Non-Euclidean Geometry (spring 2011)

Exercise No. 10 - Projective Geometry

1. Show that three points in a projective space of dimension at least 2 lie on a projective plane which is unique unless the points are collinear.
2. Let P, P^{\prime} be distinct projective planes in a 3 -dimensional projective space. Show that $P \cap P^{\prime}$ is a projective line
3. Here is a "cheap proof" of Desargues Theorem in the case when $\operatorname{dim} \mathbb{P}(V) \geq 3$ and the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ lie in different planes P and $P^{\prime}:(i)$ Prove that $P, A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$ lie in a 3 -dimensional projective subspace (so that we can restrict attention to that subspace and assume $\operatorname{dimP}(V)=3$). (ii) Show that the intersections Q, R, S all lie in $P \cap P^{\prime}$ which is a line by the previous question.
4. Let $E_{1}=\mathbb{P}\left(U_{1}\right)$ and $E_{2}=\mathbb{P}\left(U_{2}\right)$ be two hyperplanes in a projective space $\mathbb{P}(V)$ (for example, two lines in a projective plane) and let $W \operatorname{in} \mathbb{P}(V)$ be a point not in E_{1} or E_{2}. Then the central projection from E_{1} to E_{2} with center W is the map $\hat{f}: E_{1} \rightarrow E_{2}$ that maps a point $A \in E_{1}$ to the intersection of E_{2} with the line through W and A. Show that the central projection \hat{f} is a projective transformation $E_{1} \rightarrow E_{2}$.
5. Let $\mathbb{P}(V)$ and $\mathbb{P}(W)$ be two n-dimensional projective spaces and suppose $A_{1}, \ldots, A_{n+2} \in$ $\mathbb{P}(V)$ and $B_{1}, \ldots, B_{n+2} \in \mathbb{P}(W)$ are in general position. Then there exists a unique projective transformation $\hat{f}: \mathbb{P}(V) \rightarrow \mathbb{P}(W)$ with $\hat{f}\left(A_{i}\right)=B_{i}$ for $i=1, \ldots, n+2$.
6. Let L_{1}, L_{2} be distinct projective lines in a projective plane that intersect at a point A. Let $\tau: L_{1} \rightarrow L_{2}$ be a projective transformation such that $\tau A=A$. Show that τ is a projection from some point of the plane. Hint: Choose B, C on L_{1} distinct from A and let $B^{\prime}=\tau B, C^{\prime}=\tau C$. If τ was a projection, where would its centre have to lie?
7. Let L_{1} and L_{2} be distinct projective lines in a projective plane and $\tau: L_{1} \rightarrow L_{2}$ a projective transformation. We are going to show that τ is a composition of two projections. Let A, B, C be distinct points on L_{1} and let $A^{\prime}=\tau A, B^{\prime}=\tau B$, and $C^{\prime}=\tau C$. Without loss of generality, assume that neither A or A^{\prime} are in $L_{1} \cap L_{2}$. Set $P=A B^{\prime} \cap A^{\prime} B, Q=A C^{\prime} \cap A^{\prime} C$ and let L^{\prime} be the line $P Q$. Let $\tau_{1}: L_{1} \rightarrow L^{\prime}$ be the projection with centre A^{\prime} and $\tau_{2}: L^{\prime} \rightarrow L_{2}$ be the projection with centre A. (a) Prove that $\tau=\tau_{2} \circ \tau_{1}$. Hint: What does $\tau_{2} \circ \tau_{1}$ do to A, B, C ?
8. (*) Prove Brianchon's Theorem: Let the sides $A B^{\prime}, B^{\prime} C, C A^{\prime}, A^{\prime} B, B C^{\prime}, C^{\prime} A$ of a hexagon pass alternately through two (different) points P and Q in a projective plane. Then the lines joining opposite vertices $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent. Hint: choose a basis so that P, C, Q, C^{\prime} have homogeneous coordinates $[1,0,0],[0,1,0],[0,0,1],[1,1,1]$.
