(C)

2. Prove that any two circles in the plane intersect in exactly 0,1,2 points, and that if

they intersect in two points then the line connecting their centers is the perpendicular

bisector of the line segment connecting the points where the two circles intersect.

Solution I (without coordinates) : Take C1, C2 distinct circles of radii r1 and r2
around P1 and P2. If P1 = P2 and r1 ̸= r2 they don’t intersect. Assume P1 ̸= P2.

Let L be the line containing P1 and P2 and let f be a reflection through L. If P is a

point of intersection of C1 and C2 then P ′ = f(P ) is also a point of intersection since

the circles are mapped onto themselves by f . So, if f(P ) = P then P lies on L and

the two circles are tangent. If f(P ) ̸= P , then P does not lie on L. From the triangle

inequality we get d(P1, P2) < d(P1, P )+d(P, P2) = r1+r2. Thus, if d(P1, P2) > r1+r2
then the circles don’t intersect. Moreover, if C1 and C2 intersect at two points P and

P ′, then the line L joining P1 and P2 is the perpendicular bisector of PP ′. Indeed, let

Q be the intersection of L and PP ′. Then P ′ = f(P ), PP ′⊥L and d(Q,P ) = d(Q,P ′)

from the definition of reflection.

Solution II (with coordinates): Assume for simplicity that C1 is given by x2+y2 =

r21, and C2 is given by (x − d)2 + y2 = r22. A simple algebraic manipulation gives

r21 = r22 + 2xd − d2. Solving for x gives x = (r21 − r22 + d2)/2d. Substituting into the

equation for C1 and solving for y gives y = ±
√
r21 −

(
r21−r22+d2

2d

)2
, which has either

zero, one or two solutions.
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3. Let P = (0, 0), Q = (1, 0), R = (0, 1) in R2. Using only the definition of distance,

show that if S and T are two points satisfying

∥S − P∥ = ∥T − P∥, ∥S −Q∥ = ∥T −Q∥, ∥S −R∥ = ∥T −R∥,

then S = T . Moreover, let f, g be two isometries of R2 such that f(P ) = g(P ), f(Q) =

g(Q), and f(R) = g(R). Show that f ≡ g. What happens in higher dimensions?

Solution: (a) Let S = (x, y) and T = (x′, y′). It follows from the given data that:

(i) x2 + y2 = (x′)2 + (y′)2, (ii) (x− 1)2 + y2 = (x′ − 1)2 + (y′)2, (iii) x2 + (y − 1)2 =

(x′)2 + (y′ − 1)2. From the first two equations one has x = x′ and from the last two

y = y′, and hence S = T .

(b) Write f(u) = Au + b and g(u) = Bu + c, where AAT = I = BBT and b, c ∈ R2.

Then, f(P ) = g(P ) ⇒ b = c, f(Q) = g(Q) ⇒ Ae1 + b = Be1 + c ⇒ Ae1 = Be1, and

f(R) = G(R) ⇒ Ae2 + b = Be2 + c⇒ Ae2 = Be2. Thus A = B.

4. Let f : R2 → R2 be the isometry defined by f(x, y) = (y + 1, x+ 1). Decide whether

f is a translation, rotation, reflection, or a glide reflection.

Solution: The map g(x, y) = (y, x) is a linear transformation with det g = −1, hence

a reflection. Since f(x, y) = g(x, y) + (1, 1), is a composition of a reflection and a

translation, it is a glide.

5. Consider the following three lines in the plane: L1 = {(x, y) |x + y = 1}, L2 =

{(x, y) |x = 0}, and L3 = {(x, y) | y = 0}. Describe the isometry RL3RL2RL1 (where

RLi is the reflection with respect to Li) either as a translation, rotation, reflection, or

a glide reflection. (Hint: draw a picture first.)

Solution: Rotate L2 and L3 about their common point (0, 0) by π/4 in the positive

sense, so that the new line L′
2 is parallel to L1. Then, L′

2 = {(x, y) | x + y = 0}
and L′

3 = {(x, y) | x − y = 0}. Next, since RL3RL2 = RL′
3
RL′

2
(note that the angles

between both pairs of lines is the same) one has RL3RL2RL1 = RL′
3
RL′

2
RL1 . But

RL′
2
RL1 is translation by the vector (−1,−1), and L′

3 is parallel to this vector. Thus,

by definition RL′
3
RL′

2
RL1 is the glide reflection associated to the line L′

3 and the

translation (−1,−1).

6. Show that every isometry of the plane can be written as a composition of at most

three reflections. (Hint: two lemmas that we proved in class might be useful here).

Solution: The solution was given in class.

7. Is it possible to represent a glide reflection as a composition of two reflections?

Solution: No, the product of two reflections in lines in R2 is a rotation if the lines

meet and a translation otherwise.

8. Let θ ∈ [0, 2π]. Show that if f : R2 → R2 is given by f(v) =
(
cos θ sin θ
sin θ − cos θ

)
(v), then f

is a reflection in a line L through the origin. Find the line of reflection.
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9. Let L1, L2 two lines intersecting at a point p ∈ R2. Let RLi be the reflection with

respect to Li, i = 1, 2. Show that the composition RL2 ◦ RL1 is a rotation around P

with angle of rotation equal to twice the angle formed by the two intersecting lines.

Solution: Let fi denote the reflection in Li, i = 1, 2. We wish to show that f2 ◦ f1 =
RP,2θ, where θ is the angle between L2 and L1. Note first that f2◦f1(P ) = P , that for

every point Q one has d(P, f2 ◦ f1(Q)) = d(Q,P ), and that f2 ◦ f1(Q) lies on a circle

of radius d(P,Q) around Q. So, it is suffices to show that the angle between the line

S through P and Q and the line S′ through P and f2 ◦f1(Q) is 2θ. Let ϕ be the angle

between L1 and S. The angle between f1(S) and L1 is also ϕ. If f1(S) lies between

L1 and L2 then the angle between L2 and f1(S) is θ − ϕ as is the angle between

f2 ◦ f1(S) = S′ and L2. Therefore the angel between S and S′ is 2ϕ+ 2(θ − ϕ) = 2θ.

If f1(S) lies on the other side of L2, then the angle between f1(S) and L2 is ψ′, where

ϕ′ = ϕ− θ. In this case, the angle between L2 and f2 ◦ f1(S) = S′ is also ϕ′ and the

angle between S and S′ is 2ϕ− 2ϕ′ = 2θ.

10. Prove that if f : R3 → R3 is an isometry such that f(0) = 0, then either

f(u)× f(v) = f(u× v), or f(u)× f(v) = −f(u× v),

for all v, u ∈ R3. (here “× ” denotes the cross product in R3).

Solution: We know that f(u) = Au for some matrix A ∈ O(3). Thus, the set

{Ae1, Ae2, Ae3} consists of the columns of A and so is an orthonormal basis for R3.

For any orthonormal basis {v1, v2, v3}, and w ∈ R3 we have w =
∑3

i=1(w · vi)vi.
Taking w = Au×Av, and vi = Aei, we conclude:

Au×Av =

3∑
i=1

((Au×Av) ·Aei)Aei =
3∑

i=1

det [AuAv Aei]Aei =

=

3∑
i=1

det (A[u v ei])Aei =

3∑
i=1

(detA)(det [u v ei])Aei

= (detA)
3∑

i=1

((u× v) · ei)Aei

On the other hand,

A(u× v) = A(
3∑

i=1

((u× v) · ei)ei) =
3∑

i=1

((u× v) · ei)Aei

therefore Au×Av = det (A)A(u× v) and the proof is complete.
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